blob: 3931f8dd4239b6f80f73e79a41ee15282914714c [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/scoped_ptr.h"
#include "cc/test/fake_picture_pile_impl.h"
#include "cc/test/skia_common.h"
#include "skia/ext/refptr.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkPixelRef.h"
#include "third_party/skia/include/core/SkShader.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size_conversions.h"
namespace cc {
namespace {
TEST(PicturePileImplTest, AnalyzeIsSolidUnscaled) {
gfx::Size tile_size(100, 100);
gfx::Size layer_bounds(400, 400);
scoped_ptr<FakePicturePile> recording_source =
FakePicturePile::CreateFilledPile(tile_size, layer_bounds);
SkPaint solid_paint;
SkColor solid_color = SkColorSetARGB(255, 12, 23, 34);
solid_paint.setColor(solid_color);
SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67);
SkPaint non_solid_paint;
non_solid_paint.setColor(non_solid_color);
recording_source->add_draw_rect_with_paint(gfx::Rect(400, 400), solid_paint);
recording_source->Rerecord();
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
// Ensure everything is solid.
for (int y = 0; y <= 300; y += 100) {
for (int x = 0; x <= 300; x += 100) {
RasterSource::SolidColorAnalysis analysis;
gfx::Rect rect(x, y, 100, 100);
pile->PerformSolidColorAnalysis(rect, 1.0, &analysis);
EXPECT_TRUE(analysis.is_solid_color) << rect.ToString();
EXPECT_EQ(analysis.solid_color, solid_color) << rect.ToString();
}
}
// Add one non-solid pixel and recreate the raster source.
recording_source->add_draw_rect_with_paint(gfx::Rect(50, 50, 1, 1),
non_solid_paint);
recording_source->Rerecord();
pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
RasterSource::SolidColorAnalysis analysis;
pile->PerformSolidColorAnalysis(gfx::Rect(0, 0, 100, 100), 1.0, &analysis);
EXPECT_FALSE(analysis.is_solid_color);
pile->PerformSolidColorAnalysis(gfx::Rect(100, 0, 100, 100), 1.0, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
// Boundaries should be clipped.
analysis.is_solid_color = false;
pile->PerformSolidColorAnalysis(gfx::Rect(350, 0, 100, 100), 1.0, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
analysis.is_solid_color = false;
pile->PerformSolidColorAnalysis(gfx::Rect(0, 350, 100, 100), 1.0, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
analysis.is_solid_color = false;
pile->PerformSolidColorAnalysis(gfx::Rect(350, 350, 100, 100), 1.0,
&analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
}
TEST(PicturePileImplTest, AnalyzeIsSolidScaled) {
gfx::Size tile_size(100, 100);
gfx::Size layer_bounds(400, 400);
scoped_ptr<FakePicturePile> recording_source =
FakePicturePile::CreateFilledPile(tile_size, layer_bounds);
SkColor solid_color = SkColorSetARGB(255, 12, 23, 34);
SkPaint solid_paint;
solid_paint.setColor(solid_color);
SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67);
SkPaint non_solid_paint;
non_solid_paint.setColor(non_solid_color);
recording_source->add_draw_rect_with_paint(gfx::Rect(400, 400), solid_paint);
recording_source->Rerecord();
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
// Ensure everything is solid.
for (int y = 0; y <= 30; y += 10) {
for (int x = 0; x <= 30; x += 10) {
RasterSource::SolidColorAnalysis analysis;
gfx::Rect rect(x, y, 10, 10);
pile->PerformSolidColorAnalysis(rect, 0.1f, &analysis);
EXPECT_TRUE(analysis.is_solid_color) << rect.ToString();
EXPECT_EQ(analysis.solid_color, solid_color) << rect.ToString();
}
}
// Add one non-solid pixel and recreate the raster source.
