blob: 12cfb27669a0f17a6ba5d4d4338db6d4b8c2c19b [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_video_encode_accelerator.h"
#include <fcntl.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <utility>
#include "base/callback.h"
#include "base/command_line.h"
#include "base/macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/single_thread_task_runner.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/trace_event.h"
#include "media/base/bind_to_current_loop.h"
#include "media/base/bitstream_buffer.h"
#include "media/base/scopedfd_helper.h"
#include "media/base/unaligned_shared_memory.h"
#include "media/base/video_frame_layout.h"
#include "media/base/video_types.h"
#include "media/gpu/gpu_video_encode_accelerator_helpers.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_image_processor.h"
#include "media/video/h264_parser.h"
#define NOTIFY_ERROR(x) \
do { \
VLOGF(1) << "Setting error state:" << x; \
SetErrorState(x); \
} while (0)
#define IOCTL_OR_ERROR_RETURN_VALUE(type, arg, value, type_str) \
do { \
if (device_->Ioctl(type, arg) != 0) { \
VPLOGF(1) << "ioctl() failed: " << type_str; \
NOTIFY_ERROR(kPlatformFailureError); \
return value; \
} \
} while (0)
#define IOCTL_OR_ERROR_RETURN(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, ((void)0), #type)
#define IOCTL_OR_ERROR_RETURN_FALSE(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, false, #type)
#define IOCTL_OR_LOG_ERROR(type, arg) \
do { \
if (device_->Ioctl(type, arg) != 0) \
VPLOGF(1) << "ioctl() failed: " << #type; \
} while (0)
namespace {
const uint8_t kH264StartCode[] = {0, 0, 0, 1};
const size_t kH264StartCodeSize = sizeof(kH264StartCode);
// Copy a H.264 NALU of size |src_size| (without start code), located at |src|,
// into a buffer starting at |dst| of size |dst_size|, prepending it with
// a H.264 start code (as long as both fit). After copying, update |dst| to
// point to the address immediately after the copied data, and update |dst_size|
// to contain remaining destination buffer size.
static void CopyNALUPrependingStartCode(const uint8_t* src,
size_t src_size,
uint8_t** dst,
size_t* dst_size) {
size_t size_to_copy = kH264StartCodeSize + src_size;
if (size_to_copy > *dst_size) {
VLOGF(1) << "Could not copy a NALU, not enough space in destination buffer";
return;
}
memcpy(*dst, kH264StartCode, kH264StartCodeSize);
memcpy(*dst + kH264StartCodeSize, src, src_size);
*dst += size_to_copy;
*dst_size -= size_to_copy;
}
} // namespace
namespace media {
struct V4L2VideoEncodeAccelerator::BitstreamBufferRef {
BitstreamBufferRef(int32_t id, std::unique_ptr<UnalignedSharedMemory> shm)
: id(id), shm(std::move(shm)) {}
const int32_t id;
const std::unique_ptr<UnalignedSharedMemory> shm;
};
V4L2VideoEncodeAccelerator::InputRecord::InputRecord() : at_device(false) {}
V4L2VideoEncodeAccelerator::InputRecord::InputRecord(const InputRecord&) =
default;
V4L2VideoEncodeAccelerator::InputRecord::~InputRecord() {}
V4L2VideoEncodeAccelerator::OutputRecord::OutputRecord()
: at_device(false), address(nullptr), length(0) {}
V4L2VideoEncodeAccelerator::OutputRecord::~OutputRecord() {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo()
: InputFrameInfo(nullptr, false) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
scoped_refptr<VideoFrame> frame,
bool force_keyframe)
: frame(frame), force_keyframe(force_keyframe) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
const InputFrameInfo&) = default;
V4L2VideoEncodeAccelerator::InputFrameInfo::~InputFrameInfo() {}
V4L2VideoEncodeAccelerator::V4L2VideoEncodeAccelerator(
const scoped_refptr<V4L2Device>& device)
: child_task_runner_(base::ThreadTaskRunnerHandle::Get()),
output_buffer_byte_size_(0),
device_input_format_(PIXEL_FORMAT_UNKNOWN),
input_planes_count_(0),
output_format_fourcc_(0),
encoder_state_(kUninitialized),
device_(device),
input_streamon_(false),
input_buffer_queued_count_(0),
input_memory_type_(V4L2_MEMORY_USERPTR),
output_streamon_(false),
output_buffer_queued_count_(0),
is_flush_supported_(false),
encoder_thread_("V4L2EncoderThread"),
device_poll_thread_("V4L2EncoderDevicePollThread"),
weak_this_ptr_factory_(this) {
weak_this_ = weak_this_ptr_factory_.GetWeakPtr();
}
V4L2VideoEncodeAccelerator::~V4L2VideoEncodeAccelerator() {
DCHECK(!encoder_thread_.IsRunning());
DCHECK(!device_poll_thread_.IsRunning());
VLOGF(2);
DestroyInputBuffers();
DestroyOutputBuffers();
}
bool V4L2VideoEncodeAccelerator::Initialize(const Config& config,
Client* client) {
VLOGF(2) << ": " << config.AsHumanReadableString();
visible_size_ = config.input_visible_size;
client_ptr_factory_.reset(new base::WeakPtrFactory<Client>(client));
client_ = client_ptr_factory_->GetWeakPtr();
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(encoder_state_, kUninitialized);
output_format_fourcc_ =
V4L2Device::VideoCodecProfileToV4L2PixFmt(config.output_profile, false);
if (!output_format_fourcc_) {
VLOGF(1) << "invalid output_profile="
<< GetProfileName(config.output_profile);
return false;
}
if (!device_->Open(V4L2Device::Type::kEncoder, output_format_fourcc_)) {
VLOGF(1) << "Failed to open device for profile="
<< GetProfileName(config.output_profile)
<< ", fourcc=" << FourccToString(output_format_fourcc_);
return false;
}
// Ask if V4L2_ENC_CMD_STOP (Flush) is supported.
