blob: 9b3a513206c17431d8ce0e110f8d2b2da940702b [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layers/delegated_renderer_layer_impl.h"
#include <algorithm>
#include <utility>
#include "base/bind.h"
#include "base/containers/hash_tables.h"
#include "cc/base/math_util.h"
#include "cc/layers/append_quads_data.h"
#include "cc/layers/render_pass_sink.h"
#include "cc/output/delegated_frame_data.h"
#include "cc/quads/render_pass_draw_quad.h"
#include "cc/quads/solid_color_draw_quad.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/occlusion.h"
#include "ui/gfx/geometry/rect_conversions.h"
namespace cc {
DelegatedRendererLayerImpl::DelegatedRendererLayerImpl(LayerTreeImpl* tree_impl,
int id)
: LayerImpl(tree_impl, id),
have_render_passes_to_push_(false),
inverse_device_scale_factor_(1.0f),
child_id_(0),
own_child_id_(false) {
}
DelegatedRendererLayerImpl::~DelegatedRendererLayerImpl() {
ClearRenderPasses();
ClearChildId();
}
bool DelegatedRendererLayerImpl::HasDelegatedContent() const { return true; }
bool DelegatedRendererLayerImpl::HasContributingDelegatedRenderPasses() const {
// The root RenderPass for the layer is merged with its target
// RenderPass in each frame. So we only have extra RenderPasses
// to merge when we have a non-root RenderPass present.
return render_passes_in_draw_order_.size() > 1;
}
void DelegatedRendererLayerImpl::PushPropertiesTo(LayerImpl* layer) {
LayerImpl::PushPropertiesTo(layer);
DelegatedRendererLayerImpl* delegated_layer =
static_cast<DelegatedRendererLayerImpl*>(layer);
// If we have a new child_id to give to the active layer, it should
// have already deleted its old child_id.
DCHECK(delegated_layer->child_id_ == 0 ||
delegated_layer->child_id_ == child_id_);
delegated_layer->inverse_device_scale_factor_ = inverse_device_scale_factor_;
delegated_layer->child_id_ = child_id_;
delegated_layer->own_child_id_ = true;
own_child_id_ = false;
if (have_render_passes_to_push_) {
DCHECK(child_id_);
// This passes ownership of the render passes to the active tree.
delegated_layer->SetRenderPasses(&render_passes_in_draw_order_);
// Once resources are on the active tree, give them to the ResourceProvider
// and release unused resources from the old frame.
delegated_layer->TakeOwnershipOfResourcesIfOnActiveTree(resources_);
DCHECK(render_passes_in_draw_order_.empty());
have_render_passes_to_push_ = false;
}
// This is just a copy for testing, since resources are added to the
// ResourceProvider in the pending tree.
delegated_layer->resources_ = resources_;
}
void DelegatedRendererLayerImpl::CreateChildIdIfNeeded(
const ReturnCallback& return_callback) {
if (child_id_)
return;
ResourceProvider* resource_provider = layer_tree_impl()->resource_provider();
child_id_ = resource_provider->CreateChild(return_callback);
own_child_id_ = true;
}
void DelegatedRendererLayerImpl::SetFrameData(
const DelegatedFrameData* frame_data,
const gfx::Rect& damage_in_frame) {
DCHECK(child_id_) << "CreateChildIdIfNeeded must be called first.";
DCHECK(frame_data);
DCHECK(!frame_data->render_pass_list.empty());
// A frame with an empty root render pass is invalid.
DCHECK(!frame_data->render_pass_list.back()->output_rect.IsEmpty());
ResourceProvider* resource_provider = layer_tree_impl()->resource_provider();
const ResourceProvider::ResourceIdMap& resource_map =
resource_provider->GetChildToParentMap(child_id_);
resource_provider->ReceiveFromChild(child_id_, frame_data->resource_list);
RenderPassList render_pass_list;
RenderPass::CopyAll(frame_data->render_pass_list, &render_pass_list);
bool invalid_frame = false;
ResourceProvider::ResourceIdSet resources_in_frame;
size_t reserve_size = frame_data->resource_list.size();
#if defined(COMPILER_MSVC)
resources_in_frame.reserve(reserve_size);
#elif defined(COMPILER_GCC)
// Pre-standard hash-tables only implement resize, which behaves similarly
// to reserve for these keys. Resizing to 0 may also be broken (particularly
// on stlport).
