blob: de776f31f7cd1861e84eb7af1a5f20cbf52d9297 [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/input/scroll_snap_data.h"
#include "cc/input/snap_selection_strategy.h"
#include <algorithm>
#include <cmath>
namespace cc {
namespace {
bool IsMutualVisible(const SnapSearchResult& a, const SnapSearchResult& b) {
return a.visible_range().Contains(gfx::RangeF(b.snap_offset())) &&
b.visible_range().Contains(gfx::RangeF(a.snap_offset()));
}
void SetOrUpdateResult(const SnapSearchResult& candidate,
base::Optional<SnapSearchResult>* result) {
if (result->has_value())
result->value().Union(candidate);
else
*result = candidate;
}
const base::Optional<SnapSearchResult>& ClosestSearchResult(
const gfx::ScrollOffset reference_point,
SearchAxis axis,
const base::Optional<SnapSearchResult>& a,
const base::Optional<SnapSearchResult>& b) {
if (!a.has_value())
return b;
if (!b.has_value())
return a;
float reference_position =
axis == SearchAxis::kX ? reference_point.x() : reference_point.y();
float position_a = a.value().snap_offset();
float position_b = b.value().snap_offset();
DCHECK(
(reference_position <= position_a && reference_position <= position_b) ||
(reference_position >= position_a && reference_position >= position_b));
float distance_a = std::abs(position_a - reference_position);
float distance_b = std::abs(position_b - reference_position);
return distance_a < distance_b ? a : b;
}
} // namespace
SnapSearchResult::SnapSearchResult(float offset, const gfx::RangeF& range)
: snap_offset_(offset) {
set_visible_range(range);
}
void SnapSearchResult::set_visible_range(const gfx::RangeF& range) {
DCHECK(range.start() <= range.end());
visible_range_ = range;
}
void SnapSearchResult::Clip(float max_snap, float max_visible) {
snap_offset_ = std::max(std::min(snap_offset_, max_snap), 0.0f);
visible_range_ =
gfx::RangeF(std::max(std::min(visible_range_.start(), max_visible), 0.0f),
std::max(std::min(visible_range_.end(), max_visible), 0.0f));
}
void SnapSearchResult::Union(const SnapSearchResult& other) {
DCHECK(snap_offset_ == other.snap_offset_);
visible_range_ = gfx::RangeF(
std::min(visible_range_.start(), other.visible_range_.start()),
std::max(visible_range_.end(), other.visible_range_.end()));
}
SnapContainerData::SnapContainerData()
: proximity_range_(gfx::ScrollOffset(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(ScrollSnapType type)
: scroll_snap_type_(type),
proximity_range_(gfx::ScrollOffset(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(ScrollSnapType type,
const gfx::RectF& rect,
const gfx::ScrollOffset& max)
: scroll_snap_type_(type),
rect_(rect),
max_position_(max),
proximity_range_(gfx::ScrollOffset(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(const SnapContainerData& other) = default;
SnapContainerData::SnapContainerData(SnapContainerData&& other) = default;
SnapContainerData::~SnapContainerData() = default;
SnapContainerData& SnapContainerData::operator=(
const SnapContainerData& other) = default;
SnapContainerData& SnapContainerData::operator=(SnapContainerData&& other) =
default;
void SnapContainerData::AddSnapAreaData(SnapAreaData snap_area_data) {
snap_area_list_.push_back(snap_area_data);
}
bool SnapContainerData::FindSnapPosition(
const SnapSelectionStrategy& strategy,
gfx::ScrollOffset* snap_position) const {
gfx::ScrollOffset base_position = strategy.base_position();
SnapAxis axis = scroll_snap_type_.axis;
bool should_snap_on_x = strategy.ShouldSnapOnX() &&
(axis == SnapAxis::kX || axis == SnapAxis::kBoth);
bool should_snap_on_y = strategy.ShouldSnapOnY() &&
(axis == SnapAxis::kY || axis == SnapAxis::kBoth);
if (!should_snap_on_x && !should_snap_on_y)
return false;
base::Optional<SnapSearchResult> closest_x, closest_y;
// A region that includes every reachable scroll position.
gfx::RectF scrollable_region(0, 0, max_position_.x(), max_position_.y());
if (should_snap_on_x) {
// Start from current position in the cross axis and assume it's always
// visible.