struct v4l2_encoder_cmd cmd = {};
cmd.cmd = V4L2_ENC_CMD_STOP;
is_flush_supported_ = (device_->Ioctl(VIDIOC_TRY_ENCODER_CMD, &cmd) == 0);
if (!is_flush_supported_)
VLOGF(2) << "V4L2_ENC_CMD_STOP is not supported.";
struct v4l2_capability caps;
memset(&caps, 0, sizeof(caps));
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYCAP, &caps);
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
VLOGF(1) << "caps check failed: 0x" << std::hex << caps.capabilities;
return false;
}
if (!SetFormats(config.input_format, config.output_profile)) {
VLOGF(1) << "Failed setting up formats";
return false;
}
if (config.input_format != device_input_format_) {
VLOGF(2) << "Input format not supported by the HW, will try to convert to "
<< VideoPixelFormatToString(device_input_format_);
if (!V4L2ImageProcessor::IsSupported()) {
VLOGF(1) << "Image processor not available";
return false;
}
// It is necessary to set strides and buffers even with dummy values,
// because VideoFrameLayout::num_buffers() specifies v4l2 pix format
// associated with |config.input_format| is multi-planar.
auto input_layout = VideoFrameLayout::CreateWithStrides(
config.input_format, visible_size_,
std::vector<int32_t>(
VideoFrameLayout::NumPlanes(config.input_format)) /* strides */,
std::vector<size_t>(
VideoFrameLayout::NumPlanes(config.input_format)) /* buffers */);
if (!input_layout) {
VLOGF(1) << "Invalid image processor input layout";
return false;
}
auto output_layout = VideoFrameLayout::CreateWithStrides(
device_input_format_, input_allocated_size_,
std::vector<int32_t>(
VideoFrameLayout::NumPlanes(device_input_format_)) /* strides */,
std::vector<size_t>(
VideoFrameLayout::NumPlanes(device_input_format_)) /* buffers */);
if (!output_layout) {
VLOGF(1) << "Invalid image processor output layout";
return false;
}
// Convert from |config.input_format| to |device_input_format_|, keeping the
// size at |visible_size_| and requiring the output buffers to be of at
// least |input_allocated_size_|. Unretained is safe because |this| owns
// image processor and there will be no callbacks after processor destroys.
// |input_storage_type| can be STORAGE_SHMEM and STORAGE_MOJO_SHARED_BUFFER.
// However, it doesn't matter VideoFrame::STORAGE_OWNED_MEMORY is specified
// for |input_storage_type| here, as long as VideoFrame on Process()'s data
// can be accessed by VideoFrame::data().
image_processor_ = V4L2ImageProcessor::Create(
V4L2Device::Create(), VideoFrame::STORAGE_OWNED_MEMORY,
VideoFrame::STORAGE_DMABUFS, ImageProcessor::OutputMode::ALLOCATE,
*input_layout, *output_layout, visible_size_, visible_size_,
kImageProcBufferCount,
base::Bind(&V4L2VideoEncodeAccelerator::ImageProcessorError,
base::Unretained(this)));
if (!image_processor_) {
VLOGF(1) << "Failed initializing image processor";
return false;
}
// The output of image processor is the input of encoder. Output coded
// width of processor must be the same as input coded width of encoder.
// Output coded height of processor can be larger but not smaller than the
// input coded height of encoder. For example, suppose input size of encoder
// is 320x193. It is OK if the output of processor is 320x208.
if (image_processor_->output_allocated_size().width() !=
input_allocated_size_.width() ||
image_processor_->output_allocated_size().height() <
input_allocated_size_.height()) {
VLOGF(1) << "Invalid image processor output coded size "
<< image_processor_->output_allocated_size().ToString()
<< ", encode input coded size is "
<< input_allocated_size_.ToString();
return false;
}
for (int i = 0; i < kImageProcBufferCount; i++)
free_image_processor_output_buffers_.push_back(i);
}
if (!InitControls(config))
return false;
if (!CreateOutputBuffers())
return false;
if (!image_processor_) {
switch (config.storage_type.value_or(Config::StorageType::kShmem)) {
case Config::StorageType::kShmem:
input_memory_type_ = V4L2_MEMORY_USERPTR;
break;
case Config::StorageType::kDmabuf:
input_memory_type_ = V4L2_MEMORY_DMABUF;
break;
}
} else {
input_memory_type_ = V4L2_MEMORY_DMABUF;
}
if (!encoder_thread_.Start()) {
VLOGF(1) << "encoder thread failed to start";
return false;
}
RequestEncodingParametersChange(
config.initial_bitrate, config.initial_framerate.value_or(
VideoEncodeAccelerator::kDefaultFramerate));
encoder_state_ = kInitialized;
child_task_runner_->PostTask(
FROM_HERE,
base::Bind(&Client::RequireBitstreamBuffers, client_, kInputBufferCount,
image_processor_.get()
? image_processor_->input_allocated_size()
: input_allocated_size_,
output_buffer_byte_size_));
return true;
}
void V4L2VideoEncodeAccelerator::ImageProcessorError() {
VLOGF(1) << "Image processor error";
NOTIFY_ERROR(kPlatformFailureError);
}
void V4L2VideoEncodeAccelerator::Encode(const scoped_refptr<VideoFrame>& frame,
bool force_keyframe) {
DVLOGF(4) << "force_keyframe=" << force_keyframe;
DCHECK(child_task_runner_->BelongsToCurrentThread());
if (image_processor_) {
if (free_image_processor_output_buffers_.size() > 0) {
int output_buffer_index = free_image_processor_output_buffers_.back();
free_image_processor_output_buffers_.pop_back();
// Unretained is safe because |this| owns image processor and there will
// be no callbacks after processor destroys.
