blob: ad1b7d431c97cb0a19449afcff2bfab9477a3972 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// WARNING: You should *NOT* be using this class directly. PlatformThread is
// the low-level platform-specific abstraction to the OS's threading interface.
// You should instead be using a message-loop driven Thread, see thread.h.
#include <stddef.h>
#include "base/base_export.h"
#include "base/macros.h"
#include "base/time/time.h"
#include "build/build_config.h"
#if defined(OS_WIN)
#include <windows.h>
#elif defined(OS_MACOSX)
#include <mach/mach_types.h>
#elif defined(OS_POSIX)
#include <pthread.h>
#include <unistd.h>
namespace base {
// Used for logging. Always an integer value.
#if defined(OS_WIN)
typedef DWORD PlatformThreadId;
#elif defined(OS_MACOSX)
typedef mach_port_t PlatformThreadId;
#elif defined(OS_POSIX)
typedef pid_t PlatformThreadId;
// Used for thread checking and debugging.
// Meant to be as fast as possible.
// These are produced by PlatformThread::CurrentRef(), and used to later
// check if we are on the same thread or not by using ==. These are safe
// to copy between threads, but can't be copied to another process as they
// have no meaning there. Also, the internal identifier can be re-used
// after a thread dies, so a PlatformThreadRef cannot be reliably used
// to distinguish a new thread from an old, dead thread.
class PlatformThreadRef {
#if defined(OS_WIN)
typedef DWORD RefType;
#elif defined(OS_POSIX)
typedef pthread_t RefType;
: id_(0) {
explicit PlatformThreadRef(RefType id)
: id_(id) {
bool operator==(PlatformThreadRef other) const {
return id_ == other.id_;
bool operator!=(PlatformThreadRef other) const { return id_ != other.id_; }
bool is_null() const {
return id_ == 0;
RefType id_;
// Used to operate on threads.
class PlatformThreadHandle {
#if defined(OS_WIN)
typedef void* Handle;
#elif defined(OS_POSIX)
typedef pthread_t Handle;
PlatformThreadHandle() : handle_(0) {}
explicit PlatformThreadHandle(Handle handle) : handle_(handle) {}
bool is_equal(const PlatformThreadHandle& other) const {
return handle_ == other.handle_;
bool is_null() const {
return !handle_;
Handle platform_handle() const {
return handle_;
Handle handle_;
const PlatformThreadId kInvalidThreadId(0);
// Valid values for priority of Thread::Options and SimpleThread::Options, and
// SetCurrentThreadPriority(), listed in increasing order of importance.
enum class ThreadPriority : int {
// Suitable for threads that shouldn't disrupt high priority work.
// Default priority level.
// Suitable for threads which generate data for the display (at ~60Hz).
// Suitable for low-latency, glitch-resistant audio.
// A namespace for low-level thread functions.
class BASE_EXPORT PlatformThread {
// Implement this interface to run code on a background thread. Your
// ThreadMain method will be called on the newly created thread.
class BASE_EXPORT Delegate {
virtual void ThreadMain() = 0;
virtual ~Delegate() {}
// Gets the current thread id, which may be useful for logging purposes.
static PlatformThreadId CurrentId();
// Gets the current thread reference, which can be used to check if
// we're on the right thread quickly.
static PlatformThreadRef CurrentRef();
// Get the handle representing the current thread. On Windows, this is a
// pseudo handle constant which will always represent the thread using it and
// hence should not be shared with other threads nor be used to differentiate
// the current thread from another.
static PlatformThreadHandle CurrentHandle();
// Yield the current thread so another thread can be scheduled.
static void YieldCurrentThread();
// Sleeps for the specified duration.
static void Sleep(base::TimeDelta duration);
// Sets the thread name visible to debuggers/tools. This will try to
// initialize the context for current thread unless it's a WorkerThread.
static void SetName(const std::string& name);
// Gets the thread name, if previously set by SetName.
static const char* GetName();
// Creates a new thread. The |stack_size| parameter can be 0 to indicate
// that the default stack size should be used. Upon success,
// |*thread_handle| will be assigned a handle to the newly created thread,
// and |delegate|'s ThreadMain method will be executed on the newly created
// thread.
// NOTE: When you are done with the thread handle, you must call Join to
// release system resources associated with the thread. You must ensure that
// the Delegate object outlives the thread.
static bool Create(size_t stack_size,
Delegate* delegate,
PlatformThreadHandle* thread_handle) {
return CreateWithPriority(stack_size, delegate, thread_handle,
// CreateWithPriority() does the same thing as Create() except the priority of
// the thread is set based on |priority|.
static bool CreateWithPriority(size_t stack_size, Delegate* delegate,
PlatformThreadHandle* thread_handle,
ThreadPriority priority);
// CreateNonJoinable() does the same thing as Create() except the thread
// cannot be Join()'d. Therefore, it also does not output a
// PlatformThreadHandle.
static bool CreateNonJoinable(size_t stack_size, Delegate* delegate);
// CreateNonJoinableWithPriority() does the same thing as CreateNonJoinable()
// except the priority of the thread is set based on |priority|.
static bool CreateNonJoinableWithPriority(size_t stack_size,
Delegate* delegate,
ThreadPriority priority);
// Joins with a thread created via the Create function. This function blocks
// the caller until the designated thread exits. This will invalidate
// |thread_handle|.
static void Join(PlatformThreadHandle thread_handle);
// Detaches and releases the thread handle. The thread is no longer joinable
// and |thread_handle| is invalidated after this call.
static void Detach(PlatformThreadHandle thread_handle);
// Returns true if SetCurrentThreadPriority() can be used to increase the
// priority of the current thread.
static bool CanIncreaseCurrentThreadPriority();
// Toggles the current thread's priority at runtime.
// A thread may not be able to raise its priority back up after lowering it if
// the process does not have a proper permission, e.g. CAP_SYS_NICE on Linux.
// A thread may not be able to lower its priority back down after raising it
// This function must not be called from the main thread on Mac. This is to
// avoid performance regressions (
// Since changing other threads' priority is not permitted in favor of
// security, this interface is restricted to change only the current thread
// priority (
static void SetCurrentThreadPriority(ThreadPriority priority);
static ThreadPriority GetCurrentThreadPriority();
#if defined(OS_LINUX)
// Toggles a specific thread's priority at runtime. This can be used to
// change the priority of a thread in a different process and will fail
// if the calling process does not have proper permissions. The
// SetCurrentThreadPriority() function above is preferred in favor of
// security but on platforms where sandboxed processes are not allowed to
// change priority this function exists to allow a non-sandboxed process
// to change the priority of sandboxed threads for improved performance.
// Warning: Don't use this for a main thread because that will change the
// whole thread group's (i.e. process) priority.
static void SetThreadPriority(PlatformThreadId thread_id,
ThreadPriority priority);
} // namespace base