recording_source->add_draw_rect_with_paint(gfx::Rect(50, 50, 1, 1),
non_solid_paint);
recording_source->Rerecord();
pile = FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
RasterSource::SolidColorAnalysis analysis;
pile->PerformSolidColorAnalysis(gfx::Rect(0, 0, 10, 10), 0.1f, &analysis);
EXPECT_FALSE(analysis.is_solid_color);
pile->PerformSolidColorAnalysis(gfx::Rect(10, 0, 10, 10), 0.1f, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
// Boundaries should be clipped.
analysis.is_solid_color = false;
pile->PerformSolidColorAnalysis(gfx::Rect(35, 0, 10, 10), 0.1f, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
analysis.is_solid_color = false;
pile->PerformSolidColorAnalysis(gfx::Rect(0, 35, 10, 10), 0.1f, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
analysis.is_solid_color = false;
pile->PerformSolidColorAnalysis(gfx::Rect(35, 35, 10, 10), 0.1f, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, solid_color);
}
TEST(PicturePileImplTest, AnalyzeIsSolidEmpty) {
gfx::Size tile_size(100, 100);
gfx::Size layer_bounds(400, 400);
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds);
RasterSource::SolidColorAnalysis analysis;
EXPECT_FALSE(analysis.is_solid_color);
pile->PerformSolidColorAnalysis(gfx::Rect(0, 0, 400, 400), 1.f, &analysis);
EXPECT_TRUE(analysis.is_solid_color);
EXPECT_EQ(analysis.solid_color, SkColorSetARGB(0, 0, 0, 0));
}
TEST(PicturePileImplTest, ImageIteratorDiscardableImagesOneTile) {
gfx::Size tile_size(256, 256);
gfx::Size layer_bounds(512, 512);
scoped_ptr<FakePicturePile> recording_source =
FakePicturePile::CreateFilledPile(tile_size, layer_bounds);
skia::RefPtr<SkImage> discardable_image[2][2];
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[0][1] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(32, 32));
// Discardable pixel refs are found in the following cells:
// |---|---|
// | x | x |
// |---|---|
// | | x |
// |---|---|
recording_source->add_draw_image(discardable_image[0][0].get(),
gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[0][1].get(),
gfx::Point(260, 0));
recording_source->add_draw_image(discardable_image[1][1].get(),
gfx::Point(260, 260));
recording_source->SetGatherDiscardableImages(true);
recording_source->Rerecord();
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
// Tile sized iterators. These should find only one pixel ref.
{
PicturePileImpl::ImageIterator iterator(gfx::Rect(0, 0, 256, 256),
pile.get());
EXPECT_TRUE(iterator);
EXPECT_TRUE(iterator->image == discardable_image[0][0].get());
EXPECT_EQ(gfx::SkRectToRectF(iterator->image_rect).ToString(),
gfx::RectF(32, 32).ToString());
EXPECT_FALSE(++iterator);
}
// Shifted tile sized iterators. These should find only one pixel ref.
{
PicturePileImpl::ImageIterator iterator(gfx::Rect(260, 260, 256, 256),
pile.get());
EXPECT_TRUE(iterator);
EXPECT_TRUE(iterator->image == discardable_image[1][1].get());
EXPECT_EQ(gfx::SkRectToRectF(iterator->image_rect).ToString(),
gfx::RectF(260, 260, 32, 32).ToString());
EXPECT_FALSE(++iterator);
}
// Ensure there's no discardable pixel refs in the empty cell
{
PicturePileImpl::ImageIterator iterator(gfx::Rect(0, 256, 256, 256),
pile.get());
EXPECT_FALSE(iterator);
}
// Layer sized iterators. These should find three pixel ref.
{
PicturePileImpl::ImageIterator iterator(gfx::Rect(0, 0, 512, 512),
pile.get());
EXPECT_TRUE(iterator);
EXPECT_TRUE(iterator->image == discardable_image[0][0].get());
EXPECT_EQ(gfx::SkRectToRectF(iterator->image_rect).ToString(),
gfx::RectF(32, 32).ToString());
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[0][1].get());
EXPECT_EQ(gfx::SkRectToRectF(iterator->image_rect).ToString(),
gfx::RectF(260, 0, 32, 32).ToString());
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[1][1].get());
EXPECT_EQ(gfx::SkRectToRectF(iterator->image_rect).ToString(),
gfx::RectF(260, 260, 32, 32).ToString());
EXPECT_FALSE(++iterator);
}
{
// Copy test.