if (!image_processor_->Process(
frame, output_buffer_index, std::vector<base::ScopedFD>(),
base::BindOnce(&V4L2VideoEncodeAccelerator::FrameProcessed,
base::Unretained(this), force_keyframe,
frame->timestamp(), output_buffer_index))) {
NOTIFY_ERROR(kPlatformFailureError);
}
} else {
image_processor_input_queue_.emplace(frame, force_keyframe);
}
} else {
encoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::EncodeTask,
base::Unretained(this), frame, force_keyframe));
}
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBuffer(
const BitstreamBuffer& buffer) {
DVLOGF(4) << "id=" << buffer.id();
DCHECK(child_task_runner_->BelongsToCurrentThread());
if (buffer.size() < output_buffer_byte_size_) {
NOTIFY_ERROR(kInvalidArgumentError);
return;
}
auto shm = std::make_unique<UnalignedSharedMemory>(buffer.handle(),
buffer.size(), false);
if (!shm->MapAt(buffer.offset(), buffer.size())) {
NOTIFY_ERROR(kPlatformFailureError);
return;
}
std::unique_ptr<BitstreamBufferRef> buffer_ref(
new BitstreamBufferRef(buffer.id(), std::move(shm)));
encoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask,
base::Unretained(this), base::Passed(&buffer_ref)));
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChange(
uint32_t bitrate,
uint32_t framerate) {
VLOGF(2) << "bitrate=" << bitrate << ", framerate=" << framerate;
DCHECK(child_task_runner_->BelongsToCurrentThread());
encoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::Bind(
&V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask,
base::Unretained(this), bitrate, framerate));
}
void V4L2VideoEncodeAccelerator::Destroy() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
// We're destroying; cancel all callbacks.
client_ptr_factory_.reset();
weak_this_ptr_factory_.InvalidateWeakPtrs();
image_processor_ = nullptr;
// If the encoder thread is running, destroy using posted task.
if (encoder_thread_.IsRunning()) {
encoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::DestroyTask,
base::Unretained(this)));
// DestroyTask() will put the encoder into kError state and cause all tasks
// to no-op.
encoder_thread_.Stop();
} else {
// Otherwise, call the destroy task directly.
DestroyTask();
}
// If a flush is pending, notify client that it did not finish.
if (flush_callback_)
std::move(flush_callback_).Run(false);
// Set to kError state just in case.
encoder_state_ = kError;
delete this;
}
void V4L2VideoEncodeAccelerator::Flush(FlushCallback flush_callback) {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
encoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::FlushTask,
base::Unretained(this), base::Passed(&flush_callback)));
}
void V4L2VideoEncodeAccelerator::FlushTask(FlushCallback flush_callback) {
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
if (flush_callback_ || encoder_state_ != kEncoding) {
VLOGF(1) << "Flush failed: there is a pending flush, "
<< "or VEA is not in kEncoding state";
NOTIFY_ERROR(kIllegalStateError);
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback), false));
return;
}
flush_callback_ = std::move(flush_callback);
// Push a null frame to indicate Flush.
EncodeTask(nullptr, false);
}
bool V4L2VideoEncodeAccelerator::IsFlushSupported() {
return is_flush_supported_;
}
VideoEncodeAccelerator::SupportedProfiles
V4L2VideoEncodeAccelerator::GetSupportedProfiles() {
scoped_refptr<V4L2Device> device = V4L2Device::Create();
if (!device)
return SupportedProfiles();
return device->GetSupportedEncodeProfiles();
}
void V4L2VideoEncodeAccelerator::FrameProcessed(
bool force_keyframe,
base::TimeDelta timestamp,
int output_buffer_index,
scoped_refptr<VideoFrame> frame) {
DCHECK(child_task_runner_->BelongsToCurrentThread());
DVLOGF(4) << "force_keyframe=" << force_keyframe
<< ", output_buffer_index=" << output_buffer_index;
DCHECK_GE(output_buffer_index, 0);
frame->AddDestructionObserver(BindToCurrentLoop(
base::Bind(&V4L2VideoEncodeAccelerator::ReuseImageProcessorOutputBuffer,
weak_this_, output_buffer_index)));
encoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::EncodeTask,
base::Unretained(this), frame, force_keyframe));
}
void V4L2VideoEncodeAccelerator::ReuseImageProcessorOutputBuffer(
int output_buffer_index) {
DCHECK(child_task_runner_->BelongsToCurrentThread());
DVLOGF(4) << "output_buffer_index=" << output_buffer_index;
free_image_processor_output_buffers_.push_back(output_buffer_index);
if (!image_processor_input_queue_.empty()) {
InputFrameInfo frame_info = image_processor_input_queue_.front();
image_processor_input_queue_.pop();
Encode(frame_info.frame, frame_info.force_keyframe);
}
}
size_t V4L2VideoEncodeAccelerator::CopyIntoOutputBuffer(
const uint8_t* bitstream_data,
size_t bitstream_size,
std::unique_ptr<BitstreamBufferRef> buffer_ref) {
uint8_t* dst_ptr = static_cast<uint8_t*>(buffer_ref->shm->memory());
size_t remaining_dst_size = buffer_ref->shm->size();
if (!inject_sps_and_pps_) {
if (bitstream_size <= remaining_dst_size) {
memcpy(dst_ptr, bitstream_data, bitstream_size);
return bitstream_size;
} else {
VLOGF(1) << "Output data did not fit in the BitstreamBuffer";
return 0;
}
}
// Cache the newest SPS and PPS found in the stream, and inject them before
// each IDR found.