// TODO(jbauman): Replace with reserve when C++11 is supported everywhere.
if (reserve_size)
resources_in_frame.resize(reserve_size);
#endif
for (const auto& pass : render_pass_list) {
for (const auto& quad : pass->quad_list) {
for (ResourceId& resource_id : quad->resources) {
ResourceProvider::ResourceIdMap::const_iterator it =
resource_map.find(resource_id);
if (it == resource_map.end()) {
invalid_frame = true;
break;
}
DCHECK_EQ(it->first, resource_id);
ResourceId remapped_id = it->second;
resources_in_frame.insert(resource_id);
resource_id = remapped_id;
}
}
}
if (invalid_frame) {
// Declare we are still using the last frame's resources. Drops ownership of
// any invalid resources, keeping only those in use by the active tree.
resource_provider->DeclareUsedResourcesFromChild(child_id_, resources_);
return;
}
// Save the new frame's resources, but don't give them to the ResourceProvider
// until they are active, since the resources on the active tree will still be
// used and we don't want to return them early.
resources_.swap(resources_in_frame);
TakeOwnershipOfResourcesIfOnActiveTree(resources_);
inverse_device_scale_factor_ = 1.0f / frame_data->device_scale_factor;
// Display size is already set so we can compute what the damage rect
// will be in layer space. The damage may exceed the visible portion of
// the frame, so intersect the damage to the layer's bounds.
RenderPass* new_root_pass = render_pass_list.back();
gfx::Size frame_size = new_root_pass->output_rect.size();
gfx::Rect damage_in_layer =
gfx::ScaleToEnclosingRect(damage_in_frame, inverse_device_scale_factor_);
SetUpdateRect(gfx::IntersectRects(
gfx::UnionRects(update_rect(), damage_in_layer), gfx::Rect(bounds())));
SetRenderPasses(&render_pass_list);
have_render_passes_to_push_ = true;
}
void DelegatedRendererLayerImpl::TakeOwnershipOfResourcesIfOnActiveTree(
const ResourceProvider::ResourceIdSet& resources) {
DCHECK(child_id_);
if (!layer_tree_impl()->IsActiveTree())
return;
layer_tree_impl()->resource_provider()->DeclareUsedResourcesFromChild(
child_id_, resources);
}
void DelegatedRendererLayerImpl::SetRenderPasses(
RenderPassList* render_passes_in_draw_order) {
ClearRenderPasses();
for (size_t i = 0; i < render_passes_in_draw_order->size(); ++i) {
RenderPassList::iterator to_take =
render_passes_in_draw_order->begin() + i;
render_passes_index_by_id_.insert(
RenderPassToIndexMap::value_type((*to_take)->id, i));
scoped_ptr<RenderPass> taken_render_pass =
render_passes_in_draw_order->take(to_take);
render_passes_in_draw_order_.push_back(taken_render_pass.Pass());
}
// Give back an empty array instead of nulls.
render_passes_in_draw_order->clear();
// The render passes given here become part of the RenderSurfaceLayerList, so
// changing them requires recomputing the RenderSurfaceLayerList.