SnapSearchResult initial_snap_position_y = {
base_position.y(), gfx::RangeF(0, max_position_.x())};
closest_x =
FindClosestValidArea(SearchAxis::kX, strategy, initial_snap_position_y);
}
if (should_snap_on_y) {
SnapSearchResult initial_snap_position_x = {
base_position.x(), gfx::RangeF(0, max_position_.y())};
closest_y =
FindClosestValidArea(SearchAxis::kY, strategy, initial_snap_position_x);
}
if (!closest_x.has_value() && !closest_y.has_value())
return false;
// If snapping in one axis pushes off-screen the other snap area, this snap
// position is invalid. https://drafts.csswg.org/css-scroll-snap-1/#snap-scope
// In this case, we choose the axis whose snap area is closer, and find a
// mutual visible snap area on the other axis.
if (closest_x.has_value() && closest_y.has_value() &&
!IsMutualVisible(closest_x.value(), closest_y.value())) {
bool candidate_on_x_axis_is_closer =
std::abs(closest_x.value().snap_offset() - base_position.x()) <=
std::abs(closest_y.value().snap_offset() - base_position.y());
if (candidate_on_x_axis_is_closer) {
closest_y =
FindClosestValidArea(SearchAxis::kY, strategy, closest_x.value());
} else {
closest_x =
FindClosestValidArea(SearchAxis::kX, strategy, closest_y.value());
}
}
*snap_position = strategy.current_position();
if (closest_x.has_value())
snap_position->set_x(closest_x.value().snap_offset());
if (closest_y.has_value())
snap_position->set_y(closest_y.value().snap_offset());
return true;
}
base::Optional<SnapSearchResult> SnapContainerData::FindClosestValidArea(
SearchAxis axis,
const SnapSelectionStrategy& strategy,
const SnapSearchResult& cros_axis_snap_result) const {
base::Optional<SnapSearchResult> result =
FindClosestValidAreaInternal(axis, strategy, cros_axis_snap_result);
// For EndAndDirectionStrategy, if there is a snap area with snap-stop:always,
// and is between the starting position and the above result, we should choose
// the first snap area with snap-stop:always.
// This additional search is executed only if we found a result, while the
// additional search for the relaxed_strategy is executed only if we didn't
// find a result. So we put this search first so we can return early if we
// could find a result.
if (result.has_value() && strategy.ShouldRespectSnapStop()) {
std::unique_ptr<SnapSelectionStrategy> must_only_strategy =
SnapSelectionStrategy::CreateForDirection(
strategy.current_position(),
strategy.intended_position() - strategy.current_position(),
SnapStopAlwaysFilter::kRequire);
base::Optional<SnapSearchResult> must_only_result =
FindClosestValidAreaInternal(axis, *must_only_strategy,
cros_axis_snap_result, false);
result = ClosestSearchResult(strategy.current_position(), axis, result,
must_only_result);
}
// Our current direction based strategies are too strict ignoring the other
// directions even when we have no candidate in the given direction. This is
// particularly problematic with mandatory snap points and for fling
// gestures. To counteract this, if the direction based strategy finds no
// candidates, we do a second search ignoring the direction (this is
// implemented by using an equivalent EndPosition strategy).
if (result.has_value() ||
scroll_snap_type_.strictness == SnapStrictness::kProximity ||
!strategy.HasIntendedDirection())
return result;
std::unique_ptr<SnapSelectionStrategy> relaxed_strategy =
SnapSelectionStrategy::CreateForEndPosition(strategy.current_position(),
strategy.ShouldSnapOnX(),
strategy.ShouldSnapOnY());
return FindClosestValidAreaInternal(axis, *relaxed_strategy,
cros_axis_snap_result);
}
base::Optional<SnapSearchResult>
SnapContainerData::FindClosestValidAreaInternal(
SearchAxis axis,
const SnapSelectionStrategy& strategy,
const SnapSearchResult& cros_axis_snap_result,
bool should_consider_covering) const {
// The search result from the snap area that's closest to the search origin.
base::Optional<SnapSearchResult> closest;
// The search result with the intended position if it makes a snap area cover
// the snapport.
base::Optional<SnapSearchResult> covering;
// The valid snap positions immediately before and after the current position.
float prev = std::numeric_limits<float>::lowest();
float next = std::numeric_limits<float>::max();
// The intended position of the scroll operation if there's no snap. This
// scroll position becomes the covering candidate if there is a snap area that
// fully covers the snapport if this position is scrolled to.
float intended_position = axis == SearchAxis::kX
? strategy.intended_position().x()
: strategy.intended_position().y();
// The position from which we search for the closest snap position.
float base_position = axis == SearchAxis::kX ? strategy.base_position().x()
: strategy.base_position().y();
float smallest_distance =
axis == SearchAxis::kX ? proximity_range_.x() : proximity_range_.y();
for (const SnapAreaData& area : snap_area_list_) {
if (!strategy.IsValidSnapArea(axis, area))
continue;
SnapSearchResult candidate = GetSnapSearchResult(axis, area);
if (should_consider_covering &&
IsSnapportCoveredOnAxis(axis, intended_position, area.rect)) {
// Since snap area will cover the snapport, we consider the intended
// position as a valid snap position.