H264Parser parser;
parser.SetStream(bitstream_data, bitstream_size);
H264NALU nalu;
while (parser.AdvanceToNextNALU(&nalu) == H264Parser::kOk) {
// nalu.size is always without the start code, regardless of the NALU type.
if (nalu.size + kH264StartCodeSize > remaining_dst_size) {
VLOGF(1) << "Output data did not fit in the BitstreamBuffer";
break;
}
switch (nalu.nal_unit_type) {
case H264NALU::kSPS:
cached_sps_.resize(nalu.size);
memcpy(cached_sps_.data(), nalu.data, nalu.size);
cached_h264_header_size_ =
cached_sps_.size() + cached_pps_.size() + 2 * kH264StartCodeSize;
break;
case H264NALU::kPPS:
cached_pps_.resize(nalu.size);
memcpy(cached_pps_.data(), nalu.data, nalu.size);
cached_h264_header_size_ =
cached_sps_.size() + cached_pps_.size() + 2 * kH264StartCodeSize;
break;
case H264NALU::kIDRSlice:
// Only inject if we have both headers cached, and enough space for both
// the headers and the NALU itself.
if (cached_sps_.empty() || cached_pps_.empty() ||
cached_h264_header_size_ + nalu.size + kH264StartCodeSize >
remaining_dst_size) {
VLOGF(1) << "Not enough space to inject a stream header before IDR";
break;
}
CopyNALUPrependingStartCode(cached_sps_.data(), cached_sps_.size(),
&dst_ptr, &remaining_dst_size);
CopyNALUPrependingStartCode(cached_pps_.data(), cached_pps_.size(),
&dst_ptr, &remaining_dst_size);
VLOGF(2) << "Stream header injected before IDR";
break;
}
CopyNALUPrependingStartCode(nalu.data, nalu.size, &dst_ptr,
&remaining_dst_size);
}
return buffer_ref->shm->size() - remaining_dst_size;
}
void V4L2VideoEncodeAccelerator::EncodeTask(
const scoped_refptr<VideoFrame>& frame,
bool force_keyframe) {
DVLOGF(4) << "force_keyframe=" << force_keyframe;
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(encoder_state_, kUninitialized);
if (encoder_state_ == kError) {
DVLOGF(1) << "early out: kError state";
return;
}
encoder_input_queue_.emplace(frame, force_keyframe);
Enqueue();
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask(
std::unique_ptr<BitstreamBufferRef> buffer_ref) {
DVLOGF(4) << "id=" << buffer_ref->id;
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
encoder_output_queue_.push_back(std::move(buffer_ref));
Enqueue();
if (encoder_state_ == kInitialized) {
// Finish setting up our OUTPUT queue. See: Initialize().
// VIDIOC_REQBUFS on OUTPUT queue.
if (!CreateInputBuffers())
return;
if (!StartDevicePoll())
return;
encoder_state_ = kEncoding;
}
}
void V4L2VideoEncodeAccelerator::DestroyTask() {
VLOGF(2);
// DestroyTask() should run regardless of encoder_state_.
// Stop streaming and the device_poll_thread_.
StopDevicePoll();
// Set our state to kError, and early-out all tasks.
encoder_state_ = kError;
}
void V4L2VideoEncodeAccelerator::ServiceDeviceTask() {
DVLOGF(3);
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(encoder_state_, kUninitialized);
DCHECK_NE(encoder_state_, kInitialized);
if (encoder_state_ == kError) {
DVLOGF(1) << "early out: kError state";
return;
}
Dequeue();
Enqueue();
// Clear the interrupt fd.
if (!device_->ClearDevicePollInterrupt())
return;
// Device can be polled as soon as either input or output buffers are queued.
bool poll_device =
(input_buffer_queued_count_ + output_buffer_queued_count_ > 0);
// ServiceDeviceTask() should only ever be scheduled from DevicePollTask(),
// so either:
// * device_poll_thread_ is running normally
// * device_poll_thread_ scheduled us, but then a DestroyTask() shut it down,
// in which case we're in kError state, and we should have early-outed
// already.
DCHECK(device_poll_thread_.task_runner());
// Queue the DevicePollTask() now.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this), poll_device));
DVLOGF(3) << encoder_input_queue_.size() << "] => DEVICE["
<< free_input_buffers_.size() << "+"
<< input_buffer_queued_count_ << "/"
<< input_buffer_map_.size() << "->"
<< free_output_buffers_.size() << "+"
<< output_buffer_queued_count_ << "/"
<< output_buffer_map_.size() << "] => OUT["
<< encoder_output_queue_.size() << "]";
}
void V4L2VideoEncodeAccelerator::Enqueue() {
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
DVLOGF(4) << "free_input_buffers: " << free_input_buffers_.size()
<< "input_queue: " << encoder_input_queue_.size();
// Enqueue all the inputs we can.
const int old_inputs_queued = input_buffer_queued_count_;
while (!encoder_input_queue_.empty() && !free_input_buffers_.empty()) {
// A null frame indicates a flush.
if (encoder_input_queue_.front().frame == nullptr) {
DVLOGF(3) << "All input frames needed to be flushed are enqueued.";
encoder_input_queue_.pop();
// If we are not streaming, the device is not running and there is no need
// to call V4L2_ENC_CMD_STOP to request a flush. This also means there is
// nothing left to process, so we can return flush success back to the
// client.
if (!input_streamon_) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), true));
return;
}
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_STOP;
if (device_->Ioctl(VIDIOC_ENCODER_CMD, &cmd) != 0) {
VPLOGF(1) << "ioctl() failed: VIDIOC_ENCODER_CMD";
NOTIFY_ERROR(kPlatformFailureError);
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), false));
return;
}
encoder_state_ = kFlushing;
break;
}
if (!EnqueueInputRecord())
return;
}
if (old_inputs_queued == 0 && input_buffer_queued_count_ != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
// Start VIDIOC_STREAMON if we haven't yet.
if (!input_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMON, &type);
input_streamon_ = true;
}
}
// Enqueue all the outputs we can.
const int old_outputs_queued = output_buffer_queued_count_;
while (!free_output_buffers_.empty() && !encoder_output_queue_.empty()) {
if (!EnqueueOutputRecord())
return;
}
if (old_outputs_queued == 0 && output_buffer_queued_count_ != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
// Start VIDIOC_STREAMON if we haven't yet.
if (!output_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMON, &type);
output_streamon_ = true;
}
}
}
void V4L2VideoEncodeAccelerator::Dequeue() {
DVLOGF(4);
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
// Dequeue completed input (VIDEO_OUTPUT) buffers, and recycle to the free
// list.
struct v4l2_buffer dqbuf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
while (input_buffer_queued_count_ > 0) {
DVLOGF(4) << "inputs queued: " << input_buffer_queued_count_;
DCHECK(input_streamon_);
memset(&dqbuf, 0, sizeof(dqbuf));
memset(&planes, 0, sizeof(planes));
dqbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
dqbuf.memory = input_memory_type_;
dqbuf.m.planes = planes;
dqbuf.length = input_planes_count_;
if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
if (errno == EAGAIN) {
// EAGAIN if we're just out of buffers to dequeue.
