blob: 9cea0f11f8c765503d5dfe595d3df409940be3f3 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/crypto/strike_register.h"
#include <algorithm>
#include <limits>
#include "base/logging.h"
using std::pair;
using std::set;
using std::vector;
namespace net {
namespace {
uint32_t GetInitialHorizon(uint32_t current_time_internal,
uint32_t window_secs,
StrikeRegister::StartupType startup) {
if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) {
// The horizon is initially set |window_secs| into the future because, if
// we just crashed, then we may have accepted nonces in the span
// [current_time...current_time+window_secs] and so we conservatively
// reject the whole timespan unless |startup| tells us otherwise.
return current_time_internal + window_secs + 1;
} else { // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
// The orbit can be assumed to be globally unique. Use a horizon
// in the past.
return 0;
}
}
} // namespace
// static
const uint32_t StrikeRegister::kExternalNodeSize = 24;
// static
const uint32_t StrikeRegister::kNil = (1u << 31) | 1;
// static
const uint32_t StrikeRegister::kExternalFlag = 1 << 23;
// InternalNode represents a non-leaf node in the critbit tree. See the comment
// in the .h file for details.
class StrikeRegister::InternalNode {
public:
void SetChild(unsigned direction, uint32_t child) {
data_[direction] = (data_[direction] & 0xff) | (child << 8);
}
void SetCritByte(uint8_t critbyte) {
data_[0] = (data_[0] & 0xffffff00) | critbyte;
}
void SetOtherBits(uint8_t otherbits) {
data_[1] = (data_[1] & 0xffffff00) | otherbits;
}
void SetNextPtr(uint32_t next) { data_[0] = next; }
uint32_t next() const { return data_[0]; }
uint32_t child(unsigned n) const { return data_[n] >> 8; }
uint8_t critbyte() const { return static_cast<uint8_t>(data_[0]); }
uint8_t otherbits() const { return static_cast<uint8_t>(data_[1]); }
// These bytes are organised thus:
// <24 bits> left child
// <8 bits> crit-byte
// <24 bits> right child
// <8 bits> other-bits
uint32_t data_[2];
};
// kCreationTimeFromInternalEpoch contains the number of seconds between the
// start of the internal epoch and the creation time. This allows us
// to consider times that are before the creation time.
static const uint32_t kCreationTimeFromInternalEpoch = 63115200; // 2 years.
void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
// We only have 23 bits of index available.
CHECK_LT(max_entries, 1u << 23);
CHECK_GT(max_entries, 1u); // There must be at least two entries.
CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes.
}
StrikeRegister::StrikeRegister(unsigned max_entries,
uint32_t current_time,
uint32_t window_secs,
const uint8_t orbit[8],
StartupType startup)
: max_entries_(max_entries),
window_secs_(window_secs),
internal_epoch_(current_time > kCreationTimeFromInternalEpoch
? current_time - kCreationTimeFromInternalEpoch
: 0),
horizon_(GetInitialHorizon(ExternalTimeToInternal(current_time),
window_secs,
startup)) {
memcpy(orbit_, orbit, sizeof(orbit_));
ValidateStrikeRegisterConfig(max_entries);
internal_nodes_ = new InternalNode[max_entries];
external_nodes_.reset(new uint8_t[kExternalNodeSize * max_entries]);
Reset();
}
StrikeRegister::~StrikeRegister() {
delete[] internal_nodes_;
}
void StrikeRegister::Reset() {
// Thread a free list through all of the internal nodes.
internal_node_free_head_ = 0;
for (unsigned i = 0; i < max_entries_ - 1; i++) {
internal_nodes_[i].SetNextPtr(i + 1);
}
internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
// Also thread a free list through the external nodes.
external_node_free_head_ = 0;
for (unsigned i = 0; i < max_entries_ - 1; i++) {
external_node_next_ptr(i) = i + 1;
}
external_node_next_ptr(max_entries_ - 1) = kNil;
// This is the root of the tree.
internal_node_head_ = kNil;
}
InsertStatus StrikeRegister::Insert(const uint8_t nonce[32],
uint32_t current_time_external) {
// Make space for the insertion if the strike register is full.