PicturePileImpl::ImageIterator iterator(gfx::Rect(0, 0, 512, 512),
pile.get());
EXPECT_TRUE(iterator);
EXPECT_TRUE(iterator->image == discardable_image[0][0].get());
EXPECT_EQ(gfx::RectF(32, 32).ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[0][1].get());
EXPECT_EQ(gfx::RectF(260, 0, 32, 32).ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
// copy now points to the same spot as iterator,
// but both can be incremented independently.
PicturePileImpl::ImageIterator copy = iterator;
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[1][1].get());
EXPECT_EQ(gfx::RectF(260, 260, 32, 32).ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_FALSE(++iterator);
EXPECT_TRUE(copy);
EXPECT_TRUE(copy->image == discardable_image[0][1].get());
EXPECT_EQ(gfx::RectF(260, 0, 32, 32).ToString(),
gfx::SkRectToRectF(copy->image_rect).ToString());
EXPECT_TRUE(++copy);
EXPECT_TRUE(copy->image == discardable_image[1][1].get());
EXPECT_EQ(gfx::RectF(260, 260, 32, 32).ToString(),
gfx::SkRectToRectF(copy->image_rect).ToString());
EXPECT_FALSE(++copy);
}
}
TEST(PicturePileImplTest, RasterFullContents) {
gfx::Size tile_size(1000, 1000);
gfx::Size layer_bounds(3, 5);
float contents_scale = 1.5f;
float raster_divisions = 2.f;
scoped_ptr<FakePicturePile> recording_source =
FakePicturePile::CreateFilledPile(tile_size, layer_bounds);
recording_source->SetBackgroundColor(SK_ColorBLACK);
recording_source->SetIsSolidColor(false);
recording_source->SetRequiresClear(false);
recording_source->SetClearCanvasWithDebugColor(false);
// Because the caller sets content opaque, it also promises that it
// has at least filled in layer_bounds opaquely.
SkPaint white_paint;
white_paint.setColor(SK_ColorWHITE);
recording_source->add_draw_rect_with_paint(gfx::Rect(layer_bounds),
white_paint);
recording_source->SetMinContentsScale(contents_scale);
recording_source->Rerecord();
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
gfx::Size content_bounds(
gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale)));
// Simulate drawing into different tiles at different offsets.
int step_x = std::ceil(content_bounds.width() / raster_divisions);
int step_y = std::ceil(content_bounds.height() / raster_divisions);
for (int offset_x = 0; offset_x < content_bounds.width();
offset_x += step_x) {
for (int offset_y = 0; offset_y < content_bounds.height();
offset_y += step_y) {
gfx::Rect content_rect(offset_x, offset_y, step_x, step_y);
content_rect.Intersect(gfx::Rect(content_bounds));
// Simulate a canvas rect larger than the content rect. Every pixel
// up to one pixel outside the content rect is guaranteed to be opaque.
// Outside of that is undefined.
gfx::Rect canvas_rect(content_rect);
canvas_rect.Inset(0, 0, -1, -1);
SkBitmap bitmap;
bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height());
SkCanvas canvas(bitmap);
canvas.clear(SK_ColorTRANSPARENT);
pile->PlaybackToCanvas(&canvas, canvas_rect, canvas_rect, contents_scale);
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
int num_pixels = bitmap.width() * bitmap.height();
bool all_white = true;
for (int i = 0; i < num_pixels; ++i) {
EXPECT_EQ(SkColorGetA(pixels[i]), 255u);
all_white &= (SkColorGetR(pixels[i]) == 255);
all_white &= (SkColorGetG(pixels[i]) == 255);
all_white &= (SkColorGetB(pixels[i]) == 255);
}
// If the canvas doesn't extend past the edge of the content,
// it should be entirely white. Otherwise, the edge of the content
// will be non-white.