layer_tree_impl()->set_needs_update_draw_properties();
}
void DelegatedRendererLayerImpl::ClearRenderPasses() {
render_passes_index_by_id_.clear();
render_passes_in_draw_order_.clear();
}
scoped_ptr<LayerImpl> DelegatedRendererLayerImpl::CreateLayerImpl(
LayerTreeImpl* tree_impl) {
return DelegatedRendererLayerImpl::Create(tree_impl, id());
}
void DelegatedRendererLayerImpl::ReleaseResources() {
ClearRenderPasses();
ClearChildId();
have_render_passes_to_push_ = false;
}
static inline size_t IndexToId(size_t index) {
return index + 1;
}
static inline size_t IdToIndex(size_t id) {
DCHECK_GT(id, 0u);
return id - 1;
}
RenderPassId DelegatedRendererLayerImpl::FirstContributingRenderPassId() const {
return RenderPassId(id(), IndexToId(0));
}
RenderPassId DelegatedRendererLayerImpl::NextContributingRenderPassId(
RenderPassId previous) const {
return RenderPassId(previous.layer_id, previous.index + 1);
}
bool DelegatedRendererLayerImpl::ConvertDelegatedRenderPassId(
RenderPassId delegated_render_pass_id,
RenderPassId* output_render_pass_id) const {
RenderPassToIndexMap::const_iterator found =
render_passes_index_by_id_.find(delegated_render_pass_id);
if (found == render_passes_index_by_id_.end()) {
// Be robust against a RenderPass id that isn't part of the frame.
return false;
}
size_t delegated_render_pass_index = found->second;
*output_render_pass_id =
RenderPassId(id(), IndexToId(delegated_render_pass_index));
return true;
}
void DelegatedRendererLayerImpl::AppendContributingRenderPasses(
RenderPassSink* render_pass_sink) {
DCHECK(HasContributingDelegatedRenderPasses());
const RenderPass* root_delegated_render_pass =
render_passes_in_draw_order_.back();
gfx::Size frame_size = root_delegated_render_pass->output_rect.size();
gfx::Transform delegated_frame_to_root_transform = screen_space_transform();
delegated_frame_to_root_transform.Scale(inverse_device_scale_factor_,
inverse_device_scale_factor_);
for (size_t i = 0; i < render_passes_in_draw_order_.size() - 1; ++i) {
RenderPassId output_render_pass_id;
bool present =
ConvertDelegatedRenderPassId(render_passes_in_draw_order_[i]->id,
&output_render_pass_id);
// Don't clash with the RenderPass we generate if we own a RenderSurface.
DCHECK(present) << render_passes_in_draw_order_[i]->id.layer_id << ", "
<< render_passes_in_draw_order_[i]->id.index;
DCHECK_GT(output_render_pass_id.index, 0u);
scoped_ptr<RenderPass> copy_pass =
render_passes_in_draw_order_[i]->Copy(output_render_pass_id);
copy_pass->transform_to_root_target.ConcatTransform(
delegated_frame_to_root_transform);
render_pass_sink->AppendRenderPass(copy_pass.Pass());
}
}
bool DelegatedRendererLayerImpl::WillDraw(DrawMode draw_mode,
ResourceProvider* resource_provider) {
if (draw_mode == DRAW_MODE_RESOURCELESS_SOFTWARE)
return false;
return LayerImpl::WillDraw(draw_mode, resource_provider);
}
void DelegatedRendererLayerImpl::AppendQuads(
RenderPass* render_pass,
AppendQuadsData* append_quads_data) {
AppendRainbowDebugBorder(render_pass);
// This list will be empty after a lost context until a new frame arrives.
if (render_passes_in_draw_order_.empty())
return;
RenderPassId target_render_pass_id = render_pass->id;
const RenderPass* root_delegated_render_pass =
render_passes_in_draw_order_.back();
DCHECK(root_delegated_render_pass->output_rect.origin().IsOrigin());
gfx::Size frame_size = root_delegated_render_pass->output_rect.size();
// If the index of the RenderPassId is 0, then it is a RenderPass generated
// for a layer in this compositor, not the delegating renderer. Then we want
// to merge our root RenderPass with the target RenderPass. Otherwise, it is
// some RenderPass which we added from the delegating renderer.
bool should_merge_root_render_pass_with_target = !target_render_pass_id.index;
if (should_merge_root_render_pass_with_target) {
// Verify that the RenderPass we are appending to is created by our
// render_target.