while (external_node_free_head_ == kNil || internal_node_free_head_ == kNil) {
DropOldestNode();
}
const uint32_t current_time = ExternalTimeToInternal(current_time_external);
// Check to see if the orbit is correct.
if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
return NONCE_INVALID_ORBIT_FAILURE;
}
const uint32_t nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
// Check that the timestamp is in the valid range.
pair<uint32_t, uint32_t> valid_range =
StrikeRegister::GetValidRange(current_time);
if (nonce_time < valid_range.first || nonce_time > valid_range.second) {
return NONCE_INVALID_TIME_FAILURE;
}
// We strip the orbit out of the nonce.
uint8_t value[24];
memcpy(value, nonce, sizeof(nonce_time));
memcpy(value + sizeof(nonce_time),
nonce + sizeof(nonce_time) + sizeof(orbit_),
sizeof(value) - sizeof(nonce_time));
// Find the best match to |value| in the crit-bit tree. The best match is
// simply the value which /could/ match |value|, if any does, so we still
// need a memcmp to check.
uint32_t best_match_index = BestMatch(value);
if (best_match_index == kNil) {
// Empty tree. Just insert the new value at the root.
uint32_t index = GetFreeExternalNode();
memcpy(external_node(index), value, sizeof(value));
internal_node_head_ = (index | kExternalFlag) << 8;
DCHECK_LE(horizon_, nonce_time);
return NONCE_OK;
}
const uint8_t* best_match = external_node(best_match_index);
if (memcmp(best_match, value, sizeof(value)) == 0) {
// We found the value in the tree.
return NONCE_NOT_UNIQUE_FAILURE;
}
// We are going to insert a new entry into the tree, so get the nodes now.
uint32_t internal_node_index = GetFreeInternalNode();
uint32_t external_node_index = GetFreeExternalNode();
// If we just evicted the best match, then we have to try and match again.
// We know that we didn't just empty the tree because we require that
// max_entries_ >= 2. Also, we know that it doesn't match because, if it
// did, it would have been returned previously.
if (external_node_index == best_match_index) {
best_match_index = BestMatch(value);
best_match = external_node(best_match_index);
}
// Now we need to find the first bit where we differ from |best_match|.
uint8_t differing_byte;
uint8_t new_other_bits;
for (differing_byte = 0; differing_byte < arraysize(value);
differing_byte++) {
new_other_bits = value[differing_byte] ^ best_match[differing_byte];
if (new_other_bits) {
break;
}
}
// Once we have the XOR the of first differing byte in new_other_bits we need
// to find the most significant differing bit. We could do this with a simple
// for loop, testing bits 7..0. Instead we fold the bits so that we end up
// with a byte where all the bits below the most significant one, are set.
new_other_bits |= new_other_bits >> 1;
new_other_bits |= new_other_bits >> 2;
new_other_bits |= new_other_bits >> 4;
// Now this bit trick results in all the bits set, except the original
// most-significant one.
new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
// Consider the effect of ORing against |new_other_bits|. If |value| did not
// have the critical bit set, the result is the same as |new_other_bits|. If
// it did, the result is all ones.
unsigned newdirection;
if ((new_other_bits | value[differing_byte]) == 0xff) {
newdirection = 1;
} else {
newdirection = 0;
}
memcpy(external_node(external_node_index), value, sizeof(value));
InternalNode* inode = &internal_nodes_[internal_node_index];
inode->SetChild(newdirection, external_node_index | kExternalFlag);
inode->SetCritByte(differing_byte);
inode->SetOtherBits(new_other_bits);
// |where_index| is a pointer to the uint32_t which needs to be updated in
// order to insert the new internal node into the tree. The internal nodes
// store the child indexes in the top 24-bits of a 32-bit word and, to keep
// the code simple, we define that |internal_node_head_| is organised the
// same way.