EXPECT_EQ(all_white, gfx::Rect(content_bounds).Contains(canvas_rect));
}
}
}
TEST(PicturePileImpl, RasterContentsTransparent) {
gfx::Size tile_size(1000, 1000);
gfx::Size layer_bounds(5, 3);
float contents_scale = 0.5f;
scoped_ptr<FakePicturePile> recording_source =
FakePicturePile::CreateFilledPile(tile_size, layer_bounds);
recording_source->SetBackgroundColor(SK_ColorTRANSPARENT);
recording_source->SetRequiresClear(true);
recording_source->SetMinContentsScale(contents_scale);
recording_source->SetClearCanvasWithDebugColor(false);
recording_source->Rerecord();
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
gfx::Size content_bounds(
gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale)));
gfx::Rect canvas_rect(content_bounds);
canvas_rect.Inset(0, 0, -1, -1);
SkBitmap bitmap;
bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height());
SkCanvas canvas(bitmap);
pile->PlaybackToCanvas(&canvas, canvas_rect, canvas_rect, contents_scale);
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
int num_pixels = bitmap.width() * bitmap.height();
for (int i = 0; i < num_pixels; ++i) {
EXPECT_EQ(SkColorGetA(pixels[i]), 0u);
}
}
class OverlapTest : public ::testing::TestWithParam<float> {
public:
static float MinContentsScale() { return 1.f / 4.f; }
};
TEST_P(OverlapTest, NoOverlap) {
gfx::Size tile_size(10, 10);
gfx::Size layer_bounds(30, 30);
gfx::Size bigger_than_layer_bounds(300, 300);
float contents_scale = GetParam();
// Pick an opaque color to not have to deal with premultiplication off-by-one.
SkColor test_color = SkColorSetARGB(255, 45, 56, 67);
scoped_ptr<FakePicturePile> recording_source =
FakePicturePile::CreateFilledPile(tile_size, layer_bounds);
recording_source->SetBackgroundColor(SK_ColorTRANSPARENT);
recording_source->SetRequiresClear(true);
recording_source->SetMinContentsScale(MinContentsScale());
recording_source->SetClearCanvasWithDebugColor(true);
SkPaint color_paint;
color_paint.setColor(test_color);
// Additive paint, so that if two paints overlap, the color will change.
color_paint.setXfermodeMode(SkXfermode::kPlus_Mode);
// Paint outside the layer to make sure that blending works.
recording_source->add_draw_rect_with_paint(
gfx::Rect(bigger_than_layer_bounds), color_paint);
recording_source->Rerecord();
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
gfx::Size content_bounds(
gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale)));
SkBitmap bitmap;
bitmap.allocN32Pixels(content_bounds.width(), content_bounds.height());
SkCanvas canvas(bitmap);
pile->PlaybackToCanvas(&canvas, gfx::Rect(content_bounds),
gfx::Rect(content_bounds), contents_scale);
for (int y = 0; y < bitmap.height(); y++) {
for (int x = 0; x < bitmap.width(); x++) {
SkColor color = bitmap.getColor(x, y);
EXPECT_EQ(SkColorGetR(test_color), SkColorGetR(color)) << "x: " << x
<< ", y: " << y;
EXPECT_EQ(SkColorGetG(test_color), SkColorGetG(color)) << "x: " << x
<< ", y: " << y;
EXPECT_EQ(SkColorGetB(test_color), SkColorGetB(color)) << "x: " << x
<< ", y: " << y;
EXPECT_EQ(SkColorGetA(test_color), SkColorGetA(color)) << "x: " << x
<< ", y: " << y;
if (test_color != color)
break;
}
}
}
INSTANTIATE_TEST_CASE_P(PicturePileImpl,
OverlapTest,
::testing::Values(1.f, 0.873f, 1.f / 4.f, 4.f));
TEST(PicturePileImplTest, ImageIteratorBorders) {
// 3 tile width / 1 tile height pile
gfx::Size tile_size(128, 128);
gfx::Size layer_bounds(320, 128);
// Fake picture pile uses a tile grid the size of the tile. So,
// any iteration that intersects with a tile will return all pixel refs
// inside of it.