break;
}
VPLOGF(1) << "ioctl() failed: VIDIOC_DQBUF";
NOTIFY_ERROR(kPlatformFailureError);
return;
}
InputRecord& input_record = input_buffer_map_[dqbuf.index];
DCHECK(input_record.at_device);
input_record.at_device = false;
input_record.frame = NULL;
free_input_buffers_.push_back(dqbuf.index);
input_buffer_queued_count_--;
}
// Dequeue completed output (VIDEO_CAPTURE) buffers, and recycle to the
// free list. Notify the client that an output buffer is complete.
while (output_buffer_queued_count_ > 0) {
DCHECK(output_streamon_);
memset(&dqbuf, 0, sizeof(dqbuf));
memset(planes, 0, sizeof(planes));
dqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
dqbuf.memory = V4L2_MEMORY_MMAP;
dqbuf.m.planes = planes;
dqbuf.length = 1;
if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
if (errno == EAGAIN) {
// EAGAIN if we're just out of buffers to dequeue.
break;
}
VPLOGF(1) << "ioctl() failed: VIDIOC_DQBUF";
NOTIFY_ERROR(kPlatformFailureError);
return;
}
const bool key_frame = ((dqbuf.flags & V4L2_BUF_FLAG_KEYFRAME) != 0);
OutputRecord& output_record = output_buffer_map_[dqbuf.index];
DCHECK(output_record.at_device);
DCHECK(output_record.buffer_ref);
int32_t bitstream_buffer_id = output_record.buffer_ref->id;
size_t output_data_size = CopyIntoOutputBuffer(
static_cast<uint8_t*>(output_record.address) +
dqbuf.m.planes[0].data_offset,
base::checked_cast<size_t>(dqbuf.m.planes[0].bytesused -
dqbuf.m.planes[0].data_offset),
std::move(output_record.buffer_ref));
DVLOGF(4) << "returning "
<< "bitstream_buffer_id=" << bitstream_buffer_id
<< ", size=" << output_data_size << ", key_frame=" << key_frame;
child_task_runner_->PostTask(
FROM_HERE,
base::Bind(&Client::BitstreamBufferReady, client_, bitstream_buffer_id,
BitstreamBufferMetadata(
output_data_size, key_frame,
base::TimeDelta::FromMicroseconds(
dqbuf.timestamp.tv_usec +
dqbuf.timestamp.tv_sec *
base::Time::kMicrosecondsPerSecond))));
if ((encoder_state_ == kFlushing) && (dqbuf.flags & V4L2_BUF_FLAG_LAST)) {
// Notify client that flush has finished successfully. The flush callback
// should be called after notifying the last buffer is ready.
DVLOGF(3) << "Flush completed. Start the encoder again.";
encoder_state_ = kEncoding;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), true));
// Start the encoder again.
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_START;
IOCTL_OR_ERROR_RETURN(VIDIOC_ENCODER_CMD, &cmd);
}
output_record.at_device = false;
free_output_buffers_.push_back(dqbuf.index);
output_buffer_queued_count_--;
}
}
bool V4L2VideoEncodeAccelerator::EnqueueInputRecord() {
DVLOGF(4);
DCHECK(!free_input_buffers_.empty());
DCHECK(!encoder_input_queue_.empty());
// Enqueue an input (VIDEO_OUTPUT) buffer.
InputFrameInfo frame_info = encoder_input_queue_.front();
if (frame_info.force_keyframe) {
std::vector<struct v4l2_ext_control> ctrls;
struct v4l2_ext_control ctrl;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME;
ctrls.push_back(ctrl);
if (!SetExtCtrls(ctrls)) {
VLOGF(1) << "Failed requesting keyframe";
NOTIFY_ERROR(kPlatformFailureError);
return false;
}
}
scoped_refptr<VideoFrame> frame = frame_info.frame;
const int index = free_input_buffers_.back();
InputRecord& input_record = input_buffer_map_[index];
DCHECK(!input_record.at_device);
struct v4l2_buffer qbuf;
struct v4l2_plane qbuf_planes[VIDEO_MAX_PLANES];
memset(&qbuf, 0, sizeof(qbuf));
memset(qbuf_planes, 0, sizeof(qbuf_planes));
qbuf.index = index;
qbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
qbuf.m.planes = qbuf_planes;
qbuf.timestamp.tv_sec = static_cast<time_t>(frame->timestamp().InSeconds());
qbuf.timestamp.tv_usec =
frame->timestamp().InMicroseconds() -
frame->timestamp().InSeconds() * base::Time::kMicrosecondsPerSecond;
DCHECK_EQ(device_input_format_, frame->format());
for (size_t i = 0; i < input_planes_count_; ++i) {
qbuf.m.planes[i].bytesused = base::checked_cast<__u32>(
VideoFrame::PlaneSize(frame->format(), i, input_allocated_size_)
.GetArea());
switch (input_memory_type_) {
case V4L2_MEMORY_USERPTR:
qbuf.m.planes[i].length = qbuf.m.planes[i].bytesused;
qbuf.m.planes[i].m.userptr =
reinterpret_cast<unsigned long>(frame->data(i));
DCHECK(qbuf.m.planes[i].m.userptr);
break;
case V4L2_MEMORY_DMABUF: {
const auto& fds = frame->DmabufFds();
const auto& planes = frame->layout().planes();
DCHECK_EQ(input_planes_count_, planes.size());
qbuf.m.planes[i].m.fd =
(i < fds.size()) ? fds[i].get() : fds.back().get();
// TODO(crbug.com/901264): The way to pass an offset within a DMA-buf is
// not defined in V4L2 specification, so we abuse data_offset for now.
