| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This is a simple application that stress-tests the crash recovery of the disk |
| // cache. The main application starts a copy of itself on a loop, checking the |
| // exit code of the child process. When the child dies in an unexpected way, |
| // the main application quits. |
| |
| // The child application has two threads: one to exercise the cache in an |
| // infinite loop, and another one to asynchronously kill the process. |
| |
| // A regular build should never crash. |
| // To test that the disk cache doesn't generate critical errors with regular |
| // application level crashes, edit stress_support.h. |
| |
| #include <string> |
| #include <vector> |
| |
| #include "base/at_exit.h" |
| #include "base/bind.h" |
| #include "base/bind_helpers.h" |
| #include "base/command_line.h" |
| #include "base/debug/debugger.h" |
| #include "base/files/file_path.h" |
| #include "base/location.h" |
| #include "base/logging.h" |
| #include "base/message_loop/message_loop.h" |
| #include "base/path_service.h" |
| #include "base/process/launch.h" |
| #include "base/process/process.h" |
| #include "base/run_loop.h" |
| #include "base/single_thread_task_runner.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/utf_string_conversions.h" |
| #include "base/threading/platform_thread.h" |
| #include "base/threading/thread.h" |
| #include "base/threading/thread_task_runner_handle.h" |
| #include "net/base/io_buffer.h" |
| #include "net/base/net_errors.h" |
| #include "net/base/test_completion_callback.h" |
| #include "net/disk_cache/blockfile/backend_impl.h" |
| #include "net/disk_cache/blockfile/stress_support.h" |
| #include "net/disk_cache/blockfile/trace.h" |
| #include "net/disk_cache/disk_cache.h" |
| #include "net/disk_cache/disk_cache_test_util.h" |
| |
| #if defined(OS_WIN) |
| #include "base/logging_win.h" |
| #endif |
| |
| using base::Time; |
| |
| const int kError = -1; |
| const int kExpectedCrash = 100; |
| |
| // Starts a new process. |
| int RunSlave(int iteration) { |
| base::FilePath exe; |
| base::PathService::Get(base::FILE_EXE, &exe); |
| |
| base::CommandLine cmdline(exe); |
| cmdline.AppendArg(base::IntToString(iteration)); |
| |
| base::Process process = base::LaunchProcess(cmdline, base::LaunchOptions()); |
| if (!process.IsValid()) { |
| printf("Unable to run test\n"); |
| return kError; |
| } |
| |
| int exit_code; |
| if (!process.WaitForExit(&exit_code)) { |
| printf("Unable to get return code\n"); |
| return kError; |
| } |
| return exit_code; |
| } |
| |
| // Main loop for the master process. |
| int MasterCode() { |
| for (int i = 0; i < 100000; i++) { |
| int ret = RunSlave(i); |
| if (kExpectedCrash != ret) |
| return ret; |
| } |
| |
| printf("More than enough...\n"); |
| |
| return 0; |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| std::string GenerateStressKey() { |
| char key[20 * 1024]; |
| size_t size = 50 + rand() % 20000; |
| CacheTestFillBuffer(key, size, true); |
| |
| key[size - 1] = '\0'; |
| return std::string(key); |
| } |
| |
| // kNumKeys is meant to be enough to have about 3x or 4x iterations before |
| // the process crashes. |
| #ifdef NDEBUG |
| const int kNumKeys = 4000; |
| #else |
| const int kNumKeys = 1200; |
| #endif |
| const int kNumEntries = 30; |
| const int kBufferSize = 2000; |
| const int kReadSize = 20; |
| |
| // Things that an entry can be doing. |
| enum Operation { NONE, OPEN, CREATE, READ, WRITE, DOOM }; |
| |
| // This class encapsulates a cache entry and the operations performed on that |
| // entry. An entry is opened or created as needed, the current content is then |
| // verified and then something is written to the entry. At that point, the |
| // |state_| becomes NONE again, waiting for another write, unless the entry is |
| // closed or deleted. |
| class EntryWrapper { |
| public: |
| EntryWrapper() : entry_(nullptr), state_(NONE) { |
| buffer_ = base::MakeRefCounted<net::IOBuffer>(kBufferSize); |
| memset(buffer_->data(), 'k', kBufferSize); |
| } |
| |
| Operation state() const { return state_; } |
| |
| void DoOpen(int key); |
| |
| private: |
| void OnOpenDone(int key, int result); |
| void DoRead(); |
| void OnReadDone(int result); |
| void DoWrite(); |
| void OnWriteDone(int size, int result); |
| void DoDelete(const std::string& key); |
| void OnDeleteDone(int result); |
| void DoIdle(); |
| |
| disk_cache::Entry* entry_; |
| Operation state_; |
| scoped_refptr<net::IOBuffer> buffer_; |
| }; |
| |
