blob: 5c74dcdb77b046b78e65721142dc35cbd266411b [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/src/crosscall_client.h"
#include "sandbox/src/crosscall_server.h"
#include "sandbox/src/sharedmem_ipc_client.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace sandbox {
// Helper function to make the fake shared memory with some
// basic elements initialized.
IPCControl* MakeChannels(size_t channel_size, size_t total_shared_size,
size_t* base_start) {
// Allocate memory
char* mem = new char[total_shared_size];
memset(mem, 0, total_shared_size);
// Calculate how many channels we can fit in the shared memory.
total_shared_size -= offsetof(IPCControl, channels);
size_t channel_count =
total_shared_size / (sizeof(ChannelControl) + channel_size);
// Calculate the start of the first channel.
*base_start = (sizeof(ChannelControl)* channel_count) +
offsetof(IPCControl, channels);
// Setup client structure.
IPCControl* client_control = reinterpret_cast<IPCControl*>(mem);
client_control->channels_count = channel_count;
return client_control;
}
TEST(IPCTest, ChannelMaker) {
size_t channel_start = 0;
IPCControl* client_control = MakeChannels(12*64, 4096, &channel_start);
// Test that our testing rig is computing offsets properly. We should have
// 5 channnels and the offset to the first channel is 108 bytes.
ASSERT_TRUE(NULL != client_control);
EXPECT_EQ(5, client_control->channels_count);
EXPECT_EQ(108, channel_start);
delete [] reinterpret_cast<char*>(client_control);
}
TEST(IPCTest, ClientLockUnlock) {
// Make 7 channels of kIPCChannelSize (1kb) each. Test that we lock and
// unlock channels properly.
const size_t channel_size = kIPCChannelSize;
size_t base_start = 0;
IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);
for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
ChannelControl& channel = client_control->channels[ix];
channel.channel_base = base_start;
channel.state = kFreeChannel;
base_start += channel_size;
}
char* mem = reinterpret_cast<char*>(client_control);
SharedMemIPCClient client(mem);
// Test that we lock the first 3 channels in sequence.
void* buff0 = client.GetBuffer();
EXPECT_TRUE(mem + client_control->channels[0].channel_base == buff0);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
EXPECT_EQ(kFreeChannel, client_control->channels[5].state);
void* buff1 = client.GetBuffer();
EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff1);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
EXPECT_EQ(kFreeChannel, client_control->channels[5].state);
void* buff2 = client.GetBuffer();
EXPECT_TRUE(mem + client_control->channels[2].channel_base == buff2);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
EXPECT_EQ(kFreeChannel, client_control->channels[5].state);
// Test that we unlock and re-lock the right channel.
client.FreeBuffer(buff1);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
EXPECT_EQ(kFreeChannel, client_control->channels[5].state);
void* buff2b = client.GetBuffer();
EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff2b);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
EXPECT_EQ(kFreeChannel, client_control->channels[5].state);
client.FreeBuffer(buff0);
EXPECT_EQ(kFreeChannel, client_control->channels[0].state);
EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
EXPECT_EQ(kFreeChannel, client_control->channels[5].state);
delete [] reinterpret_cast<char*>(client_control);
}
TEST(IPCTest, CrossCallStrPacking) {
// This test tries the CrossCall object with null and non-null string
// combination of parameters and verifies that the unpacker can read them
// properly.
const size_t channel_size = kIPCChannelSize;
size_t base_start = 0;
IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);
client_control->server_alive = HANDLE(1);
for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
ChannelControl& channel = client_control->channels[ix];
channel.channel_base = base_start;
channel.state = kFreeChannel;
channel.ping_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
channel.pong_event = ::CreateEventW(NULL, FALSE, TRUE, NULL);
base_start += channel_size;
}
char* mem = reinterpret_cast<char*>(client_control);
SharedMemIPCClient client(mem);
CrossCallReturn answer;
uint32 tag1 = 666;
const wchar_t text[] = L"98765 - 43210";
std::wstring copied_text;
CrossCallParamsEx* actual_params;
CrossCall(client, tag1, text, &answer);
actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
EXPECT_EQ(1, actual_params->GetParamsCount());
EXPECT_EQ(tag1, actual_params->GetTag());
EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));
EXPECT_STREQ(text, copied_text.c_str());
// Check with an empty string.
uint32 tag2 = 777;
const wchar_t* null_text = NULL;
CrossCall(client, tag2, null_text, &answer);
actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
EXPECT_EQ(1, actual_params->GetParamsCount());
EXPECT_EQ(tag2, actual_params->GetTag());
size_t param_size = 1;
ArgType type = INVALID_TYPE;
void* param_addr = actual_params->GetRawParameter(0, &param_size, &type);
EXPECT_TRUE(NULL != param_addr);
EXPECT_EQ(0, param_size);
EXPECT_EQ(WCHAR_TYPE, type);
EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));
uint32 tag3 = 888;
param_size = 1;
copied_text.clear();
// Check with an empty string and a non-empty string.