scoped_ptr<FakePicturePile> recording_source =
FakePicturePile::CreateFilledPile(tile_size, layer_bounds);
recording_source->SetMinContentsScale(0.5f);
// Bitmaps 0-2 are exactly on tiles 0-2, so that they overlap the borders
// of adjacent tiles.
gfx::Rect bitmap_rects[] = {
recording_source->tiling().TileBounds(0, 0),
recording_source->tiling().TileBounds(1, 0),
recording_source->tiling().TileBounds(2, 0),
};
gfx::RectF expected_rects[] = {
gfx::RectF(recording_source->tiling().TileBounds(0, 0)),
gfx::RectF(recording_source->tiling().TileBounds(1, 0)),
gfx::RectF(recording_source->tiling().TileBounds(2, 0)),
};
skia::RefPtr<SkImage> discardable_image[arraysize(bitmap_rects)];
for (size_t i = 0; i < arraysize(bitmap_rects); ++i) {
discardable_image[i] = CreateDiscardableImage(bitmap_rects[i].size());
recording_source->add_draw_image(discardable_image[i].get(),
bitmap_rects[i].origin());
}
recording_source->SetGatherDiscardableImages(true);
recording_source->Rerecord();
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFromPile(recording_source.get(), nullptr);
// Sanity check that bitmaps 0-2 intersect the borders of their adjacent
// tiles, but not the actual tiles.
EXPECT_TRUE(
bitmap_rects[0].Intersects(pile->tiling().TileBoundsWithBorder(1, 0)));
EXPECT_FALSE(bitmap_rects[0].Intersects(pile->tiling().TileBounds(1, 0)));
EXPECT_TRUE(
bitmap_rects[1].Intersects(pile->tiling().TileBoundsWithBorder(0, 0)));
EXPECT_FALSE(bitmap_rects[1].Intersects(pile->tiling().TileBounds(0, 0)));
EXPECT_TRUE(
bitmap_rects[1].Intersects(pile->tiling().TileBoundsWithBorder(2, 0)));
EXPECT_FALSE(bitmap_rects[1].Intersects(pile->tiling().TileBounds(2, 0)));
EXPECT_TRUE(
bitmap_rects[2].Intersects(pile->tiling().TileBoundsWithBorder(1, 0)));
EXPECT_FALSE(bitmap_rects[2].Intersects(pile->tiling().TileBounds(1, 0)));
// Tile-sized iterators.
{
// Because tile 0's borders extend onto tile 1, it will include both
// image 0 and 1. However, it should *not* include image 2.
PicturePileImpl::ImageIterator iterator(pile->tiling().TileBounds(0, 0),
pile.get());
EXPECT_TRUE(iterator);
EXPECT_TRUE(iterator->image == discardable_image[0].get());
EXPECT_EQ(expected_rects[0].ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[1].get());
EXPECT_EQ(expected_rects[1].ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_FALSE(++iterator);
}
{
// Tile 1 + borders hits all images.
PicturePileImpl::ImageIterator iterator(pile->tiling().TileBounds(1, 0),
pile.get());
EXPECT_TRUE(iterator);
EXPECT_TRUE(iterator->image == discardable_image[0].get());
EXPECT_EQ(expected_rects[0].ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[1].get());
EXPECT_EQ(expected_rects[1].ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[2].get());
EXPECT_EQ(expected_rects[2].ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_FALSE(++iterator);
}
{
// Tile 2 should not include image 0, which is only on tile 0 and the
// borders of tile 1.
PicturePileImpl::ImageIterator iterator(pile->tiling().TileBounds(2, 0),
pile.get());
EXPECT_TRUE(iterator);
EXPECT_TRUE(iterator->image == discardable_image[1].get());
EXPECT_EQ(expected_rects[1].ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_TRUE(++iterator);
EXPECT_TRUE(iterator->image == discardable_image[2].get());
EXPECT_EQ(expected_rects[2].ToString(),
gfx::SkRectToRectF(iterator->image_rect).ToString());
EXPECT_FALSE(++iterator);
}
}
} // namespace
} // namespace cc