blob: 56bca3794d3b2689e48948c11cc2159077ab3dc2 [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layers/picture_layer_impl.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <set>
#include "base/metrics/histogram_macros.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event_argument.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"
#include "cc/benchmarks/micro_benchmark_impl.h"
#include "cc/debug/debug_colors.h"
#include "cc/layers/append_quads_data.h"
#include "cc/layers/solid_color_layer_impl.h"
#include "cc/paint/display_item_list.h"
#include "cc/tiles/tile_manager.h"
#include "cc/tiles/tiling_set_raster_queue_all.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/occlusion.h"
#include "components/viz/common/frame_sinks/begin_frame_args.h"
#include "components/viz/common/quads/debug_border_draw_quad.h"
#include "components/viz/common/quads/picture_draw_quad.h"
#include "components/viz/common/quads/solid_color_draw_quad.h"
#include "components/viz/common/quads/tile_draw_quad.h"
#include "components/viz/common/traced_value.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
namespace cc {
namespace {
// This must be > 1 as we multiply or divide by this to find a new raster
// scale during pinch.
const float kMaxScaleRatioDuringPinch = 2.0f;
// When creating a new tiling during pinch, snap to an existing
// tiling's scale if the desired scale is within this ratio.
const float kSnapToExistingTilingRatio = 1.2f;
// Even for really wide viewports, at some point GPU raster should use
// less than 4 tiles to fill the viewport. This is set to 256 as a
// sane minimum for now, but we might want to tune this for low-end.
const int kMinHeightForGpuRasteredTile = 256;
// When making odd-sized tiles, round them up to increase the chances
// of using the same tile size.
const int kTileRoundUp = 64;
// Round GPU default tile sizes to a multiple of 32. This helps prevent
// rounding errors during compositing.
const int kGpuDefaultTileRoundUp = 32;
// For performance reasons and to support compressed tile textures, tile
// width and height should be an even multiple of 4 in size.
const int kTileMinimalAlignment = 4;
// Large contents scale can cause overflow issues. Cap the ideal contents scale
// by this constant, since scales larger than this are usually not correct or
// their scale doesn't matter as long as it's large. Content scales usually
// closely match the default device-scale factor (so it's usually <= 5). See
// Renderer4.IdealContentsScale UMA (deprecated) for distribution of content
// scales.
const float kMaxIdealContentsScale = 10000.f;
// Intersect rects which may have right() and bottom() that overflow integer
// boundaries. This code is similar to gfx::Rect::Intersect with the exception
// that the types are promoted to int64_t when there is a chance of overflow.
gfx::Rect SafeIntersectRects(const gfx::Rect& one, const gfx::Rect& two) {
if (one.IsEmpty() || two.IsEmpty())
return gfx::Rect();
int rx = std::max(one.x(), two.x());
int ry = std::max(one.y(), two.y());
int64_t rr = std::min(static_cast<int64_t>(one.x()) + one.width(),
static_cast<int64_t>(two.x()) + two.width());
int64_t rb = std::min(static_cast<int64_t>(one.y()) + one.height(),
static_cast<int64_t>(two.y()) + two.height());
if (rx > rr || ry > rb)
return gfx::Rect();
return gfx::Rect(rx, ry, static_cast<int>(rr - rx),
static_cast<int>(rb - ry));
}
// This function converts the given |device_pixels_size| to the expected size
// of content which was generated to fill it at 100%. This takes into account
// the ceil operations that occur as device pixels are converted to/from DIPs
// (content size must be a whole number of DIPs).
gfx::Size ApplyDsfAdjustment(gfx::Size device_pixels_size, float dsf) {
gfx::Size content_size_in_dips =
gfx::ScaleToCeiledSize(device_pixels_size, 1.0f / dsf);
gfx::Size content_size_in_dps =
gfx::ScaleToCeiledSize(content_size_in_dips, dsf);
return content_size_in_dps;
}
// For GPU rasterization, we pick an ideal tile size using the viewport so we
// don't need any settings. The current approach uses 4 tiles to cover the
// viewport vertically.
gfx::Size CalculateGpuTileSize(const gfx::Size& base_tile_size,
const gfx::Size& content_bounds,
const gfx::Size& max_tile_size) {
int tile_width = base_tile_size.width();
// Increase the height proportionally as the width decreases, and pad by our
// border texels to make the tiles exactly match the viewport.
int divisor = 4;
if (content_bounds.width() <= base_tile_size.width() / 2)
divisor = 2;
if (content_bounds.width() <= base_tile_size.width() / 4)
divisor = 1;
int tile_height =
MathUtil::UncheckedRoundUp(base_tile_size.height(), divisor) / divisor;
// Grow default sizes to account for overlapping border texels.
tile_width += 2 * PictureLayerTiling::kBorderTexels;
tile_height += 2 * PictureLayerTiling::kBorderTexels;
// Round GPU default tile sizes to a multiple of kGpuDefaultTileAlignment.
// This helps prevent rounding errors in our CA path. https://crbug.com/632274
tile_width = MathUtil::UncheckedRoundUp(tile_width, kGpuDefaultTileRoundUp);
tile_height = MathUtil::UncheckedRoundUp(tile_height, kGpuDefaultTileRoundUp);
tile_height = std::max(tile_height, kMinHeightForGpuRasteredTile);
if (!max_tile_size.IsEmpty()) {
tile_width = std::min(tile_width, max_tile_size.width());
tile_height = std::min(tile_height, max_tile_size.height());
}
return gfx::Size(tile_width, tile_height);
}
} // namespace
PictureLayerImpl::PictureLayerImpl(LayerTreeImpl* tree_impl,
int id,
Layer::LayerMaskType mask_type)
: LayerImpl(tree_impl, id),
twin_layer_(nullptr),
tilings_(CreatePictureLayerTilingSet()),
ideal_page_scale_(0.f),
ideal_device_scale_(0.f),
ideal_source_scale_(0.f),
ideal_contents_scale_(0.f),
raster_page_scale_(0.f),
raster_device_scale_(0.f),
raster_source_scale_(0.f),
raster_contents_scale_(0.f),
low_res_raster_contents_scale_(0.f),
mask_type_(mask_type),
was_screen_space_transform_animating_(false),
only_used_low_res_last_append_quads_(false),
nearest_neighbor_(false),
use_transformed_rasterization_(false),
is_directly_composited_image_(false),
can_use_lcd_text_(true) {
layer_tree_impl()->RegisterPictureLayerImpl(this);
}
PictureLayerImpl::~PictureLayerImpl() {
if (twin_layer_)
twin_layer_->twin_layer_ = nullptr;
layer_tree_impl()->UnregisterPictureLayerImpl(this);
// Unregister for all images on the current raster source.
UnregisterAnimatedImages();
}
void PictureLayerImpl::SetLayerMaskType(Layer::LayerMaskType mask_type) {
if (mask_type_ == mask_type)
return;
// It is expected that a layer can never change from being a mask to not being
// one and vice versa. Only changes that make mask layer single <-> multi are
// expected.
DCHECK(mask_type_ != Layer::LayerMaskType::NOT_MASK &&
mask_type != Layer::LayerMaskType::NOT_MASK);
mask_type_ = mask_type;
}
const char* PictureLayerImpl::LayerTypeAsString() const {
return "cc::PictureLayerImpl";
}
std::unique_ptr<LayerImpl> PictureLayerImpl::CreateLayerImpl(
LayerTreeImpl* tree_impl) {
return PictureLayerImpl::Create(tree_impl, id(), mask_type());
}
void PictureLayerImpl::PushPropertiesTo(LayerImpl* base_layer) {
PictureLayerImpl* layer_impl = static_cast<PictureLayerImpl*>(base_layer);
LayerImpl::PushPropertiesTo(base_layer);
layer_impl->SetLayerMaskType(mask_type());
// Twin relationships should never change once established.
DCHECK(!twin_layer_ || twin_layer_ == layer_impl);
DCHECK(!twin_layer_ || layer_impl->twin_layer_ == this);
// The twin relationship does not need to exist before the first
// PushPropertiesTo from pending to active layer since before that the active
// layer can not have a pile or tilings, it has only been created and inserted
// into the tree at that point.
twin_layer_ = layer_impl;
layer_impl->twin_layer_ = this;
layer_impl->SetNearestNeighbor(nearest_neighbor_);
layer_impl->SetUseTransformedRasterization(use_transformed_rasterization_);
// Solid color layers have no tilings.
DCHECK(!raster_source_->IsSolidColor() || tilings_->num_tilings() == 0);
// The pending tree should only have a high res (and possibly low res) tiling.