SnapSearchResult covering_candidate = candidate;
covering_candidate.set_snap_offset(intended_position);
if (IsMutualVisible(covering_candidate, cros_axis_snap_result))
SetOrUpdateResult(covering_candidate, &covering);
// Even if a snap area covers the snapport, we need to continue this
// search to find previous and next snap positions and also to have
// alternative snap candidates if this covering candidate is ultimately
// rejected. And this covering snap area has its own alignment that may
// generates a snap position rejecting the current inplace candidate.
}
if (!IsMutualVisible(candidate, cros_axis_snap_result))
continue;
float distance = std::abs(candidate.snap_offset() - base_position);
if (strategy.IsValidSnapPosition(axis, candidate.snap_offset())) {
if (distance < smallest_distance) {
smallest_distance = distance;
closest = candidate;
}
}
if (!should_consider_covering)
continue;
if (candidate.snap_offset() < intended_position &&
candidate.snap_offset() > prev) {
prev = candidate.snap_offset();
}
if (candidate.snap_offset() > intended_position &&
candidate.snap_offset() < next) {
next = candidate.snap_offset();
}
}
// According to the spec [1], if the snap area is covering the snapport, the
// scroll position is a valid snap position only if the distance between the
// geometrically previous and subsequent snap positions in that axis is larger
// than size of the snapport in that axis.
// [1] https://drafts.csswg.org/css-scroll-snap-1/#snap-overflow
float size = axis == SearchAxis::kX ? rect_.width() : rect_.height();
if (prev != std::numeric_limits<float>::lowest() &&
next != std::numeric_limits<float>::max() && next - prev <= size) {
covering = base::nullopt;
}
const base::Optional<SnapSearchResult>& picked =
strategy.PickBestResult(closest, covering);
return picked;
}
SnapSearchResult SnapContainerData::GetSnapSearchResult(
SearchAxis axis,
const SnapAreaData& area) const {
SnapSearchResult result;
if (axis == SearchAxis::kX) {
result.set_visible_range(gfx::RangeF(area.rect.y() - rect_.bottom(),
area.rect.bottom() - rect_.y()));
// https://www.w3.org/TR/css-scroll-snap-1/#scroll-snap-align
switch (area.scroll_snap_align.alignment_inline) {
case SnapAlignment::kStart:
result.set_snap_offset(area.rect.x() - rect_.x());
break;
case SnapAlignment::kCenter:
result.set_snap_offset(area.rect.CenterPoint().x() -
rect_.CenterPoint().x());
break;
case SnapAlignment::kEnd:
result.set_snap_offset(area.rect.right() - rect_.right());
break;
default:
NOTREACHED();
}
result.Clip(max_position_.x(), max_position_.y());
} else {
result.set_visible_range(gfx::RangeF(area.rect.x() - rect_.right(),
area.rect.right() - rect_.x()));
switch (area.scroll_snap_align.alignment_block) {
case SnapAlignment::kStart:
result.set_snap_offset(area.rect.y() - rect_.y());
break;
case SnapAlignment::kCenter:
result.set_snap_offset(area.rect.CenterPoint().y() -
rect_.CenterPoint().y());
break;
case SnapAlignment::kEnd:
result.set_snap_offset(area.rect.bottom() - rect_.bottom());
break;
default:
NOTREACHED();
}
result.Clip(max_position_.y(), max_position_.x());
}
return result;
}
bool SnapContainerData::IsSnapportCoveredOnAxis(
SearchAxis axis,
float current_offset,
const gfx::RectF& area_rect) const {
if (axis == SearchAxis::kX) {
if (area_rect.width() < rect_.width())
return false;
float left = area_rect.x() - rect_.x();
float right = area_rect.right() - rect_.right();
return current_offset >= left && current_offset <= right;
} else {
if (area_rect.height() < rect_.height())
return false;
float top = area_rect.y() - rect_.y();
float bottom = area_rect.bottom() - rect_.bottom();
return current_offset >= top && current_offset <= bottom;
}
}
std::ostream& operator<<(std::ostream& ostream, const SnapAreaData& area_data) {
return ostream << area_data.rect.ToString();
}
std::ostream& operator<<(std::ostream& ostream,
const SnapContainerData& container_data) {
ostream << "container_rect: " << container_data.rect().ToString();
ostream << "area_rects: ";
for (size_t i = 0; i < container_data.size(); ++i) {
ostream << container_data.at(i) << "\n";
}
return ostream;
}
} // namespace cc