DCHECK(target_render_pass_id.layer_id == render_target()->id());
AppendRenderPassQuads(render_pass,
root_delegated_render_pass,
frame_size);
} else {
// Verify that the RenderPass we are appending to was created by us.
DCHECK(target_render_pass_id.layer_id == id());
size_t render_pass_index = IdToIndex(target_render_pass_id.index);
const RenderPass* delegated_render_pass =
render_passes_in_draw_order_[render_pass_index];
AppendRenderPassQuads(render_pass,
delegated_render_pass,
frame_size);
}
}
void DelegatedRendererLayerImpl::AppendRainbowDebugBorder(
RenderPass* render_pass) {
if (!ShowDebugBorders())
return;
SharedQuadState* shared_quad_state =
render_pass->CreateAndAppendSharedQuadState();
PopulateSharedQuadState(shared_quad_state);
SkColor color;
float border_width;
GetDebugBorderProperties(&color, &border_width);
SkColor colors[] = {
0x80ff0000, // Red.
0x80ffa500, // Orange.
0x80ffff00, // Yellow.
0x80008000, // Green.
0x800000ff, // Blue.
0x80ee82ee, // Violet.
};
const int kNumColors = arraysize(colors);
const int kStripeWidth = 300;
const int kStripeHeight = 300;
for (int i = 0;; ++i) {
// For horizontal lines.
int x = kStripeWidth * i;
int width = std::min(kStripeWidth, bounds().width() - x - 1);
// For vertical lines.
int y = kStripeHeight * i;
int height = std::min(kStripeHeight, bounds().height() - y - 1);
gfx::Rect top(x, 0, width, border_width);
gfx::Rect bottom(x, bounds().height() - border_width, width, border_width);
gfx::Rect left(0, y, border_width, height);
gfx::Rect right(bounds().width() - border_width, y, border_width, height);
if (top.IsEmpty() && left.IsEmpty())
break;
if (!top.IsEmpty()) {
bool force_anti_aliasing_off = false;
SolidColorDrawQuad* top_quad =
render_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
top_quad->SetNew(shared_quad_state, top, top, colors[i % kNumColors],
force_anti_aliasing_off);
SolidColorDrawQuad* bottom_quad =
render_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
bottom_quad->SetNew(shared_quad_state, bottom, bottom,
colors[kNumColors - 1 - (i % kNumColors)],
force_anti_aliasing_off);
if (contents_opaque()) {
// Draws a stripe filling the layer vertically with the same color and
// width as the horizontal stipes along the layer's top border.
SolidColorDrawQuad* solid_quad =
render_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
// The inner fill is more transparent then the border.
static const float kFillOpacity = 0.1f;
SkColor fill_color = SkColorSetA(
colors[i % kNumColors],
static_cast<uint8_t>(SkColorGetA(colors[i % kNumColors]) *
kFillOpacity));
gfx::Rect fill_rect(x, 0, width, bounds().height());
solid_quad->SetNew(shared_quad_state, fill_rect, fill_rect, fill_color,
force_anti_aliasing_off);
}
}
if (!left.IsEmpty()) {
bool force_anti_aliasing_off = false;
SolidColorDrawQuad* left_quad =
render_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
left_quad->SetNew(shared_quad_state, left, left,
colors[kNumColors - 1 - (i % kNumColors)],
force_anti_aliasing_off);
SolidColorDrawQuad* right_quad =
render_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>();
right_quad->SetNew(shared_quad_state, right, right,
colors[i % kNumColors], force_anti_aliasing_off);
}
}
}
void DelegatedRendererLayerImpl::AppendRenderPassQuads(
RenderPass* render_pass,
const RenderPass* delegated_render_pass,
const gfx::Size& frame_size) const {
const SharedQuadState* delegated_shared_quad_state = nullptr;
SharedQuadState* output_shared_quad_state = nullptr;