DCHECK_LE(tilings_->num_tilings(),
layer_tree_impl()->create_low_res_tiling() ? 2u : 1u);
layer_impl->set_gpu_raster_max_texture_size(gpu_raster_max_texture_size_);
layer_impl->UpdateRasterSource(raster_source_, &invalidation_,
tilings_.get());
DCHECK(invalidation_.IsEmpty());
// After syncing a solid color layer, the active layer has no tilings.
DCHECK(!raster_source_->IsSolidColor() ||
layer_impl->tilings_->num_tilings() == 0);
layer_impl->raster_page_scale_ = raster_page_scale_;
layer_impl->raster_device_scale_ = raster_device_scale_;
layer_impl->raster_source_scale_ = raster_source_scale_;
layer_impl->raster_contents_scale_ = raster_contents_scale_;
layer_impl->low_res_raster_contents_scale_ = low_res_raster_contents_scale_;
layer_impl->is_directly_composited_image_ = is_directly_composited_image_;
// Simply push the value to the active tree without any extra invalidations,
// since the pending tree tiles would have this handled. This is here to
// ensure the state is consistent for future raster.
layer_impl->can_use_lcd_text_ = can_use_lcd_text_;
layer_impl->SanityCheckTilingState();
// We always need to push properties.
// See http://crbug.com/303943
// TODO(danakj): Stop always pushing properties since we don't swap tilings.
layer_tree_impl()->AddLayerShouldPushProperties(this);
}
void PictureLayerImpl::AppendQuads(viz::RenderPass* render_pass,
AppendQuadsData* append_quads_data) {
// The bounds and the pile size may differ if the pile wasn't updated (ie.
// PictureLayer::Update didn't happen). In that case the pile will be empty.
DCHECK(raster_source_->GetSize().IsEmpty() ||
bounds() == raster_source_->GetSize())
<< " bounds " << bounds().ToString() << " pile "
<< raster_source_->GetSize().ToString();
viz::SharedQuadState* shared_quad_state =
render_pass->CreateAndAppendSharedQuadState();
if (raster_source_->IsSolidColor()) {
// TODO(sunxd): Solid color non-mask layers are forced to have contents
// scale = 1. This is a workaround to temperarily fix
// https://crbug.com/796558.
// We need to investigate into the ca layers logic and remove this
// workaround after fixing the bug.
float max_contents_scale =
!(mask_type_ == Layer::LayerMaskType::MULTI_TEXTURE_MASK)
? 1
: CanHaveTilings() ? ideal_contents_scale_
: std::min(kMaxIdealContentsScale,
std::max(GetIdealContentsScale(),
MinimumContentsScale()));
// The downstream CA layers use shared_quad_state to generate resources of
// the right size even if it is a solid color picture layer.
PopulateScaledSharedQuadState(shared_quad_state, max_contents_scale,
max_contents_scale, contents_opaque());
AppendDebugBorderQuad(render_pass, gfx::Rect(bounds()), shared_quad_state,
append_quads_data);
gfx::Rect scaled_visible_layer_rect =
shared_quad_state->visible_quad_layer_rect;
Occlusion occlusion;
// TODO(sunxd): Compute the correct occlusion for mask layers.
if (mask_type_ == Layer::LayerMaskType::NOT_MASK) {
occlusion = draw_properties().occlusion_in_content_space;
}
SolidColorLayerImpl::AppendSolidQuads(
render_pass, occlusion, shared_quad_state, scaled_visible_layer_rect,
raster_source_->GetSolidColor(),
!layer_tree_impl()->settings().enable_edge_anti_aliasing,
append_quads_data);
return;
}
float device_scale_factor = layer_tree_impl()->device_scale_factor();
float max_contents_scale = MaximumTilingContentsScale();
PopulateScaledSharedQuadState(shared_quad_state, max_contents_scale,
max_contents_scale, contents_opaque());
Occlusion scaled_occlusion;
if (mask_type_ == Layer::LayerMaskType::NOT_MASK) {
scaled_occlusion =
draw_properties()
.occlusion_in_content_space.GetOcclusionWithGivenDrawTransform(
shared_quad_state->quad_to_target_transform);
}
if (current_draw_mode_ == DRAW_MODE_RESOURCELESS_SOFTWARE) {
DCHECK(shared_quad_state->quad_layer_rect.origin() == gfx::Point(0, 0));
AppendDebugBorderQuad(
render_pass, shared_quad_state->quad_layer_rect, shared_quad_state,
append_quads_data, DebugColors::DirectPictureBorderColor(),
DebugColors::DirectPictureBorderWidth(device_scale_factor));
gfx::Rect geometry_rect = shared_quad_state->visible_quad_layer_rect;
gfx::Rect visible_geometry_rect =
scaled_occlusion.GetUnoccludedContentRect(geometry_rect);
bool needs_blending = !contents_opaque();
// The raster source may not be valid over the entire visible rect,
// and rastering outside of that may cause incorrect pixels.
gfx::Rect scaled_recorded_viewport = gfx::ScaleToEnclosingRect(
raster_source_->RecordedViewport(), max_contents_scale);
geometry_rect.Intersect(scaled_recorded_viewport);
visible_geometry_rect.Intersect(scaled_recorded_viewport);
if (visible_geometry_rect.IsEmpty())
return;
DCHECK(raster_source_->HasRecordings());
gfx::Rect quad_content_rect = shared_quad_state->visible_quad_layer_rect;
gfx::Size texture_size = quad_content_rect.size();
gfx::RectF texture_rect = gfx::RectF(gfx::SizeF(texture_size));
viz::PictureDrawQuad::ImageAnimationMap image_animation_map;
const auto* controller = layer_tree_impl()->image_animation_controller();
WhichTree tree = layer_tree_impl()->IsPendingTree()
? WhichTree::PENDING_TREE
: WhichTree::ACTIVE_TREE;
for (const auto& image_data : raster_source_->GetDisplayItemList()
->discardable_image_map()
.animated_images_metadata()) {
image_animation_map[image_data.paint_image_id] =
controller->GetFrameIndexForImage(image_data.paint_image_id, tree);
}
auto* quad = render_pass->CreateAndAppendDrawQuad<viz::PictureDrawQuad>();
quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect,
needs_blending, texture_rect, texture_size, nearest_neighbor_,
viz::RGBA_8888, quad_content_rect, max_contents_scale,
std::move(image_animation_map),
raster_source_->GetDisplayItemList());
ValidateQuadResources(quad);
return;
}
// If we're doing a regular AppendQuads (ie, not solid color or resourceless
// software draw, and if the visible rect is scrolled far enough away, then we
// may run into a floating point precision in AA calculations in the renderer.
// See crbug.com/765297. In order to avoid this, we shift the quads up from
// where they logically reside and adjust the shared_quad_state's transform
// instead. We only do this in a scale/translate matrices to ensure the math
// is correct.
gfx::Vector2d quad_offset;
if (shared_quad_state->quad_to_target_transform.IsScaleOrTranslation()) {
const auto& visible_rect = shared_quad_state->visible_quad_layer_rect;
quad_offset = gfx::Vector2d(-visible_rect.x(), -visible_rect.y());
}
gfx::Rect debug_border_rect(shared_quad_state->quad_layer_rect);
debug_border_rect.Offset(quad_offset);
AppendDebugBorderQuad(render_pass, debug_border_rect, shared_quad_state,
append_quads_data);
if (ShowDebugBorders(DebugBorderType::LAYER)) {
for (PictureLayerTilingSet::CoverageIterator iter(
tilings_.get(), max_contents_scale,
shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_);
iter; ++iter) {
SkColor color;
float width;
if (*iter && iter->draw_info().IsReadyToDraw()) {
TileDrawInfo::Mode mode = iter->draw_info().mode();
if (mode == TileDrawInfo::SOLID_COLOR_MODE) {
color = DebugColors::SolidColorTileBorderColor();
width = DebugColors::SolidColorTileBorderWidth(device_scale_factor);
} else if (mode == TileDrawInfo::OOM_MODE) {
color = DebugColors::OOMTileBorderColor();
width = DebugColors::OOMTileBorderWidth(device_scale_factor);
} else if (iter->draw_info().has_compressed_resource()) {
color = DebugColors::CompressedTileBorderColor();
width = DebugColors::CompressedTileBorderWidth(device_scale_factor);
} else if (iter.resolution() == HIGH_RESOLUTION) {
color = DebugColors::HighResTileBorderColor();
width = DebugColors::HighResTileBorderWidth(device_scale_factor);
} else if (iter.resolution() == LOW_RESOLUTION) {
color = DebugColors::LowResTileBorderColor();
width = DebugColors::LowResTileBorderWidth(device_scale_factor);
} else if (iter->contents_scale_key() > max_contents_scale) {
color = DebugColors::ExtraHighResTileBorderColor();
width = DebugColors::ExtraHighResTileBorderWidth(device_scale_factor);
} else {
color = DebugColors::ExtraLowResTileBorderColor();
width = DebugColors::ExtraLowResTileBorderWidth(device_scale_factor);
}
} else {
color = DebugColors::MissingTileBorderColor();
width = DebugColors::MissingTileBorderWidth(device_scale_factor);
}
auto* debug_border_quad =
render_pass->CreateAndAppendDrawQuad<viz::DebugBorderDrawQuad>();
gfx::Rect geometry_rect = iter.geometry_rect();
geometry_rect.Offset(quad_offset);
gfx::Rect visible_geometry_rect = geometry_rect;
debug_border_quad->SetNew(shared_quad_state,
geometry_rect,
visible_geometry_rect,
color,
width);
}
}
// Keep track of the tilings that were used so that tilings that are
// unused can be considered for removal.