// Fix it when we have the right interface, including any necessary
// validation and potential alignment
qbuf.m.planes[i].data_offset = planes[i].offset;
qbuf.m.planes[i].bytesused += qbuf.m.planes[i].data_offset;
// Workaround: filling length should not be needed. This is a bug of
// videobuf2 library.
qbuf.m.planes[i].length = qbuf.m.planes[i].bytesused;
DCHECK_NE(qbuf.m.planes[i].m.fd, -1);
break;
}
default:
NOTREACHED();
return false;
}
}
qbuf.memory = input_memory_type_;
qbuf.length = input_planes_count_;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
input_record.at_device = true;
input_record.frame = frame;
encoder_input_queue_.pop();
free_input_buffers_.pop_back();
input_buffer_queued_count_++;
return true;
}
bool V4L2VideoEncodeAccelerator::EnqueueOutputRecord() {
DVLOGF(4);
DCHECK(!free_output_buffers_.empty());
DCHECK(!encoder_output_queue_.empty());
// Enqueue an output (VIDEO_CAPTURE) buffer.
const int index = free_output_buffers_.back();
OutputRecord& output_record = output_buffer_map_[index];
DCHECK(!output_record.at_device);
DCHECK(!output_record.buffer_ref);
struct v4l2_buffer qbuf;
struct v4l2_plane qbuf_planes[1];
memset(&qbuf, 0, sizeof(qbuf));
memset(qbuf_planes, 0, sizeof(qbuf_planes));
qbuf.index = index;
qbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
qbuf.memory = V4L2_MEMORY_MMAP;
qbuf.m.planes = qbuf_planes;
qbuf.length = 1;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
output_record.at_device = true;
output_record.buffer_ref = std::move(encoder_output_queue_.back());
encoder_output_queue_.pop_back();
free_output_buffers_.pop_back();
output_buffer_queued_count_++;
return true;
}
bool V4L2VideoEncodeAccelerator::StartDevicePoll() {
DVLOGF(3);
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!device_poll_thread_.IsRunning());
// Start up the device poll thread and schedule its first DevicePollTask().
if (!device_poll_thread_.Start()) {
VLOGF(1) << "StartDevicePoll(): Device thread failed to start";
NOTIFY_ERROR(kPlatformFailureError);
return false;
}
// Enqueue a poll task with no devices to poll on -- it will wait only on the
// interrupt fd.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this), false));
return true;
}
bool V4L2VideoEncodeAccelerator::StopDevicePoll() {
DVLOGF(3);
// Signal the DevicePollTask() to stop, and stop the device poll thread.
if (!device_->SetDevicePollInterrupt())
return false;
device_poll_thread_.Stop();
// Clear the interrupt now, to be sure.
if (!device_->ClearDevicePollInterrupt())
return false;
if (input_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMOFF, &type);
}
input_streamon_ = false;
if (output_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMOFF, &type);
}
output_streamon_ = false;
// Reset all our accounting info.
while (!encoder_input_queue_.empty())
encoder_input_queue_.pop();
free_input_buffers_.clear();
for (size_t i = 0; i < input_buffer_map_.size(); ++i) {
InputRecord& input_record = input_buffer_map_[i];
input_record.at_device = false;
input_record.frame = NULL;
free_input_buffers_.push_back(i);
}
input_buffer_queued_count_ = 0;
free_output_buffers_.clear();
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
OutputRecord& output_record = output_buffer_map_[i];
output_record.at_device = false;
output_record.buffer_ref.reset();
free_output_buffers_.push_back(i);
}
output_buffer_queued_count_ = 0;
encoder_output_queue_.clear();
DVLOGF(3) << "device poll stopped";
return true;
}
void V4L2VideoEncodeAccelerator::DevicePollTask(bool poll_device) {
DVLOGF(4);
DCHECK(device_poll_thread_.task_runner()->BelongsToCurrentThread());
bool event_pending;
if (!device_->Poll(poll_device, &event_pending)) {
NOTIFY_ERROR(kPlatformFailureError);
return;
}
// All processing should happen on ServiceDeviceTask(), since we shouldn't
// touch encoder state from this thread.
encoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::ServiceDeviceTask,
base::Unretained(this)));
}
void V4L2VideoEncodeAccelerator::NotifyError(Error error) {
VLOGF(1) << "error=" << error;
if (!child_task_runner_->BelongsToCurrentThread()) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::NotifyError,
weak_this_, error));
return;
}
if (client_) {
client_->NotifyError(error);
client_ptr_factory_.reset();
}
}
void V4L2VideoEncodeAccelerator::SetErrorState(Error error) {
// We can touch encoder_state_ only if this is the encoder thread or the
// encoder thread isn't running.
scoped_refptr<base::SingleThreadTaskRunner> task_runner =
encoder_thread_.task_runner();
if (task_runner && !task_runner->BelongsToCurrentThread()) {
task_runner->PostTask(FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::SetErrorState,
base::Unretained(this), error));
return;
}
// Post NotifyError only if we are already initialized, as the API does
// not allow doing so before that.
if (encoder_state_ != kError && encoder_state_ != kUninitialized)
NotifyError(error);
encoder_state_ = kError;
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask(
uint32_t bitrate,
uint32_t framerate) {
VLOGF(2) << "bitrate=" << bitrate << ", framerate=" << framerate;
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_GT(bitrate, 0u);
DCHECK_GT(framerate, 0u);
std::vector<struct v4l2_ext_control> ctrls;
struct v4l2_ext_control ctrl;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_BITRATE;
ctrl.value = bitrate;
ctrls.push_back(ctrl);
if (!SetExtCtrls(ctrls)) {
VLOGF(1) << "Failed changing bitrate";
NOTIFY_ERROR(kPlatformFailureError);
return;
}
struct v4l2_streamparm parms;
memset(&parms, 0, sizeof(parms));
parms.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
// Note that we are provided "frames per second" but V4L2 expects "time per
// frame"; hence we provide the reciprocal of the framerate here.