| // The data that the main thread is working on. |
| struct Data { |
| Data() : pendig_operations(0), writes(0), iteration(0), cache(nullptr) {} |
| |
| int pendig_operations; // Counter of simultaneous operations. |
| int writes; // How many writes since this iteration started. |
| int iteration; // The iteration (number of crashes). |
| disk_cache::BackendImpl* cache; |
| std::string keys[kNumKeys]; |
| EntryWrapper entries[kNumEntries]; |
| }; |
| |
| Data* g_data = nullptr; |
| |
| void EntryWrapper::DoOpen(int key) { |
| DCHECK_EQ(state_, NONE); |
| if (entry_) |
| return DoRead(); |
| |
| state_ = OPEN; |
| int rv = g_data->cache->OpenEntry( |
| g_data->keys[key], net::HIGHEST, &entry_, |
| base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key)); |
| if (rv != net::ERR_IO_PENDING) |
| OnOpenDone(key, rv); |
| } |
| |
| void EntryWrapper::OnOpenDone(int key, int result) { |
| if (result == net::OK) |
| return DoRead(); |
| |
| CHECK_EQ(state_, OPEN); |
| state_ = CREATE; |
| result = g_data->cache->CreateEntry( |
| g_data->keys[key], net::HIGHEST, &entry_, |
| base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key)); |
| if (result != net::ERR_IO_PENDING) |
| OnOpenDone(key, result); |
| } |
| |
| void EntryWrapper::DoRead() { |
| int current_size = entry_->GetDataSize(0); |
| if (!current_size) |
| return DoWrite(); |
| |
| state_ = READ; |
| memset(buffer_->data(), 'k', kReadSize); |
| int rv = entry_->ReadData( |
| 0, 0, buffer_.get(), kReadSize, |
| base::Bind(&EntryWrapper::OnReadDone, base::Unretained(this))); |
| if (rv != net::ERR_IO_PENDING) |
| OnReadDone(rv); |
| } |
| |
| void EntryWrapper::OnReadDone(int result) { |
| DCHECK_EQ(state_, READ); |
| CHECK_EQ(result, kReadSize); |
| CHECK_EQ(0, memcmp(buffer_->data(), "Write: ", 7)); |
| DoWrite(); |
| } |
| |
| void EntryWrapper::DoWrite() { |
| bool truncate = (rand() % 2 == 0); |
| int size = kBufferSize - (rand() % 20) * kBufferSize / 20; |
| state_ = WRITE; |
| base::snprintf(buffer_->data(), kBufferSize, |
| "Write: %d iter: %d, size: %d, truncate: %d ", |
| g_data->writes, g_data->iteration, size, truncate ? 1 : 0); |
| int rv = entry_->WriteData( |
| 0, 0, buffer_.get(), size, |
| base::Bind(&EntryWrapper::OnWriteDone, base::Unretained(this), size), |
| truncate); |
| if (rv != net::ERR_IO_PENDING) |
| OnWriteDone(size, rv); |
| } |
| |
| void EntryWrapper::OnWriteDone(int size, int result) { |
| DCHECK_EQ(state_, WRITE); |
| CHECK_EQ(size, result); |
| if (!(g_data->writes++ % 100)) |
| printf("Entries: %d \r", g_data->writes); |
| |
| int random = rand() % 100; |
| std::string key = entry_->GetKey(); |
| if (random > 90) |
| return DoDelete(key); // 10% delete then close. |
| |
| if (random > 60) { // 20% close. |
| entry_->Close(); |
| entry_ = nullptr; |
| } |
| |
| if (random > 80) |
| return DoDelete(key); // 10% close then delete. |
| |
| DoIdle(); // 60% do another write later. |
| } |
| |
| void EntryWrapper::DoDelete(const std::string& key) { |
| state_ = DOOM; |
| int rv = g_data->cache->DoomEntry( |
| key, net::HIGHEST, |
| base::Bind(&EntryWrapper::OnDeleteDone, base::Unretained(this))); |
| if (rv != net::ERR_IO_PENDING) |
| OnDeleteDone(rv); |
| } |
| |
| void EntryWrapper::OnDeleteDone(int result) { |
| DCHECK_EQ(state_, DOOM); |
| if (entry_) { |
| entry_->Close(); |
| entry_ = nullptr; |
| } |
| DoIdle(); |
| } |
| |
| void LoopTask(); |
| |
| void EntryWrapper::DoIdle() { |
| state_ = NONE; |
| g_data->pendig_operations--; |
| DCHECK(g_data->pendig_operations); |
| base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| base::Bind(&LoopTask)); |
| } |
| |
| // The task that keeps the main thread busy. Whenever an entry becomes idle this |
| // task is executed again. |
| void LoopTask() { |
| if (g_data->pendig_operations >= kNumEntries) |
| return; |
| |
| int slot = rand() % kNumEntries; |
| if (g_data->entries[slot].state() == NONE) { |
| // Each slot will have some keys assigned to it so that the same entry will |
| // not be open by two slots, which means that the state is well known at |
| // all times. |
| int keys_per_entry = kNumKeys / kNumEntries; |
| int key = rand() % keys_per_entry + keys_per_entry * slot; |
| g_data->pendig_operations++; |
| g_data->entries[slot].DoOpen(key); |
| } |
| |
| base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| base::Bind(&LoopTask)); |
| } |
| |
| // This thread will loop forever, adding and removing entries from the cache. |
| // iteration is the current crash cycle, so the entries on the cache are marked |