last_append_quads_tilings_.clear();
// Ignore missing tiles outside of viewport for tile priority. This is
// normally the same as draw viewport but can be independently overridden by
// embedders like Android WebView with SetExternalTilePriorityConstraints.
gfx::Rect scaled_viewport_for_tile_priority = gfx::ScaleToEnclosingRect(
viewport_rect_for_tile_priority_in_content_space_, max_contents_scale);
size_t missing_tile_count = 0u;
size_t on_demand_missing_tile_count = 0u;
only_used_low_res_last_append_quads_ = true;
gfx::Rect scaled_recorded_viewport = gfx::ScaleToEnclosingRect(
raster_source_->RecordedViewport(), max_contents_scale);
for (PictureLayerTilingSet::CoverageIterator iter(
tilings_.get(), max_contents_scale,
shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_);
iter; ++iter) {
gfx::Rect geometry_rect = iter.geometry_rect();
gfx::Rect visible_geometry_rect =
scaled_occlusion.GetUnoccludedContentRect(geometry_rect);
gfx::Rect offset_geometry_rect = geometry_rect;
offset_geometry_rect.Offset(quad_offset);
gfx::Rect offset_visible_geometry_rect = visible_geometry_rect;
offset_visible_geometry_rect.Offset(quad_offset);
bool needs_blending = !contents_opaque();
if (visible_geometry_rect.IsEmpty())
continue;
int64_t visible_geometry_area =
static_cast<int64_t>(visible_geometry_rect.width()) *
visible_geometry_rect.height();
append_quads_data->visible_layer_area += visible_geometry_area;
bool has_draw_quad = false;
if (*iter && iter->draw_info().IsReadyToDraw()) {
const TileDrawInfo& draw_info = iter->draw_info();
switch (draw_info.mode()) {
case TileDrawInfo::RESOURCE_MODE: {
gfx::RectF texture_rect = iter.texture_rect();
// The raster_contents_scale_ is the best scale that the layer is
// trying to produce, even though it may not be ideal. Since that's
// the best the layer can promise in the future, consider those as
// complete. But if a tile is ideal scale, we don't want to consider
// it incomplete and trying to replace it with a tile at a worse
// scale.
if (iter->contents_scale_key() != raster_contents_scale_ &&
iter->contents_scale_key() != ideal_contents_scale_ &&
geometry_rect.Intersects(scaled_viewport_for_tile_priority)) {
append_quads_data->num_incomplete_tiles++;
}
auto* quad =
render_pass->CreateAndAppendDrawQuad<viz::TileDrawQuad>();
quad->SetNew(
shared_quad_state, offset_geometry_rect,
offset_visible_geometry_rect, needs_blending,
draw_info.resource_id_for_export(), texture_rect,
draw_info.resource_size(), draw_info.contents_swizzled(),
draw_info.is_premultiplied(), nearest_neighbor_,
!layer_tree_impl()->settings().enable_edge_anti_aliasing);
ValidateQuadResources(quad);
has_draw_quad = true;
break;
}
case TileDrawInfo::SOLID_COLOR_MODE: {
float alpha =
(SkColorGetA(draw_info.solid_color()) * (1.0f / 255.0f)) *
shared_quad_state->opacity;
if (mask_type_ == Layer::LayerMaskType::MULTI_TEXTURE_MASK ||
alpha >= std::numeric_limits<float>::epsilon()) {
auto* quad =
render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>();
quad->SetNew(
shared_quad_state, offset_geometry_rect,
offset_visible_geometry_rect, draw_info.solid_color(),
!layer_tree_impl()->settings().enable_edge_anti_aliasing);
ValidateQuadResources(quad);
}
has_draw_quad = true;
break;
}
case TileDrawInfo::OOM_MODE:
break; // Checkerboard.
}
}
if (!has_draw_quad) {
// Checkerboard.
SkColor color = SafeOpaqueBackgroundColor();
if (ShowDebugBorders(DebugBorderType::LAYER)) {
// Fill the whole tile with the missing tile color.
color = DebugColors::OOMTileBorderColor();
}
auto* quad =
render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>();
quad->SetNew(shared_quad_state, offset_geometry_rect,
offset_visible_geometry_rect, color, false);
ValidateQuadResources(quad);
if (geometry_rect.Intersects(scaled_viewport_for_tile_priority)) {
append_quads_data->num_missing_tiles++;
++missing_tile_count;
}
append_quads_data->checkerboarded_visible_content_area +=
visible_geometry_area;
// Intersect checkerboard rect with interest rect to generate rect where
// we checkerboarded and has recording. The area where we don't have
// recording is not necessarily a Rect, and its area is calculated using
// subtraction.
gfx::Rect visible_rect_has_recording = visible_geometry_rect;
visible_rect_has_recording.Intersect(scaled_recorded_viewport);
int64_t checkerboarded_has_recording_area =
static_cast<int64_t>(visible_rect_has_recording.width()) *
visible_rect_has_recording.height();
append_quads_data->checkerboarded_needs_raster_content_area +=
checkerboarded_has_recording_area;
append_quads_data->checkerboarded_no_recording_content_area +=
visible_geometry_area - checkerboarded_has_recording_area;
continue;
}
if (iter.resolution() != HIGH_RESOLUTION) {
append_quads_data->approximated_visible_content_area +=
visible_geometry_area;
}
// If we have a draw quad, but it's not low resolution, then
// mark that we've used something other than low res to draw.
if (iter.resolution() != LOW_RESOLUTION)
only_used_low_res_last_append_quads_ = false;
if (last_append_quads_tilings_.empty() ||
last_append_quads_tilings_.back() != iter.CurrentTiling()) {
last_append_quads_tilings_.push_back(iter.CurrentTiling());
}
}
// Adjust shared_quad_state with the quad_offset, since we've adjusted each
// quad we've appended by it.
shared_quad_state->quad_to_target_transform.Translate(-quad_offset);
shared_quad_state->quad_layer_rect.Offset(quad_offset);
shared_quad_state->visible_quad_layer_rect.Offset(quad_offset);
if (missing_tile_count) {
TRACE_EVENT_INSTANT2("cc",
"PictureLayerImpl::AppendQuads checkerboard",
TRACE_EVENT_SCOPE_THREAD,
"missing_tile_count",
missing_tile_count,
"on_demand_missing_tile_count",
on_demand_missing_tile_count);
}
// Aggressively remove any tilings that are not seen to save memory. Note
// that this is at the expense of doing cause more frequent re-painting. A
// better scheme would be to maintain a tighter visible_layer_rect for the
// finer tilings.
CleanUpTilingsOnActiveLayer(last_append_quads_tilings_);
}
bool PictureLayerImpl::UpdateTiles() {
if (!CanHaveTilings()) {
ideal_page_scale_ = 0.f;
ideal_device_scale_ = 0.f;
ideal_contents_scale_ = 0.f;
ideal_source_scale_ = 0.f;
SanityCheckTilingState();
return false;
}
// Remove any non-ideal tilings that were not used last time we generated
// quads to save memory and processing time. Note that pending tree should
// only have one or two tilings (high and low res), so only clean up the
// active layer. This cleans it up here in case AppendQuads didn't run.
// If it did run, this would not remove any additional tilings.
if (layer_tree_impl()->IsActiveTree())
CleanUpTilingsOnActiveLayer(last_append_quads_tilings_);
UpdateIdealScales();
if (!raster_contents_scale_ || ShouldAdjustRasterScale()) {
RecalculateRasterScales();
AddTilingsForRasterScale();
}
if (layer_tree_impl()->IsActiveTree())
AddLowResolutionTilingIfNeeded();
DCHECK(raster_page_scale_);
DCHECK(raster_device_scale_);
DCHECK(raster_source_scale_);
DCHECK(raster_contents_scale_);
DCHECK(low_res_raster_contents_scale_);
was_screen_space_transform_animating_ =
draw_properties().screen_space_transform_is_animating;
double current_frame_time_in_seconds =
(layer_tree_impl()->CurrentBeginFrameArgs().frame_time -
base::TimeTicks()).InSecondsF();
UpdateViewportRectForTilePriorityInContentSpace();
// The tiling set can require tiles for activation any of the following
// conditions are true:
// - This layer produced a high-res or non-ideal-res tile last frame.