CrossCall(client, tag3, null_text, text, &answer);
actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
EXPECT_EQ(2, actual_params->GetParamsCount());
EXPECT_EQ(tag3, actual_params->GetTag());
type = INVALID_TYPE;
param_addr = actual_params->GetRawParameter(0, &param_size, &type);
EXPECT_TRUE(NULL != param_addr);
EXPECT_EQ(0, param_size);
EXPECT_EQ(WCHAR_TYPE, type);
EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));
EXPECT_TRUE(actual_params->GetParameterStr(1, &copied_text));
EXPECT_STREQ(text, copied_text.c_str());
param_size = 1;
std::wstring copied_text_p0, copied_text_p2;
const wchar_t text2[] = L"AeFG";
CrossCall(client, tag1, text2, null_text, text, &answer);
actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
EXPECT_EQ(3, actual_params->GetParamsCount());
EXPECT_EQ(tag1, actual_params->GetTag());
EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text_p0));
EXPECT_STREQ(text2, copied_text_p0.c_str());
EXPECT_TRUE(actual_params->GetParameterStr(2, &copied_text_p2));
EXPECT_STREQ(text, copied_text_p2.c_str());
type = INVALID_TYPE;
param_addr = actual_params->GetRawParameter(1, &param_size, &type);
EXPECT_TRUE(NULL != param_addr);
EXPECT_EQ(0, param_size);
EXPECT_EQ(WCHAR_TYPE, type);
for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
ChannelControl& channel = client_control->channels[ix];
::CloseHandle(channel.ping_event);
::CloseHandle(channel.pong_event);
}
delete [] reinterpret_cast<char*>(client_control);
}
// This structure is passed to the mock server threads to simulate
// the server side IPC so it has the required kernel objects.
struct ServerEvents {
HANDLE ping;
HANDLE pong;
volatile LONG* state;
HANDLE mutex;
};
// This is the server thread that quicky answers an IPC and exits.
DWORD WINAPI QuickResponseServer(PVOID param) {
ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
DWORD wait_result = 0;
wait_result = ::WaitForSingleObject(events->ping, INFINITE);
::InterlockedExchange(events->state, kAckChannel);
::SetEvent(events->pong);
return wait_result;
}
class CrossCallParamsMock : public CrossCallParams {
public:
CrossCallParamsMock(uint32 tag, size_t params_count)
: CrossCallParams(tag, params_count) {
}
private:
void* params[4];
};
void FakeOkAnswerInChannel(void* channel) {
CrossCallReturn* answer = reinterpret_cast<CrossCallReturn*>(channel);
answer->call_outcome = SBOX_ALL_OK;
}
// Create two threads that will quickly answer IPCs; the first one
// using channel 1 (channel 0 is busy) and one using channel 0. No time-out
// should occur.
TEST(IPCTest, ClientFastServer) {
const size_t channel_size = kIPCChannelSize;
size_t base_start = 0;
IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);
for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
ChannelControl& channel = client_control->channels[ix];
channel.channel_base = base_start;
channel.state = kFreeChannel;
channel.ping_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
channel.pong_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
base_start += channel_size;
}
client_control->server_alive = ::CreateMutex(NULL, FALSE, NULL);
char* mem = reinterpret_cast<char*>(client_control);
SharedMemIPCClient client(mem);
ServerEvents events = {0};
events.ping = client_control->channels[1].ping_event;
events.pong = client_control->channels[1].pong_event;
events.state = &client_control->channels[1].state;
HANDLE t1 = ::CreateThread(NULL, 0, QuickResponseServer, &events, 0, NULL);
ASSERT_TRUE(NULL != t1);
::CloseHandle(t1);
void* buff0 = client.GetBuffer();
EXPECT_TRUE(mem + client_control->channels[0].channel_base == buff0);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
void* buff1 = client.GetBuffer();
EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff1);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
EXPECT_EQ(0, client_control->channels[1].ipc_tag);
uint32 tag = 7654;
CrossCallReturn answer;
CrossCallParamsMock* params1 = new(buff1) CrossCallParamsMock(tag, 1);
FakeOkAnswerInChannel(buff1);
ResultCode result = client.DoCall(params1, &answer);
if (SBOX_ERROR_CHANNEL_ERROR != result)
client.FreeBuffer(buff1);