gfx::Transform delegated_frame_to_target_transform = draw_transform();
delegated_frame_to_target_transform.Scale(inverse_device_scale_factor_,
inverse_device_scale_factor_);
bool is_root_delegated_render_pass =
delegated_render_pass == render_passes_in_draw_order_.back();
for (const auto& delegated_quad : delegated_render_pass->quad_list) {
if (delegated_quad->shared_quad_state != delegated_shared_quad_state) {
delegated_shared_quad_state = delegated_quad->shared_quad_state;
output_shared_quad_state = render_pass->CreateAndAppendSharedQuadState();
output_shared_quad_state->CopyFrom(delegated_shared_quad_state);
if (is_root_delegated_render_pass) {
output_shared_quad_state->quad_to_target_transform.ConcatTransform(
delegated_frame_to_target_transform);
if (render_target() == this) {
DCHECK(!is_clipped());
DCHECK(render_surface());
DCHECK_EQ(0u, num_unclipped_descendants());
output_shared_quad_state->clip_rect =
MathUtil::MapEnclosingClippedRect(
delegated_frame_to_target_transform,
output_shared_quad_state->clip_rect);
} else {
gfx::Rect clip_rect = drawable_content_rect();
if (output_shared_quad_state->is_clipped) {
clip_rect.Intersect(MathUtil::MapEnclosingClippedRect(
delegated_frame_to_target_transform,
output_shared_quad_state->clip_rect));
}
output_shared_quad_state->clip_rect = clip_rect;
output_shared_quad_state->is_clipped = true;
}
output_shared_quad_state->opacity *= draw_opacity();
}
}
DCHECK(output_shared_quad_state);
gfx::Transform quad_content_to_delegated_target_space =
output_shared_quad_state->quad_to_target_transform;
if (!is_root_delegated_render_pass) {
quad_content_to_delegated_target_space.ConcatTransform(
delegated_render_pass->transform_to_root_target);
quad_content_to_delegated_target_space.ConcatTransform(
delegated_frame_to_target_transform);
}
Occlusion occlusion_in_quad_space =
draw_properties()
.occlusion_in_content_space.GetOcclusionWithGivenDrawTransform(
quad_content_to_delegated_target_space);
gfx::Rect quad_visible_rect =
occlusion_in_quad_space.GetUnoccludedContentRect(
delegated_quad->visible_rect);
if (quad_visible_rect.IsEmpty())
continue;
if (delegated_quad->material != DrawQuad::RENDER_PASS) {
DrawQuad* output_quad = render_pass->CopyFromAndAppendDrawQuad(
delegated_quad, output_shared_quad_state);
output_quad->visible_rect = quad_visible_rect;
ValidateQuadResources(output_quad);
} else {
RenderPassId delegated_contributing_render_pass_id =
RenderPassDrawQuad::MaterialCast(delegated_quad)->render_pass_id;
RenderPassId output_contributing_render_pass_id;
bool present =
ConvertDelegatedRenderPassId(delegated_contributing_render_pass_id,
&output_contributing_render_pass_id);
// |present| being false means the child compositor sent an invalid frame.
DCHECK(present);
DCHECK(output_contributing_render_pass_id != render_pass->id);
RenderPassDrawQuad* output_quad =
render_pass->CopyFromAndAppendRenderPassDrawQuad(
RenderPassDrawQuad::MaterialCast(delegated_quad),
output_shared_quad_state, output_contributing_render_pass_id);
output_quad->visible_rect = quad_visible_rect;
ValidateQuadResources(output_quad);
}
}
}
const char* DelegatedRendererLayerImpl::LayerTypeAsString() const {
return "cc::DelegatedRendererLayerImpl";
}
void DelegatedRendererLayerImpl::ClearChildId() {
if (!child_id_)
return;
if (own_child_id_) {
ResourceProvider* provider = layer_tree_impl()->resource_provider();
provider->DestroyChild(child_id_);
}
resources_.clear();
child_id_ = 0;
}
} // namespace cc