// - We're in requires high res to draw mode.
// - We're not in smoothness takes priority mode.
// To put different, the tiling set can't require tiles for activation if
// we're in smoothness mode and only used low-res or checkerboard to draw last
// frame and we don't need high res to draw.
//
// The reason for this is that we should be able to activate sooner and get a
// more up to date recording, so we don't run out of recording on the active
// tree.
// A layer must be a drawing layer for it to require tiles for activation.
bool can_require_tiles_for_activation = false;
if (contributes_to_drawn_render_surface()) {
can_require_tiles_for_activation =
!only_used_low_res_last_append_quads_ || RequiresHighResToDraw() ||
!layer_tree_impl()->SmoothnessTakesPriority();
}
static const Occlusion kEmptyOcclusion;
const Occlusion& occlusion_in_content_space =
layer_tree_impl()->settings().use_occlusion_for_tile_prioritization
? draw_properties().occlusion_in_content_space
: kEmptyOcclusion;
// Pass |occlusion_in_content_space| for |occlusion_in_layer_space| since
// they are the same space in picture layer, as contents scale is always 1.
bool updated = tilings_->UpdateTilePriorities(
viewport_rect_for_tile_priority_in_content_space_, ideal_contents_scale_,
current_frame_time_in_seconds, occlusion_in_content_space,
can_require_tiles_for_activation);
return updated;
}
void PictureLayerImpl::UpdateViewportRectForTilePriorityInContentSpace() {
// If visible_layer_rect() is empty or viewport_rect_for_tile_priority is
// set to be different from the device viewport, try to inverse project the
// viewport into layer space and use that. Otherwise just use
// visible_layer_rect().
gfx::Rect visible_rect_in_content_space = visible_layer_rect();
gfx::Rect viewport_rect_for_tile_priority =
layer_tree_impl()->ViewportRectForTilePriority();
if (visible_rect_in_content_space.IsEmpty() ||
layer_tree_impl()->DeviceViewport() != viewport_rect_for_tile_priority) {
gfx::Transform view_to_layer(gfx::Transform::kSkipInitialization);
if (ScreenSpaceTransform().GetInverse(&view_to_layer)) {
// Transform from view space to content space.
visible_rect_in_content_space = MathUtil::ProjectEnclosingClippedRect(
view_to_layer, viewport_rect_for_tile_priority);
// We have to allow for a viewport that is outside of the layer bounds in
// order to compute tile priorities correctly for offscreen content that
// is going to make it on screen. However, we also have to limit the
// viewport since it can be very large due to screen_space_transforms. As
// a heuristic, we clip to bounds padded by skewport_extrapolation_limit *
// maximum tiling scale, since this should allow sufficient room for
// skewport calculations.
gfx::Rect padded_bounds(bounds());
int padding_amount = layer_tree_impl()
->settings()
.skewport_extrapolation_limit_in_screen_pixels *
MaximumTilingContentsScale();
padded_bounds.Inset(-padding_amount, -padding_amount);
visible_rect_in_content_space =
SafeIntersectRects(visible_rect_in_content_space, padded_bounds);
}
}
viewport_rect_for_tile_priority_in_content_space_ =
visible_rect_in_content_space;
#if defined(OS_ANDROID)
// On android, if we're in a scrolling gesture, the pending tree does not
// reflect the fact that we may be hiding the top or bottom controls. Thus,
// it would believe that the viewport is smaller than it actually is which
// can cause activation flickering issues. So, if we're in this situation
// adjust the visible rect by the top/bottom controls height. This isn't
// ideal since we're not always in this case, but since we should be
// prioritizing the active tree anyway, it doesn't cause any serious issues.
// https://crbug.com/794456.
if (layer_tree_impl()->IsPendingTree() &&
layer_tree_impl()->IsActivelyScrolling()) {
float total_controls_height = layer_tree_impl()->top_controls_height() +
layer_tree_impl()->bottom_controls_height();
viewport_rect_for_tile_priority_in_content_space_.Inset(
0, // left
0, // top,
0, // right,
-total_controls_height); // bottom
}
#endif
}
PictureLayerImpl* PictureLayerImpl::GetPendingOrActiveTwinLayer() const {
if (!twin_layer_ || !twin_layer_->IsOnActiveOrPendingTree())
return nullptr;
return twin_layer_;
}
void PictureLayerImpl::UpdateRasterSource(
scoped_refptr<RasterSource> raster_source,
Region* new_invalidation,
const PictureLayerTilingSet* pending_set) {
// The bounds and the pile size may differ if the pile wasn't updated (ie.
// PictureLayer::Update didn't happen). In that case the pile will be empty.
DCHECK(raster_source->GetSize().IsEmpty() ||
bounds() == raster_source->GetSize())
<< " bounds " << bounds().ToString() << " pile "
<< raster_source->GetSize().ToString();
// We have an updated recording if the DisplayItemList in the new RasterSource
// is different.
const bool recording_updated =
!raster_source_ || raster_source_->GetDisplayItemList() !=
raster_source->GetDisplayItemList();
// Unregister for all images on the current raster source, if the recording
// was updated.
if (recording_updated)
UnregisterAnimatedImages();
// The |raster_source_| is initially null, so have to check for that for the
// first frame.
bool could_have_tilings = raster_source_.get() && CanHaveTilings();
raster_source_.swap(raster_source);
// Register images from the new raster source, if the recording was updated.
// TODO(khushalsagar): UMA the number of animated images in layer?
if (recording_updated)
RegisterAnimatedImages();
// The |new_invalidation| must be cleared before updating tilings since they
// access the invalidation through the PictureLayerTilingClient interface.
invalidation_.Clear();
invalidation_.Swap(new_invalidation);
bool can_have_tilings = CanHaveTilings();
DCHECK(!pending_set ||
can_have_tilings == GetPendingOrActiveTwinLayer()->CanHaveTilings());
// Need to call UpdateTiles again if CanHaveTilings changed.
if (could_have_tilings != can_have_tilings)
layer_tree_impl()->set_needs_update_draw_properties();
if (!can_have_tilings) {
RemoveAllTilings();
return;
}
// We could do this after doing UpdateTiles, which would avoid doing this for
// tilings that are going to disappear on the pending tree (if scale changed).
// But that would also be more complicated, so we just do it here for now.
//
// TODO(crbug.com/843787): If the LayerTreeFrameSink is lost, and we activate,
// this ends up running with the old LayerTreeFrameSink, or possibly with a
// null LayerTreeFrameSink, which can give incorrect results or maybe crash.
if (pending_set) {
tilings_->UpdateTilingsToCurrentRasterSourceForActivation(
raster_source_, pending_set, invalidation_, MinimumContentsScale(),
MaximumContentsScale());
} else {
tilings_->UpdateTilingsToCurrentRasterSourceForCommit(
raster_source_, invalidation_, MinimumContentsScale(),
MaximumContentsScale());
// We're in a commit, make sure to update the state of the checker image
// tracker with the new async attribute data.
layer_tree_impl()->UpdateImageDecodingHints(
raster_source_->TakeDecodingModeMap());
}
}
bool PictureLayerImpl::UpdateCanUseLCDTextAfterCommit() {
DCHECK(layer_tree_impl()->IsSyncTree());
// Once we disable lcd text, we don't re-enable it.
if (!can_use_lcd_text_)
return false;
if (can_use_lcd_text_ == CanUseLCDText())
return false;
can_use_lcd_text_ = CanUseLCDText();
// Synthetically invalidate everything.
gfx::Rect bounds_rect(bounds());
invalidation_ = Region(bounds_rect);
tilings_->Invalidate(invalidation_);
SetUpdateRect(bounds_rect);
return true;
}
void PictureLayerImpl::NotifyTileStateChanged(const Tile* tile) {
if (layer_tree_impl()->IsActiveTree())
AddDamageRect(tile->enclosing_layer_rect());
if (tile->draw_info().NeedsRaster()) {
PictureLayerTiling* tiling =
tilings_->FindTilingWithScaleKey(tile->contents_scale_key());
if (tiling)
tiling->set_all_tiles_done(false);
}
}
void PictureLayerImpl::DidBeginTracing() {
raster_source_->DidBeginTracing();
}
void PictureLayerImpl::ReleaseResources() {
tilings_->ReleaseAllResources();
ResetRasterScale();
}
void PictureLayerImpl::ReleaseTileResources() {
// All resources are tile resources.