parms.parm.output.timeperframe.numerator = 1;
parms.parm.output.timeperframe.denominator = framerate;
IOCTL_OR_ERROR_RETURN(VIDIOC_S_PARM, &parms);
}
bool V4L2VideoEncodeAccelerator::SetOutputFormat(
VideoCodecProfile output_profile) {
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
DCHECK(!output_streamon_);
output_buffer_byte_size_ = GetEncodeBitstreamBufferSize();
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.width = visible_size_.width();
format.fmt.pix_mp.height = visible_size_.height();
format.fmt.pix_mp.pixelformat = output_format_fourcc_;
format.fmt.pix_mp.plane_fmt[0].sizeimage =
base::checked_cast<__u32>(output_buffer_byte_size_);
format.fmt.pix_mp.num_planes = 1;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat, output_format_fourcc_);
// Device might have adjusted the required output size.
size_t adjusted_output_buffer_size =
base::checked_cast<size_t>(format.fmt.pix_mp.plane_fmt[0].sizeimage);
output_buffer_byte_size_ = adjusted_output_buffer_size;
return true;
}
bool V4L2VideoEncodeAccelerator::NegotiateInputFormat(
VideoPixelFormat input_format) {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
DCHECK(!output_streamon_);
device_input_format_ = PIXEL_FORMAT_UNKNOWN;
input_planes_count_ = 0;
const std::vector<uint32_t> pix_fmt_candidates = {
// First see if the device can use the provided format directly.
// V4L2 VEA only supports multi plane input pixel format.
V4L2Device::VideoPixelFormatToV4L2PixFmt(input_format, false),
// Second try preferred input format.
device_->PreferredInputFormat(V4L2Device::Type::kEncoder),
};
for (const auto pix_fmt : pix_fmt_candidates) {
auto trying_format = V4L2Device::V4L2PixFmtToVideoPixelFormat(pix_fmt);
DCHECK_NE(trying_format, PIXEL_FORMAT_UNKNOWN);
size_t planes_count = VideoFrame::NumPlanes(trying_format);
DCHECK_LE(planes_count, static_cast<size_t>(VIDEO_MAX_PLANES));
VLOGF(2) << "Trying S_FMT with " << FourccToString(pix_fmt) << " ("
<< trying_format << ").";
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.width = visible_size_.width();
format.fmt.pix_mp.height = visible_size_.height();
format.fmt.pix_mp.pixelformat = pix_fmt;
format.fmt.pix_mp.num_planes = planes_count;
if (device_->Ioctl(VIDIOC_S_FMT, &format) == 0 &&
format.fmt.pix_mp.pixelformat == pix_fmt) {
VLOGF(2) << "Success: S_FMT with" << FourccToString(pix_fmt);
// Take device-adjusted sizes for allocated size. If the size is adjusted
// down, it means the input is too big and the hardware does not support
// it.
auto adjusted_size = V4L2Device::CodedSizeFromV4L2Format(format);
if (!gfx::Rect(adjusted_size).Contains(gfx::Rect(visible_size_))) {
VLOGF(1) << "Input size too big " << visible_size_.ToString()
<< ", adjusted to " << adjusted_size.ToString();
return false;
}
device_input_format_ = trying_format;
input_planes_count_ = planes_count;
input_allocated_size_ = adjusted_size;
return true;
}
}
return false;
}
bool V4L2VideoEncodeAccelerator::SetFormats(VideoPixelFormat input_format,
VideoCodecProfile output_profile) {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
DCHECK(!output_streamon_);
if (!SetOutputFormat(output_profile))
return false;
if (!NegotiateInputFormat(input_format))
return false;
struct v4l2_rect visible_rect;
visible_rect.left = 0;
visible_rect.top = 0;
visible_rect.width = visible_size_.width();
visible_rect.height = visible_size_.height();
struct v4l2_selection selection_arg;
memset(&selection_arg, 0, sizeof(selection_arg));
selection_arg.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
selection_arg.target = V4L2_SEL_TGT_CROP;
selection_arg.r = visible_rect;
// The width and height might be adjusted by driver.
// Need to read it back and set to visible_size_.
if (device_->Ioctl(VIDIOC_S_SELECTION, &selection_arg) == 0) {
DVLOGF(2) << "VIDIOC_S_SELECTION is supported";
visible_rect = selection_arg.r;
} else {
VLOGF(2) << "Fallback to VIDIOC_S/G_CROP";
struct v4l2_crop crop;
memset(&crop, 0, sizeof(crop));
crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
crop.c = visible_rect;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_CROP, &crop);
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_G_CROP, &crop);
visible_rect = crop.c;
}
visible_size_.SetSize(visible_rect.width, visible_rect.height);
VLOGF(2) << "After adjusted by driver, visible_size_="
<< visible_size_.ToString();
return true;
}
bool V4L2VideoEncodeAccelerator::IsCtrlExposed(uint32_t ctrl_id) {
struct v4l2_queryctrl query_ctrl;
memset(&query_ctrl, 0, sizeof(query_ctrl));
query_ctrl.id = ctrl_id;
return device_->Ioctl(VIDIOC_QUERYCTRL, &query_ctrl) == 0;
}
bool V4L2VideoEncodeAccelerator::SetExtCtrls(
std::vector<struct v4l2_ext_control> ctrls) {
struct v4l2_ext_controls ext_ctrls;
memset(&ext_ctrls, 0, sizeof(ext_ctrls));
ext_ctrls.ctrl_class = V4L2_CTRL_CLASS_MPEG;
ext_ctrls.count = ctrls.size();
ext_ctrls.controls = &ctrls[0];
return device_->Ioctl(VIDIOC_S_EXT_CTRLS, &ext_ctrls) == 0;
}
bool V4L2VideoEncodeAccelerator::InitControls(const Config& config) {
std::vector<struct v4l2_ext_control> ctrls;
struct v4l2_ext_control ctrl;
// Enable frame-level bitrate control. This is the only mandatory control.