| // to know which instance of the application wrote them. |
| void StressTheCache(int iteration) { |
| int cache_size = 0x2000000; // 32MB. |
| uint32_t mask = 0xfff; // 4096 entries. |
| |
| base::FilePath path; |
| base::PathService::Get(base::DIR_TEMP, &path); |
| path = path.AppendASCII("cache_test_stress"); |
| |
| base::Thread cache_thread("CacheThread"); |
| if (!cache_thread.StartWithOptions( |
| base::Thread::Options(base::MessageLoop::TYPE_IO, 0))) |
| return; |
| |
| g_data = new Data(); |
| g_data->iteration = iteration; |
| g_data->cache = new disk_cache::BackendImpl( |
| path, mask, cache_thread.task_runner().get(), NULL); |
| g_data->cache->SetMaxSize(cache_size); |
| g_data->cache->SetFlags(disk_cache::kNoLoadProtection); |
| |
| net::TestCompletionCallback cb; |
| int rv = g_data->cache->Init(cb.callback()); |
| |
| if (cb.GetResult(rv) != net::OK) { |
| printf("Unable to initialize cache.\n"); |
| return; |
| } |
| printf("Iteration %d, initial entries: %d\n", iteration, |
| g_data->cache->GetEntryCount()); |
| |
| int seed = static_cast<int>(Time::Now().ToInternalValue()); |
| srand(seed); |
| |
| for (int i = 0; i < kNumKeys; i++) |
| g_data->keys[i] = GenerateStressKey(); |
| |
| base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| base::Bind(&LoopTask)); |
| base::RunLoop().Run(); |
| } |
| |
| // We want to prevent the timer thread from killing the process while we are |
| // waiting for the debugger to attach. |
| bool g_crashing = false; |
| |
| // RunSoon() and CrashCallback() reference each other, unfortunately. |
| void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner); |
| |
| void CrashCallback() { |
| // Keep trying to run. |
| RunSoon(base::ThreadTaskRunnerHandle::Get()); |
| |
| if (g_crashing) |
| return; |
| |
| if (rand() % 100 > 30) { |
| printf("sweet death...\n"); |
| |
| // Terminate the current process without doing normal process-exit cleanup. |
| base::Process::TerminateCurrentProcessImmediately(kExpectedCrash); |
| } |
| } |
| |
| void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner) { |
| const base::TimeDelta kTaskDelay = base::TimeDelta::FromSeconds(10); |
| task_runner->PostDelayedTask(FROM_HERE, base::Bind(&CrashCallback), |
| kTaskDelay); |
| } |
| |
| // We leak everything here :) |
| bool StartCrashThread() { |
| base::Thread* thread = new base::Thread("party_crasher"); |
| if (!thread->Start()) |
| return false; |
| |
| RunSoon(thread->task_runner()); |
| return true; |
| } |
| |
| void CrashHandler(const char* file, |
| int line, |
| const base::StringPiece str, |
| const base::StringPiece stack_trace) { |
| g_crashing = true; |
| base::debug::BreakDebugger(); |
| } |
| |
| bool MessageHandler(int severity, const char* file, int line, |
| size_t message_start, const std::string& str) { |
| const size_t kMaxMessageLen = 48; |
| char message[kMaxMessageLen]; |
| size_t len = std::min(str.length() - message_start, kMaxMessageLen - 1); |
| |
| memcpy(message, str.c_str() + message_start, len); |
| message[len] = '\0'; |
| #if !defined(DISK_CACHE_TRACE_TO_LOG) |
| disk_cache::Trace("%s", message); |
| #endif |
| return false; |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| #if defined(OS_WIN) |
| // {B9A153D4-31C3-48e4-9ABF-D54383F14A0D} |
| const GUID kStressCacheTraceProviderName = { |
| 0xb9a153d4, 0x31c3, 0x48e4, |
| { 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } }; |
| #endif |
| |
| int main(int argc, const char* argv[]) { |
| // Setup an AtExitManager so Singleton objects will be destructed. |
| base::AtExitManager at_exit_manager; |
| |
| if (argc < 2) |
| return MasterCode(); |
| |
| logging::ScopedLogAssertHandler scoped_assert_handler( |
| base::Bind(CrashHandler)); |
| logging::SetLogMessageHandler(MessageHandler); |
| |
| #if defined(OS_WIN) |
| logging::LogEventProvider::Initialize(kStressCacheTraceProviderName); |
| #else |
| base::CommandLine::Init(argc, argv); |
| logging::LoggingSettings settings; |
| settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG; |
| logging::InitLogging(settings); |
| #endif |
| |
| // Some time for the memory manager to flush stuff. |
| base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(3)); |
| base::MessageLoopForIO message_loop; |
| |
| char* end; |
| long int iteration = strtol(argv[1], &end, 0); |
| |
| if (!StartCrashThread()) { |
| printf("failed to start thread\n"); |
| return kError; |
| } |
| |
| StressTheCache(iteration); |
| return 0; |
| } |