ReleaseResources();
}
void PictureLayerImpl::RecreateTileResources() {
// Recreate tilings with new settings, since some of those might change when
// we release resources.
tilings_ = CreatePictureLayerTilingSet();
}
Region PictureLayerImpl::GetInvalidationRegionForDebugging() {
// |invalidation_| gives the invalidation contained in the source frame, but
// is not cleared after drawing from the layer. However, update_rect() is
// cleared once the invalidation is drawn, which is useful for debugging
// visualizations. This method intersects the two to give a more exact
// representation of what was invalidated that is cleared after drawing.
return IntersectRegions(invalidation_, update_rect());
}
std::unique_ptr<Tile> PictureLayerImpl::CreateTile(
const Tile::CreateInfo& info) {
int flags = 0;
// We don't handle solid color masks if mask tiling is disabled, we also don't
// handle solid color single texture masks if the flag is enabled, so we
// shouldn't bother analyzing those.
// Otherwise, always analyze to maximize memory savings.
if (mask_type_ != Layer::LayerMaskType::SINGLE_TEXTURE_MASK)
flags = Tile::USE_PICTURE_ANALYSIS;
if (contents_opaque())
flags |= Tile::IS_OPAQUE;
return layer_tree_impl()->tile_manager()->CreateTile(
info, id(), layer_tree_impl()->source_frame_number(), flags,
can_use_lcd_text_);
}
const Region* PictureLayerImpl::GetPendingInvalidation() {
if (layer_tree_impl()->IsPendingTree())
return &invalidation_;
if (layer_tree_impl()->IsRecycleTree())
return nullptr;
DCHECK(layer_tree_impl()->IsActiveTree());
if (PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer())
return &twin_layer->invalidation_;
return nullptr;
}
const PictureLayerTiling* PictureLayerImpl::GetPendingOrActiveTwinTiling(
const PictureLayerTiling* tiling) const {
PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer();
if (!twin_layer)
return nullptr;
const PictureLayerTiling* twin_tiling =
twin_layer->tilings_->FindTilingWithScaleKey(
tiling->contents_scale_key());
if (twin_tiling &&
twin_tiling->raster_transform() == tiling->raster_transform())
return twin_tiling;
return nullptr;
}
bool PictureLayerImpl::RequiresHighResToDraw() const {
return layer_tree_impl()->RequiresHighResToDraw();
}
gfx::Rect PictureLayerImpl::GetEnclosingRectInTargetSpace() const {
return GetScaledEnclosingRectInTargetSpace(MaximumTilingContentsScale());
}
bool PictureLayerImpl::ShouldAnimate(PaintImage::Id paint_image_id) const {
// If we are registered with the animation controller, which queries whether
// the image should be animated, then we must have recordings with this image.
DCHECK(raster_source_);
DCHECK(raster_source_->GetDisplayItemList());
DCHECK(
!raster_source_->GetDisplayItemList()->discardable_image_map().empty());
// Only animate images for layers which HasValidTilePriorities. This check is
// important for 2 reasons:
// 1) It avoids doing additional work for layers we don't plan to rasterize
// and/or draw. The updated state will be pulled by the animation system
// if the draw properties change.
// 2) It eliminates considering layers on the recycle tree. Once the pending
// tree is activated, the layers on the recycle tree remain registered as
// animation drivers, but should not drive animations since they don't have
// updated draw properties.
//
// Additionally only animate images which are on-screen, animations are
// paused once they are not visible.
if (!HasValidTilePriorities())
return false;
const auto& rects = raster_source_->GetDisplayItemList()
->discardable_image_map()
.GetRectsForImage(paint_image_id);
for (const auto& r : rects.container()) {
if (r.Intersects(visible_layer_rect()))
return true;
}
return false;
}
gfx::Size PictureLayerImpl::CalculateTileSize(
const gfx::Size& content_bounds) const {
int max_texture_size = layer_tree_impl()->max_texture_size();
if (mask_type_ == Layer::LayerMaskType::SINGLE_TEXTURE_MASK) {
// Masks are not tiled, so if we can't cover the whole mask with one tile,
// we shouldn't have such a tiling at all.
DCHECK_LE(content_bounds.width(), max_texture_size);
DCHECK_LE(content_bounds.height(), max_texture_size);
return content_bounds;
}
int default_tile_width = 0;
int default_tile_height = 0;
if (layer_tree_impl()->use_gpu_rasterization()) {
gfx::Size max_tile_size =
layer_tree_impl()->settings().max_gpu_raster_tile_size;
// Calculate |base_tile_size based| on |gpu_raster_max_texture_size_|,
// adjusting for ceil operations that may occur due to DSF.
gfx::Size base_tile_size = ApplyDsfAdjustment(
gpu_raster_max_texture_size_, layer_tree_impl()->device_scale_factor());
// Set our initial size assuming a |base_tile_size| equal to our
// |viewport_size|.
gfx::Size default_tile_size =
CalculateGpuTileSize(base_tile_size, content_bounds, max_tile_size);
// Use half-width GPU tiles when the content_width is greater than our
// calculated tile size.
if (content_bounds.width() > default_tile_size.width()) {
// Divide width by 2 and round up.
base_tile_size.set_width((base_tile_size.width() + 1) / 2);
default_tile_size =
CalculateGpuTileSize(base_tile_size, content_bounds, max_tile_size);
}
default_tile_width = default_tile_size.width();
default_tile_height = default_tile_size.height();
} else {
// For CPU rasterization we use tile-size settings.
const LayerTreeSettings& settings = layer_tree_impl()->settings();
int max_untiled_content_width = settings.max_untiled_layer_size.width();
int max_untiled_content_height = settings.max_untiled_layer_size.height();
default_tile_width = settings.default_tile_size.width();
default_tile_height = settings.default_tile_size.height();
// If the content width is small, increase tile size vertically.
// If the content height is small, increase tile size horizontally.
// If both are less than the untiled-size, use a single tile.
if (content_bounds.width() < default_tile_width)
default_tile_height = max_untiled_content_height;
if (content_bounds.height() < default_tile_height)
default_tile_width = max_untiled_content_width;
if (content_bounds.width() < max_untiled_content_width &&
content_bounds.height() < max_untiled_content_height) {
default_tile_height = max_untiled_content_height;
default_tile_width = max_untiled_content_width;
}
}
int tile_width = default_tile_width;
int tile_height = default_tile_height;
// Clamp the tile width/height to the content width/height to save space.
if (content_bounds.width() < default_tile_width) {
tile_width = std::min(tile_width, content_bounds.width());
tile_width = MathUtil::UncheckedRoundUp(tile_width, kTileRoundUp);
tile_width = std::min(tile_width, default_tile_width);
}
if (content_bounds.height() < default_tile_height) {
tile_height = std::min(tile_height, content_bounds.height());
tile_height = MathUtil::UncheckedRoundUp(tile_height, kTileRoundUp);
tile_height = std::min(tile_height, default_tile_height);
}
// Ensure that tile width and height are properly aligned.
tile_width = MathUtil::UncheckedRoundUp(tile_width, kTileMinimalAlignment);
tile_height = MathUtil::UncheckedRoundUp(tile_height, kTileMinimalAlignment);
// Under no circumstance should we be larger than the max texture size.
tile_width = std::min(tile_width, max_texture_size);
tile_height = std::min(tile_height, max_texture_size);
return gfx::Size(tile_width, tile_height);
}
void PictureLayerImpl::GetContentsResourceId(
viz::ResourceId* resource_id,
gfx::Size* resource_size,
gfx::SizeF* resource_uv_size) const {
// The bounds and the pile size may differ if the pile wasn't updated (ie.
// PictureLayer::Update didn't happen). In that case the pile will be empty.
DCHECK(raster_source_->GetSize().IsEmpty() ||
bounds() == raster_source_->GetSize())
<< " bounds " << bounds().ToString() << " pile "
<< raster_source_->GetSize().ToString();
float dest_scale = MaximumTilingContentsScale();
gfx::Rect content_rect =
gfx::ScaleToEnclosingRect(gfx::Rect(bounds()), dest_scale);
PictureLayerTilingSet::CoverageIterator iter(
tilings_.get(), dest_scale, content_rect, ideal_contents_scale_);
// Mask resource not ready yet.
if (!iter || !*iter) {
*resource_id = 0;
return;
}
// Masks only supported if they fit on exactly one tile.