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_FRAME_RC_ENABLE;
ctrl.value = 1;
ctrls.push_back(ctrl);
if (!SetExtCtrls(ctrls)) {
VLOGF(1) << "Failed enabling bitrate control";
NOTIFY_ERROR(kPlatformFailureError);
return false;
}
ctrls.clear();
if (output_format_fourcc_ == V4L2_PIX_FMT_H264) {
#ifndef V4L2_CID_MPEG_VIDEO_H264_SPS_PPS_BEFORE_IDR
#define V4L2_CID_MPEG_VIDEO_H264_SPS_PPS_BEFORE_IDR (V4L2_CID_MPEG_BASE + 388)
#endif
// Request to inject SPS and PPS before each IDR, if the device supports
// that feature. Otherwise we'll have to cache and inject ourselves.
if (IsCtrlExposed(V4L2_CID_MPEG_VIDEO_H264_SPS_PPS_BEFORE_IDR)) {
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_H264_SPS_PPS_BEFORE_IDR;
ctrl.value = 1;
ctrls.push_back(ctrl);
if (!SetExtCtrls(ctrls)) {
NOTIFY_ERROR(kPlatformFailureError);
return false;
}
ctrls.clear();
inject_sps_and_pps_ = false;
DVLOGF(2) << "Device supports injecting SPS+PPS before each IDR";
} else {
inject_sps_and_pps_ = true;
DVLOGF(2) << "Will inject SPS+PPS before each IDR, unsupported by device";
}
// Optional controls.
// No B-frames, for lowest decoding latency.
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_B_FRAMES;
ctrl.value = 0;
ctrls.push_back(ctrl);
// Quantization parameter maximum value (for variable bitrate control).
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_H264_MAX_QP;
ctrl.value = 51;
ctrls.push_back(ctrl);
// Set H.264 profile.
int32_t profile_value =
V4L2Device::VideoCodecProfileToV4L2H264Profile(config.output_profile);
if (profile_value < 0) {
NOTIFY_ERROR(kInvalidArgumentError);
return false;
}
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_H264_PROFILE;
ctrl.value = profile_value;
ctrls.push_back(ctrl);
// Set H.264 output level from config. Use Level 4.0 as fallback default.
int32_t level_value = V4L2Device::H264LevelIdcToV4L2H264Level(
config.h264_output_level.value_or(
VideoEncodeAccelerator::kDefaultH264Level));
if (level_value < 0) {
NOTIFY_ERROR(kInvalidArgumentError);
return false;
}
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_H264_LEVEL;
ctrl.value = level_value;
ctrls.push_back(ctrl);
// Ask not to put SPS and PPS into separate bitstream buffers.
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_HEADER_MODE;
ctrl.value = V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME;
ctrls.push_back(ctrl);
}
// Enable macroblock-level bitrate control.
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE;
ctrl.value = 1;
ctrls.push_back(ctrl);
// Disable periodic key frames.
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_VIDEO_GOP_SIZE;
ctrl.value = 0;
ctrls.push_back(ctrl);
// Ignore return value as these controls are optional.
SetExtCtrls(ctrls);
// Optional Exynos specific controls.
ctrls.clear();
// Enable "tight" bitrate mode. For this to work properly, frame- and mb-level
// bitrate controls have to be enabled as well.
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_MFC51_VIDEO_RC_REACTION_COEFF;
ctrl.value = 1;
ctrls.push_back(ctrl);
// Force bitrate control to average over a GOP (for tight bitrate
// tolerance).
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_MPEG_MFC51_VIDEO_RC_FIXED_TARGET_BIT;
ctrl.value = 1;
ctrls.push_back(ctrl);
// Ignore return value as these controls are optional.
SetExtCtrls(ctrls);
return true;
}
bool V4L2VideoEncodeAccelerator::CreateInputBuffers() {
VLOGF(2);
// This function runs on encoder_thread_ after output buffers have been
// provided by the client.
DCHECK(encoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!input_streamon_);
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
// Driver will modify to the appropriate number of buffers.
reqbufs.count = kInputBufferCount;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
reqbufs.memory = input_memory_type_;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
DCHECK(input_buffer_map_.empty());
input_buffer_map_.resize(reqbufs.count);
for (size_t i = 0; i < input_buffer_map_.size(); ++i)
free_input_buffers_.push_back(i);
return true;
}
bool V4L2VideoEncodeAccelerator::CreateOutputBuffers() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK(!output_streamon_);
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = kOutputBufferCount;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbufs.memory = V4L2_MEMORY_MMAP;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
DCHECK(output_buffer_map_.empty());
output_buffer_map_ = std::vector<OutputRecord>(reqbufs.count);
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
struct v4l2_plane planes[1];
struct v4l2_buffer buffer;
memset(&buffer, 0, sizeof(buffer));
memset(planes, 0, sizeof(planes));
buffer.index = i;
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.m.planes = planes;
buffer.length = arraysize(planes);
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYBUF, &buffer);
void* address = device_->Mmap(NULL,
buffer.m.planes[0].length,
PROT_READ | PROT_WRITE,
MAP_SHARED,
buffer.m.planes[0].m.mem_offset);
if (address == MAP_FAILED) {
VPLOGF(1) << "mmap() failed";
return false;
}
output_buffer_map_[i].address = address;
output_buffer_map_[i].length = buffer.m.planes[0].length;
free_output_buffers_.push_back(i);
}
return true;
}
void V4L2VideoEncodeAccelerator::DestroyInputBuffers() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
free_input_buffers_.clear();
if (input_buffer_map_.empty())
return;
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = 0;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
reqbufs.memory = input_memory_type_;
IOCTL_OR_LOG_ERROR(VIDIOC_REQBUFS, &reqbufs);
input_buffer_map_.clear();
}
void V4L2VideoEncodeAccelerator::DestroyOutputBuffers() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK(!output_streamon_);
free_output_buffers_.clear();
if (output_buffer_map_.empty())
return;
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
if (output_buffer_map_[i].address != NULL)
device_->Munmap(output_buffer_map_[i].address,
output_buffer_map_[i].length);
}
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = 0;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbufs.memory = V4L2_MEMORY_MMAP;
IOCTL_OR_LOG_ERROR(VIDIOC_REQBUFS, &reqbufs);
output_buffer_map_.clear();
}
} // namespace media