blob: 5ed5046689811ccf44623cc0db90e0e23f9c997d [file] [log] [blame]
// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Remember a subset of a sequence of values, using a modest amount of memory
/***
Design:
Accumulate in powers of three, using 3-way median to collapse entries.
At any given time, there is one most-dense (highest power of 3) range of
entries and a series of less-dense ranges that hold 0..2 entries each. There
is a bounded-size storage array of S cells for all the entries.
The overflow detect is set up so that a new higher power of 3, K+1, is
triggered precisely when range K has 3n entries and all ranges < K have
zero entries.
In general, think of the range sizes as a multi-digit base 3 number, except
the highest digit may exceed 2:
3**6 3**5 3**4 3**3 3**2 3**1 3**0 K=2
0 0 0 0 3n-1 2 2 unused:1
There are a total of 3n-1 + 2 + 2 entries in use. Assume a size limit S at
one more than that, and we add a new 3**0 entry and "carry" by performing
medians on any group of 3 elements:
3**6 3**5 3**4 3**3 3**2 3**1 3**0 K=2
0 0 0 0 3n-1 2 3 unused:0
0 0 0 0 3n-1 3 0 carry unused:2
0 0 0 0 3n 0 0 carry unused:4
To accumulate 2 entries at all levels < K and 3 just before the first carry at
level 0, we need 2*K + 1 unused cells after doing all carries, or five cells
in this case. Since we only have 4 cells in the example above, we need to
make room by starting a new power of three:
3**6 3**5 3**4 3**3 3**2 3**1 3**0
0 0 0 0 3n 0 0 K=2 unused:4
0 0 0 n 0 0 0 K=3 unused:2n+4
In the code below, we don't worry about overflow from the topmost place.
***/
#include "encodings/compact_lang_det/subsetsequence.h"
#include <stdio.h>
#include "encodings/compact_lang_det/win/cld_logging.h"
void DumpInts(const char* label, const int* v, int n) {
printf("%s ", label);
for (int i = 0; i < n; ++i) {
printf("%d ", v[i]);
}
printf("\n");
}
void DumpUint8s(const char* label, const uint8* v, int n) {
printf("%s ", label);
for (int i = 0; i < n; ++i) {
printf("%d ", v[i]);
}
printf("\n");
}
// Return median of seq_[sub] .. seq_[sub+2], favoring middle element
uint8 SubsetSequence::Median3(int sub) {
if (seq_[sub] == seq_[sub + 1]) {
return seq_[sub];
}
if (seq_[sub] == seq_[sub + 2]) {
return seq_[sub];
}
return seq_[sub + 1];
}
void SubsetSequence::Init() {
// printf("Init\n");
k_ = 0;
count_[0] = 0;
next_e_ = 0;
seq_[0] = 0; // Default value if no calls to Add
// Want largest <= kMaxSeq_ that allows reserve and makes count_[k_] = 0 mod 3
int reserve = (2 * k_ + 1);
level_limit_e_ = kMaxSeq_ - reserve;
level_limit_e_ = (level_limit_e_ / 3) * 3; // Round down to multiple of 3
limit_e_ = level_limit_e_;
}
// Compress level k by 3x, creating level k+1
void SubsetSequence::NewLevel() {
// printf("NewLevel 3 ** %d\n", k_ + 1);
//DumpUint8s("count[k]", count_, k_ + 1);
//DumpUint8s("seq[next]", seq_, next_e_);
// Incoming level must be an exact multiple of three in size
CHECK((count_[k_] % 3) == 0);
int k_size = count_[k_];
int new_size = k_size / 3;
// Compress down by 3x, via median
for (int j = 0; j < new_size; ++j) {
seq_[j] = Median3(j * 3);
}
// Update counts
count_[k_] = 0;
// Else Overflow -- just continue with 3x dense Level K
if (k_ < (kMaxLevel_ - 1)) {++k_;}
count_[k_] = new_size;
// Update limits
next_e_ = new_size;