DCHECK(iter.geometry_rect() == content_rect)
<< "iter rect " << iter.geometry_rect().ToString() << " content rect "
<< content_rect.ToString();
const TileDrawInfo& draw_info = iter->draw_info();
if (!draw_info.IsReadyToDraw() ||
draw_info.mode() != TileDrawInfo::RESOURCE_MODE) {
*resource_id = 0;
return;
}
*resource_id = draw_info.resource_id_for_export();
*resource_size = draw_info.resource_size();
// |resource_uv_size| represents the range of UV coordinates that map to the
// content being drawn. Typically, we draw to the entire texture, so these
// coordinates are (1.0f, 1.0f). However, if we are rasterizing to an
// over-large texture, this size will be smaller, mapping to the subset of the
// texture being used.
gfx::SizeF requested_tile_size =
gfx::SizeF(iter->tiling()->tiling_data()->tiling_size());
DCHECK_LE(requested_tile_size.width(), draw_info.resource_size().width());
DCHECK_LE(requested_tile_size.height(), draw_info.resource_size().height());
*resource_uv_size = gfx::SizeF(
requested_tile_size.width() / draw_info.resource_size().width(),
requested_tile_size.height() / draw_info.resource_size().height());
}
void PictureLayerImpl::SetNearestNeighbor(bool nearest_neighbor) {
if (nearest_neighbor_ == nearest_neighbor)
return;
nearest_neighbor_ = nearest_neighbor;
NoteLayerPropertyChanged();
}
void PictureLayerImpl::SetUseTransformedRasterization(bool use) {
if (use_transformed_rasterization_ == use)
return;
use_transformed_rasterization_ = use;
NoteLayerPropertyChanged();
}
PictureLayerTiling* PictureLayerImpl::AddTiling(
const gfx::AxisTransform2d& contents_transform) {
DCHECK(CanHaveTilings());
DCHECK_GE(contents_transform.scale(), MinimumContentsScale());
DCHECK_LE(contents_transform.scale(), MaximumContentsScale());
DCHECK(raster_source_->HasRecordings());
return tilings_->AddTiling(contents_transform, raster_source_);
}
void PictureLayerImpl::RemoveAllTilings() {
tilings_->RemoveAllTilings();
// If there are no tilings, then raster scales are no longer meaningful.
ResetRasterScale();
}
void PictureLayerImpl::AddTilingsForRasterScale() {
// Reset all resolution enums on tilings, we'll be setting new values in this
// function.
tilings_->MarkAllTilingsNonIdeal();
PictureLayerTiling* high_res =
tilings_->FindTilingWithScaleKey(raster_contents_scale_);
// Note: This function is always invoked when raster scale is recomputed,
// but not necessarily changed. This means raster translation update is also
// always done when there are significant changes that triggered raster scale
// recomputation.
gfx::Vector2dF raster_translation =
CalculateRasterTranslation(raster_contents_scale_);
if (high_res &&
high_res->raster_transform().translation() != raster_translation) {
tilings_->Remove(high_res);
high_res = nullptr;
}
if (!high_res) {
// We always need a high res tiling, so create one if it doesn't exist.
high_res = AddTiling(
gfx::AxisTransform2d(raster_contents_scale_, raster_translation));
} else if (high_res->may_contain_low_resolution_tiles()) {
// If the tiling we find here was LOW_RESOLUTION previously, it may not be
// fully rastered, so destroy the old tiles.
high_res->Reset();
// Reset the flag now that we'll make it high res, it will have fully
// rastered content.
high_res->reset_may_contain_low_resolution_tiles();
}
high_res->set_resolution(HIGH_RESOLUTION);
if (layer_tree_impl()->IsPendingTree()) {
// On the pending tree, drop any tilings that are non-ideal since we don't
// need them to activate anyway.
tilings_->RemoveNonIdealTilings();
}
SanityCheckTilingState();
}
bool PictureLayerImpl::ShouldAdjustRasterScale() const {
if (is_directly_composited_image_) {
float max_scale = std::max(1.f, MinimumContentsScale());
if (raster_source_scale_ < std::min(ideal_source_scale_, max_scale))
return true;
if (raster_source_scale_ > 4 * ideal_source_scale_)
return true;
return false;
}
if (was_screen_space_transform_animating_ !=
draw_properties().screen_space_transform_is_animating)
return true;
bool is_pinching = layer_tree_impl()->PinchGestureActive();
if (is_pinching && raster_page_scale_) {
// We change our raster scale when it is:
// - Higher than ideal (need a lower-res tiling available)
// - Too far from ideal (need a higher-res tiling available)
float ratio = ideal_page_scale_ / raster_page_scale_;
if (raster_page_scale_ > ideal_page_scale_ ||
ratio > kMaxScaleRatioDuringPinch)
return true;
}
if (!is_pinching) {
// When not pinching, match the ideal page scale factor.
if (raster_page_scale_ != ideal_page_scale_)
return true;
}
// Always match the ideal device scale factor.
if (raster_device_scale_ != ideal_device_scale_)
return true;
if (raster_contents_scale_ > MaximumContentsScale())
return true;
if (raster_contents_scale_ < MinimumContentsScale())
return true;
// Don't change the raster scale if any of the following are true:
// - We have an animating transform.
// - The raster scale is already ideal.
if (draw_properties().screen_space_transform_is_animating ||
raster_source_scale_ == ideal_source_scale_) {
return false;
}
// Don't update will-change: transform layers if the raster contents scale is
// at least the native scale (otherwise, we'd need to clamp it).
if (has_will_change_transform_hint() &&
raster_contents_scale_ >= raster_page_scale_ * raster_device_scale_) {
return false;
}
// Match the raster scale in all other cases.
return true;
}
void PictureLayerImpl::AddLowResolutionTilingIfNeeded() {
DCHECK(layer_tree_impl()->IsActiveTree());
if (!layer_tree_impl()->create_low_res_tiling())
return;
// We should have a high resolution tiling at raster_contents_scale, so if the
// low res one is the same then we shouldn't try to override this tiling by
// marking it as a low res.
if (raster_contents_scale_ == low_res_raster_contents_scale_)
return;
PictureLayerTiling* low_res =
tilings_->FindTilingWithScaleKey(low_res_raster_contents_scale_);
DCHECK(!low_res || low_res->resolution() != HIGH_RESOLUTION);
// Only create new low res tilings when the transform is static. This
// prevents wastefully creating a paired low res tiling for every new high
// res tiling during a pinch or a CSS animation.
bool is_pinching = layer_tree_impl()->PinchGestureActive();
bool is_animating = draw_properties().screen_space_transform_is_animating;
if (!is_pinching && !is_animating) {
if (!low_res)
low_res = AddTiling(gfx::AxisTransform2d(low_res_raster_contents_scale_,
gfx::Vector2dF()));
low_res->set_resolution(LOW_RESOLUTION);
}
}
void PictureLayerImpl::RecalculateRasterScales() {
if (is_directly_composited_image_) {
if (!raster_source_scale_)
raster_source_scale_ = 1.f;
float min_scale = MinimumContentsScale();
float max_scale = std::max(1.f, MinimumContentsScale());
float clamped_ideal_source_scale_ =
std::max(min_scale, std::min(ideal_source_scale_, max_scale));
while (raster_source_scale_ < clamped_ideal_source_scale_)
raster_source_scale_ *= 2.f;
while (raster_source_scale_ > 4 * clamped_ideal_source_scale_)
raster_source_scale_ /= 2.f;
raster_source_scale_ =
std::max(min_scale, std::min(raster_source_scale_, max_scale));
raster_page_scale_ = 1.f;
raster_device_scale_ = 1.f;
raster_contents_scale_ = raster_source_scale_;
low_res_raster_contents_scale_ = raster_contents_scale_;
return;
}
float old_raster_contents_scale = raster_contents_scale_;
float old_raster_page_scale = raster_page_scale_;
raster_device_scale_ = ideal_device_scale_;
raster_page_scale_ = ideal_page_scale_;
raster_source_scale_ = ideal_source_scale_;
raster_contents_scale_ = ideal_contents_scale_;
// During pinch we completely ignore the current ideal scale, and just use
// a multiple of the previous scale.
bool is_pinching = layer_tree_impl()->PinchGestureActive();
if (is_pinching && old_raster_contents_scale) {
// See ShouldAdjustRasterScale:
// - When zooming out, preemptively create new tiling at lower resolution.
// - When zooming in, approximate ideal using multiple of kMaxScaleRatio.
bool zooming_out = old_raster_page_scale > ideal_page_scale_;
float desired_contents_scale = old_raster_contents_scale;
if (zooming_out) {
while (desired_contents_scale > ideal_contents_scale_)
desired_contents_scale /= kMaxScaleRatioDuringPinch;
} else {
while (desired_contents_scale < ideal_contents_scale_)
desired_contents_scale *= kMaxScaleRatioDuringPinch;
}
raster_contents_scale_ = tilings_->GetSnappedContentsScaleKey(
desired_contents_scale, kSnapToExistingTilingRatio);
raster_page_scale_ =
raster_contents_scale_ / raster_device_scale_ / raster_source_scale_;
}
// We rasterize at the maximum scale that will occur during the animation, if
// the maximum scale is known. However we want to avoid excessive memory use.