EXPECT_TRUE(SBOX_ALL_OK == result);
EXPECT_EQ(tag, client_control->channels[1].ipc_tag);
EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
HANDLE t2 = ::CreateThread(NULL, 0, QuickResponseServer, &events, 0, NULL);
ASSERT_TRUE(NULL != t2);
::CloseHandle(t2);
client.FreeBuffer(buff0);
events.ping = client_control->channels[0].ping_event;
events.pong = client_control->channels[0].pong_event;
events.state = &client_control->channels[0].state;
tag = 4567;
CrossCallParamsMock* params2 = new(buff0) CrossCallParamsMock(tag, 1);
FakeOkAnswerInChannel(buff0);
result = client.DoCall(params2, &answer);
if (SBOX_ERROR_CHANNEL_ERROR != result)
client.FreeBuffer(buff0);
EXPECT_TRUE(SBOX_ALL_OK == result);
EXPECT_EQ(tag, client_control->channels[0].ipc_tag);
EXPECT_EQ(kFreeChannel, client_control->channels[0].state);
EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
ChannelControl& channel = client_control->channels[ix];
::CloseHandle(channel.ping_event);
::CloseHandle(channel.pong_event);
}
::CloseHandle(client_control->server_alive);
delete [] reinterpret_cast<char*>(client_control);
}
// This is the server thread that very slowly answers an IPC and exits. Note
// that the pong event needs to be signaled twice.
DWORD WINAPI SlowResponseServer(PVOID param) {
ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
DWORD wait_result = 0;
wait_result = ::WaitForSingleObject(events->ping, INFINITE);
::Sleep(kIPCWaitTimeOut1 + kIPCWaitTimeOut2 + 200);
::InterlockedExchange(events->state, kAckChannel);
::SetEvent(events->pong);
return wait_result;
}
// This thread's job is to keep the mutex locked.
DWORD WINAPI MainServerThread(PVOID param) {
ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
DWORD wait_result = 0;
wait_result = ::WaitForSingleObject(events->mutex, INFINITE);
Sleep(kIPCWaitTimeOut1 * 20);
return wait_result;
}
// Creates a server thread that answers the IPC so slow that is guaranteed to
// trigger the time-out code path in the client. A second thread is created
// to hold locked the server_alive mutex: this signals the client that the
// server is not dead and it retries the wait.
TEST(IPCTest, ClientSlowServer) {
const size_t channel_size = kIPCChannelSize;
size_t base_start = 0;
IPCControl* client_control = MakeChannels(channel_size, 4096*2, &base_start);
for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
ChannelControl& channel = client_control->channels[ix];
channel.channel_base = base_start;
channel.state = kFreeChannel;
channel.ping_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
channel.pong_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
base_start += channel_size;
}
client_control->server_alive = ::CreateMutex(NULL, FALSE, NULL);
char* mem = reinterpret_cast<char*>(client_control);
SharedMemIPCClient client(mem);
ServerEvents events = {0};
events.ping = client_control->channels[0].ping_event;
events.pong = client_control->channels[0].pong_event;
events.state = &client_control->channels[0].state;
HANDLE t1 = ::CreateThread(NULL, 0, SlowResponseServer, &events, 0, NULL);
ASSERT_TRUE(NULL != t1);
::CloseHandle(t1);
ServerEvents events2 = {0};
events2.pong = events.pong;
events2.mutex = client_control->server_alive;
HANDLE t2 = ::CreateThread(NULL, 0, MainServerThread, &events2, 0, NULL);
ASSERT_TRUE(NULL != t2);
::CloseHandle(t2);
::Sleep(1);
void* buff0 = client.GetBuffer();
uint32 tag = 4321;
CrossCallReturn answer;
CrossCallParamsMock* params1 = new(buff0) CrossCallParamsMock(tag, 1);
FakeOkAnswerInChannel(buff0);
ResultCode result = client.DoCall(params1, &answer);
if (SBOX_ERROR_CHANNEL_ERROR != result)
client.FreeBuffer(buff0);
EXPECT_TRUE(SBOX_ALL_OK == result);
EXPECT_EQ(tag, client_control->channels[0].ipc_tag);
EXPECT_EQ(kFreeChannel, client_control->channels[0].state);
for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
ChannelControl& channel = client_control->channels[ix];
::CloseHandle(channel.ping_event);
::CloseHandle(channel.pong_event);
}
::CloseHandle(client_control->server_alive);
delete [] reinterpret_cast<char*>(client_control);
}
} // namespace sandbox