limit_e_ = next_e_ + 3;
// Want largest <= kMaxSeq_ that allows reserve and makes count_[k_] = 0 mod 3
int reserve = (2 * k_ + 1);
level_limit_e_ = kMaxSeq_ - reserve;
level_limit_e_ = (level_limit_e_ / 3) * 3; // Round down to multiple of 3
//
//DumpUint8s("after: count[k]", count_, k_ + 1);
//DumpUint8s("after: seq[next]", seq_, next_e_);
}
void SubsetSequence::DoCarries() {
CHECK(count_[k_] > 3); // We depend on count_[k_] being > 3 to stop while
// Make room by carrying
//DumpUint8s("DoCarries count[k]", count_, k_ + 1);
//DumpUint8s("DoCarries seq[next]", seq_, next_e_);
int i = 0;
while (count_[i] == 3) {
next_e_ -= 3;
seq_[next_e_] = Median3(next_e_);
++next_e_;
count_[i] = 0;
++count_[i + 1];
++i;
}
limit_e_ = next_e_ + 3;
//DumpUint8s("after: DoCarries count[k]", count_, k_ + 1);
//DumpUint8s("after: DoCarries seq[next]", seq_, next_e_);
// If we just fully carried into level K,
// Make sure there is now enough room, else start level K + 1
if (i >= k_) {
CHECK(count_[k_] == next_e_);
if (next_e_ >= level_limit_e_) {
NewLevel();
}
}
}
void SubsetSequence::Add(uint8 e) {
// Add an entry then carry as needed
seq_[next_e_] = e;
++next_e_;
++count_[0];
if (next_e_ >= limit_e_) {
DoCarries();
}
}
// Collapse tail end by simple median across disparate-weight values,
// dropping or duplicating last value if need be.
// This routine is idempotent.
void SubsetSequence::Flush() {
// printf("Flush %d\n", count_[k_]);
int start_tail = count_[k_];
int size_tail = next_e_ - start_tail;
if ((size_tail % 3) == 2) {
seq_[next_e_] = seq_[next_e_ - 1]; // Duplicate last value
++size_tail;
}
// Compress tail down by 3x, via median
int new_size = size_tail / 3; // May delete last value
for (int j = 0; j < new_size; ++j) {
seq_[start_tail + j] = Median3(start_tail + j * 3);
}
next_e_ = start_tail + new_size;
count_[k_] = next_e_;
}
// Extract representative pattern of exactly N values into dst[0..n-1]
// This routine may be called multiple times, but it may downsample as a
// side effect, causing subsequent calls with larger N to get poor answers.
void SubsetSequence::Extract(int to_n, uint8* dst) {
// Collapse partial-carries in tail
Flush();
// Just use Bresenham to resample
int from_n = next_e_;
if (to_n >= from_n) {
// Up-sample from_n => to_n
int err = to_n - 1; // bias toward no overshoot
int j = 0;
for (int i = 0; i < to_n; ++i) {
dst[i] = seq_[j];
err -= from_n;
if (err < 0) {
++j;
err += to_n;
}
}
} else {
// Get to the point that the number of samples is <= 3 * to_n
while (next_e_ > (to_n * 3)) {
// Compress down by 3x, via median
// printf("Extract, median %d / 3\n", next_e_);
if ((next_e_ % 3) == 2) {
seq_[next_e_] = seq_[next_e_ - 1]; // Duplicate last value
++next_e_;
}
int new_size = next_e_ / 3; // May delete last value
for (int j = 0; j < new_size; ++j) {
seq_[j] = Median3(j * 3);
}
next_e_ = new_size;
count_[k_] = next_e_;
}
from_n = next_e_;
if (to_n == from_n) {
// Copy verbatim
for (int i = 0; i < to_n; ++i) {
dst[i] = seq_[i];
}
return;
}
// Down-sample from_n => to_n, using medians
int err = 0; // Bias to immediate median sample
int j = 0;
for (int i = 0; i < from_n; ++i) {
err -= to_n;
if (err < 0) {
if (i <= (next_e_ - 2)) {
dst[j] = Median3(i);
} else {
dst[j] = seq_[i];
}
++j;
err += from_n;
}
}
}
}