// If the scale is smaller than what we would choose otherwise, then it's
// always better off for us memory-wise. But otherwise, we don't choose a
// scale at which this layer's rastered content would become larger than the
// viewport.
if (draw_properties().screen_space_transform_is_animating) {
bool can_raster_at_maximum_scale = false;
bool should_raster_at_starting_scale = false;
CombinedAnimationScale animation_scales =
layer_tree_impl()->property_trees()->GetAnimationScales(
transform_tree_index(), layer_tree_impl());
float maximum_scale = animation_scales.maximum_animation_scale;
float starting_scale = animation_scales.starting_animation_scale;
if (maximum_scale) {
gfx::Size bounds_at_maximum_scale =
gfx::ScaleToCeiledSize(raster_source_->GetSize(), maximum_scale);
int64_t maximum_area =
static_cast<int64_t>(bounds_at_maximum_scale.width()) *
static_cast<int64_t>(bounds_at_maximum_scale.height());
gfx::Size viewport = layer_tree_impl()->device_viewport_size();
// Use the square of the maximum viewport dimension direction, to
// compensate for viewports with different aspect ratios.
int64_t max_viewport_dimension =
std::max(static_cast<int64_t>(viewport.width()),
static_cast<int64_t>(viewport.height()));
int64_t squared_viewport_area =
max_viewport_dimension * max_viewport_dimension;
if (maximum_area <= squared_viewport_area)
can_raster_at_maximum_scale = true;
}
if (starting_scale && starting_scale > maximum_scale) {
gfx::Size bounds_at_starting_scale =
gfx::ScaleToCeiledSize(raster_source_->GetSize(), starting_scale);
int64_t start_area =
static_cast<int64_t>(bounds_at_starting_scale.width()) *
static_cast<int64_t>(bounds_at_starting_scale.height());
gfx::Size viewport = layer_tree_impl()->device_viewport_size();
int64_t viewport_area = static_cast<int64_t>(viewport.width()) *
static_cast<int64_t>(viewport.height());
if (start_area <= viewport_area)
should_raster_at_starting_scale = true;
}
// Use the computed scales for the raster scale directly, do not try to use
// the ideal scale here. The current ideal scale may be way too large in the
// case of an animation with scale, and will be constantly changing.
if (should_raster_at_starting_scale)
raster_contents_scale_ = starting_scale;
else if (can_raster_at_maximum_scale)
raster_contents_scale_ = maximum_scale;
else
raster_contents_scale_ = 1.f * ideal_page_scale_ * ideal_device_scale_;
}
// Clamp will-change: transform layers to be at least the native scale.
if (has_will_change_transform_hint()) {
float min_desired_scale = raster_device_scale_ * raster_page_scale_;
if (raster_contents_scale_ < min_desired_scale) {
raster_contents_scale_ = min_desired_scale;
raster_page_scale_ = 1.f;
}
}
raster_contents_scale_ =
std::max(raster_contents_scale_, MinimumContentsScale());
raster_contents_scale_ =
std::min(raster_contents_scale_, MaximumContentsScale());
DCHECK_GE(raster_contents_scale_, MinimumContentsScale());
DCHECK_LE(raster_contents_scale_, MaximumContentsScale());
// If this layer would create zero or one tiles at this content scale,
// don't create a low res tiling.
gfx::Size raster_bounds =
gfx::ScaleToCeiledSize(raster_source_->GetSize(), raster_contents_scale_);
gfx::Size tile_size = CalculateTileSize(raster_bounds);
bool tile_covers_bounds = tile_size.width() >= raster_bounds.width() &&
tile_size.height() >= raster_bounds.height();
if (tile_size.IsEmpty() || tile_covers_bounds) {
low_res_raster_contents_scale_ = raster_contents_scale_;
return;
}
float low_res_factor =
layer_tree_impl()->settings().low_res_contents_scale_factor;
low_res_raster_contents_scale_ =
std::max(raster_contents_scale_ * low_res_factor, MinimumContentsScale());
DCHECK_LE(low_res_raster_contents_scale_, raster_contents_scale_);
DCHECK_GE(low_res_raster_contents_scale_, MinimumContentsScale());
DCHECK_LE(low_res_raster_contents_scale_, MaximumContentsScale());
}
void PictureLayerImpl::CleanUpTilingsOnActiveLayer(
const std::vector<PictureLayerTiling*>& used_tilings) {
DCHECK(layer_tree_impl()->IsActiveTree());
if (tilings_->num_tilings() == 0)
return;
float min_acceptable_high_res_scale = std::min(
raster_contents_scale_, ideal_contents_scale_);
float max_acceptable_high_res_scale = std::max(
raster_contents_scale_, ideal_contents_scale_);
PictureLayerImpl* twin = GetPendingOrActiveTwinLayer();
if (twin && twin->CanHaveTilings()) {
min_acceptable_high_res_scale = std::min(
min_acceptable_high_res_scale,
std::min(twin->raster_contents_scale_, twin->ideal_contents_scale_));
max_acceptable_high_res_scale = std::max(
max_acceptable_high_res_scale,
std::max(twin->raster_contents_scale_, twin->ideal_contents_scale_));
}
PictureLayerTilingSet* twin_set = twin ? twin->tilings_.get() : nullptr;
tilings_->CleanUpTilings(min_acceptable_high_res_scale,
max_acceptable_high_res_scale, used_tilings,
twin_set);
DCHECK_GT(tilings_->num_tilings(), 0u);
SanityCheckTilingState();
}
gfx::Vector2dF PictureLayerImpl::CalculateRasterTranslation(
float raster_scale) {
if (!use_transformed_rasterization_)
return gfx::Vector2dF();
DCHECK(!draw_properties().screen_space_transform_is_animating);
gfx::Transform draw_transform = DrawTransform();
DCHECK(draw_transform.IsScaleOrTranslation());
// It is only useful to align the content space to the target space if their
// relative pixel ratio is some small rational number. Currently we only
// align if the relative pixel ratio is 1:1.
// Good match if the maximum alignment error on a layer of size 10000px
// does not exceed 0.001px.
static constexpr float kErrorThreshold = 0.0000001f;
if (std::abs(draw_transform.matrix().getFloat(0, 0) - raster_scale) >
kErrorThreshold ||
std::abs(draw_transform.matrix().getFloat(1, 1) - raster_scale) >
kErrorThreshold)
return gfx::Vector2dF();
// Extract the fractional part of layer origin in the target space.
float origin_x = draw_transform.matrix().getFloat(0, 3);
float origin_y = draw_transform.matrix().getFloat(1, 3);
return gfx::Vector2dF(origin_x - floorf(origin_x),
origin_y - floorf(origin_y));
}
float PictureLayerImpl::MinimumContentsScale() const {
float setting_min = layer_tree_impl()->settings().minimum_contents_scale;
// If the contents scale is less than 1 / width (also for height),
// then it will end up having less than one pixel of content in that
// dimension. Bump the minimum contents scale up in this case to prevent
// this from happening.
int min_dimension = std::min(raster_source_->GetSize().width(),
raster_source_->GetSize().height());
if (!min_dimension)
return setting_min;
return std::max(1.f / min_dimension, setting_min);
}
float PictureLayerImpl::MaximumContentsScale() const {
// When mask tiling is disabled or the mask is single textured, masks can not
// have tilings that would become larger than the max_texture_size since they
// use a single tile for the entire tiling. Other layers can have tilings such
// that dimension * scale does not overflow.
float max_dimension =
static_cast<float>(mask_type_ == Layer::LayerMaskType::SINGLE_TEXTURE_MASK
? layer_tree_impl()->max_texture_size()
: std::numeric_limits<int>::max());
float max_scale_width = max_dimension / bounds().width();
float max_scale_height = max_dimension / bounds().height();
float max_scale = std::min(max_scale_width, max_scale_height);
// We require that multiplying the layer size by the contents scale and
// ceiling produces a value <= |max_dimension|. Because for large layer
// sizes floating point ambiguity may crop up, making the result larger or
// smaller than expected, we use a slightly smaller floating point value for
// the scale, to help ensure that the resulting content bounds will never end
// up larger than |max_dimension|.
return nextafterf(max_scale, 0.f);
}
void PictureLayerImpl::ResetRasterScale() {
raster_page_scale_ = 0.f;
raster_device_scale_ = 0.f;
raster_source_scale_ = 0.f;
raster_contents_scale_ = 0.f;
low_res_raster_contents_scale_ = 0.f;
}
bool PictureLayerImpl::CanHaveTilings() const {
if (raster_source_->IsSolidColor())
return false;
if (!DrawsContent())
return false;
if (!raster_source_->HasRecordings())
return false;
// If the |raster_source_| has a recording it should have non-empty bounds.
DCHECK(!raster_source_->GetSize().IsEmpty());
if (MaximumContentsScale() < MinimumContentsScale())
return false;
return true;
}
void PictureLayerImpl::SanityCheckTilingState() const {
#if DCHECK_IS_ON()
if (!CanHaveTilings()) {
DCHECK_EQ(0u, tilings_->num_tilings());
return;
}
if (tilings_->num_tilings() == 0)
return;
// We should only have one high res tiling.
DCHECK_EQ(1, tilings_->NumHighResTilings());
#endif
}
float PictureLayerImpl::MaximumTilingContentsScale() const {
float max_contents_scale = tilings_->GetMaximumContentsScale();
return std::max(max_contents_scale, MinimumContentsScale());
}
std::unique_ptr<PictureLayerTilingSet>
PictureLayerImpl::CreatePictureLayerTilingSet() {
const LayerTreeSettings& settings = layer_tree_impl()->settings();
return PictureLayerTilingSet::Create(
IsActive() ? ACTIVE_TREE : PENDING_TREE, this,
settings.tiling_interest_area_padding,
layer_tree_impl()->use_gpu_rasterization()
? settings.gpu_rasterization_skewport_target_time_in_seconds
: settings.skewport_target_time_in_seconds,
settings.skewport_extrapolation_limit_in_screen_pixels,
settings.max_preraster_distance_in_screen_pixels);
}
void PictureLayerImpl::UpdateIdealScales() {
DCHECK(CanHaveTilings());
float min_contents_scale = MinimumContentsScale();
DCHECK_GT(min_contents_scale, 0.f);
ideal_page_scale_ = IsAffectedByPageScale()
? layer_tree_impl()->current_page_scale_factor()
: 1.f;
ideal_device_scale_ = layer_tree_impl()->device_scale_factor();
ideal_contents_scale_ =
std::min(kMaxIdealContentsScale,
std::max(GetIdealContentsScale(), min_contents_scale));
ideal_source_scale_ =
ideal_contents_scale_ / ideal_page_scale_ / ideal_device_scale_;
}
void PictureLayerImpl::GetDebugBorderProperties(
SkColor* color,
float* width) const {
float device_scale_factor =
layer_tree_impl() ? layer_tree_impl()->device_scale_factor() : 1;
if (is_directly_composited_image_) {
*color = DebugColors::ImageLayerBorderColor();
*width = DebugColors::ImageLayerBorderWidth(device_scale_factor);
} else {
*color = DebugColors::TiledContentLayerBorderColor();
*width = DebugColors::TiledContentLayerBorderWidth(device_scale_factor);
}
}
void PictureLayerImpl::GetAllPrioritizedTilesForTracing(
std::vector<PrioritizedTile>* prioritized_tiles) const {
if (!tilings_)
return;
tilings_->GetAllPrioritizedTilesForTracing(prioritized_tiles);
}
void PictureLayerImpl::AsValueInto(
base::trace_event::TracedValue* state) const {
LayerImpl::AsValueInto(state);
state->SetDouble("ideal_contents_scale", ideal_contents_scale_);
state->SetDouble("geometry_contents_scale", MaximumTilingContentsScale());
state->BeginArray("tilings");
tilings_->AsValueInto(state);
state->EndArray();
MathUtil::AddToTracedValue("tile_priority_rect",
viewport_rect_for_tile_priority_in_content_space_,
state);
MathUtil::AddToTracedValue("visible_rect", visible_layer_rect(), state);
state->BeginArray("pictures");
raster_source_->AsValueInto(state);
state->EndArray();
state->BeginArray("invalidation");
invalidation_.AsValueInto(state);
state->EndArray();
state->BeginArray("coverage_tiles");
for (PictureLayerTilingSet::CoverageIterator iter(
tilings_.get(), MaximumTilingContentsScale(),
gfx::Rect(raster_source_->GetSize()), ideal_contents_scale_);
iter; ++iter) {
state->BeginDictionary();
MathUtil::AddToTracedValue("geometry_rect", iter.geometry_rect(), state);
if (*iter)
viz::TracedValue::SetIDRef(*iter, state, "tile");
state->EndDictionary();
}
state->EndArray();
state->BeginDictionary("can_have_tilings_state");
state->SetBoolean("can_have_tilings", CanHaveTilings());
state->SetBoolean("raster_source_solid_color",
raster_source_->IsSolidColor());
state->SetBoolean("draws_content", DrawsContent());
state->SetBoolean("raster_source_has_recordings",
raster_source_->HasRecordings());
state->SetDouble("max_contents_scale", MaximumTilingContentsScale());
state->SetDouble("min_contents_scale", MinimumContentsScale());
state->EndDictionary();
state->BeginDictionary("raster_scales");
state->SetDouble("page_scale", raster_page_scale_);
state->SetDouble("device_scale", raster_device_scale_);
state->SetDouble("source_scale", raster_source_scale_);
state->SetDouble("contents_scale", raster_contents_scale_);
state->SetDouble("low_res_contents_scale", low_res_raster_contents_scale_);
state->EndDictionary();
state->BeginDictionary("ideal_scales");
state->SetDouble("page_scale", ideal_page_scale_);
state->SetDouble("device_scale", ideal_device_scale_);
state->SetDouble("source_scale", ideal_source_scale_);
state->SetDouble("contents_scale", ideal_contents_scale_);
state->EndDictionary();
}
size_t PictureLayerImpl::GPUMemoryUsageInBytes() const {
return tilings_->GPUMemoryUsageInBytes();
}
void PictureLayerImpl::RunMicroBenchmark(MicroBenchmarkImpl* benchmark) {
benchmark->RunOnLayer(this);
}
bool PictureLayerImpl::IsOnActiveOrPendingTree() const {
return !layer_tree_impl()->IsRecycleTree();
}
bool PictureLayerImpl::HasValidTilePriorities() const {
return IsOnActiveOrPendingTree() &&
(contributes_to_drawn_render_surface() || raster_even_if_not_drawn());
}
PictureLayerImpl::ImageInvalidationResult
PictureLayerImpl::InvalidateRegionForImages(
const PaintImageIdFlatSet& images_to_invalidate) {
if (!raster_source_ || !raster_source_->GetDisplayItemList() ||
raster_source_->GetDisplayItemList()->discardable_image_map().empty()) {
return ImageInvalidationResult::kNoImages;
}
InvalidationRegion image_invalidation;
for (auto image_id : images_to_invalidate) {
const auto& rects = raster_source_->GetDisplayItemList()
->discardable_image_map()
.GetRectsForImage(image_id);
for (const auto& r : rects.container())
image_invalidation.Union(r);
}
Region invalidation;
image_invalidation.Swap(&invalidation);
if (invalidation.IsEmpty())
return ImageInvalidationResult::kNoInvalidation;
// Make sure to union the rect from this invalidation with the update_rect
// instead of over-writing it. We don't want to reset the update that came
// from the main thread.
// Note: We can use a rect here since this is only used to track damage for a
// frame and not raster invalidation.
gfx::Rect new_update_rect = invalidation.bounds();
new_update_rect.Union(update_rect());
SetUpdateRect(new_update_rect);
invalidation_.Union(invalidation);
tilings_->Invalidate(invalidation);
SetNeedsPushProperties();
return ImageInvalidationResult::kInvalidated;
}
void PictureLayerImpl::RegisterAnimatedImages() {
if (!raster_source_ || !raster_source_->GetDisplayItemList())
return;
auto* controller = layer_tree_impl()->image_animation_controller();
const auto& metadata = raster_source_->GetDisplayItemList()
->discardable_image_map()
.animated_images_metadata();
for (const auto& data : metadata) {
// Only update the metadata from updated recordings received from a commit.
if (layer_tree_impl()->IsSyncTree())
controller->UpdateAnimatedImage(data);
controller->RegisterAnimationDriver(data.paint_image_id, this);
}
}
void PictureLayerImpl::UnregisterAnimatedImages() {
if (!raster_source_ || !raster_source_->GetDisplayItemList())
return;
auto* controller = layer_tree_impl()->image_animation_controller();
const auto& metadata = raster_source_->GetDisplayItemList()
->discardable_image_map()
.animated_images_metadata();
for (const auto& data : metadata)
controller->UnregisterAnimationDriver(data.paint_image_id, this);
}
} // namespace cc