DCHECK_EQ(internal_node_head_ & 0xff, 0u);
uint32_t* where_index = &internal_node_head_;
while (((*where_index >> 8) & kExternalFlag) == 0) {
InternalNode* node = &internal_nodes_[*where_index >> 8];
if (node->critbyte() > differing_byte) {
break;
}
if (node->critbyte() == differing_byte &&
node->otherbits() > new_other_bits) {
break;
}
if (node->critbyte() == differing_byte &&
node->otherbits() == new_other_bits) {
CHECK(false);
}
uint8_t c = value[node->critbyte()];
const int direction =
(1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
where_index = &node->data_[direction];
}
inode->SetChild(newdirection ^ 1, *where_index >> 8);
*where_index = (*where_index & 0xff) | (internal_node_index << 8);
DCHECK_LE(horizon_, nonce_time);
return NONCE_OK;
}
const uint8_t* StrikeRegister::orbit() const {
return orbit_;
}
uint32_t StrikeRegister::GetCurrentValidWindowSecs(
uint32_t current_time_external) const {
uint32_t current_time = ExternalTimeToInternal(current_time_external);
pair<uint32_t, uint32_t> valid_range =
StrikeRegister::GetValidRange(current_time);
if (valid_range.second >= valid_range.first) {
return valid_range.second - current_time + 1;
} else {
return 0;
}
}
void StrikeRegister::Validate() {
set<uint32_t> free_internal_nodes;
for (uint32_t i = internal_node_free_head_; i != kNil;
i = internal_nodes_[i].next()) {
CHECK_LT(i, max_entries_);
CHECK_EQ(free_internal_nodes.count(i), 0u);
free_internal_nodes.insert(i);
}
set<uint32_t> free_external_nodes;
for (uint32_t i = external_node_free_head_; i != kNil;
i = external_node_next_ptr(i)) {
CHECK_LT(i, max_entries_);
CHECK_EQ(free_external_nodes.count(i), 0u);
free_external_nodes.insert(i);
}
set<uint32_t> used_external_nodes;
set<uint32_t> used_internal_nodes;
if (internal_node_head_ != kNil &&
((internal_node_head_ >> 8) & kExternalFlag) == 0) {
vector<pair<unsigned, bool>> bits;
ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
free_external_nodes, &used_internal_nodes,
&used_external_nodes);
}
}
// static
uint32_t StrikeRegister::TimeFromBytes(const uint8_t d[4]) {
return static_cast<uint32_t>(d[0]) << 24 | static_cast<uint32_t>(d[1]) << 16 |
static_cast<uint32_t>(d[2]) << 8 | static_cast<uint32_t>(d[3]);
}
pair<uint32_t, uint32_t> StrikeRegister::GetValidRange(
uint32_t current_time_internal) const {
if (current_time_internal < horizon_) {
// Empty valid range.
return std::make_pair(std::numeric_limits<uint32_t>::max(), 0);
}
uint32_t lower_bound;
if (current_time_internal >= window_secs_) {
lower_bound = std::max(horizon_, current_time_internal - window_secs_);
} else {
lower_bound = horizon_;
}
// Also limit the upper range based on horizon_. This makes the
// strike register reject inserts that are far in the future and
// would consume strike register resources for a long time. This
// allows the strike server to degrade optimally in cases where the
// insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
// per second.
uint32_t upper_bound =
current_time_internal +
std::min(current_time_internal - horizon_, window_secs_);
return std::make_pair(lower_bound, upper_bound);
}
uint32_t StrikeRegister::ExternalTimeToInternal(uint32_t external_time) const {
return external_time - internal_epoch_;
}
uint32_t StrikeRegister::BestMatch(const uint8_t v[24]) const {
if (internal_node_head_ == kNil) {
return kNil;
}
uint32_t next = internal_node_head_ >> 8;
while ((next & kExternalFlag) == 0) {
InternalNode* node = &internal_nodes_[next];
uint8_t b = v[node->critbyte()];
unsigned direction =
(1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
next = node->child(direction);
}
return next & ~kExternalFlag;
}
uint32_t& StrikeRegister::external_node_next_ptr(unsigned i) {
return *reinterpret_cast<uint32_t*>(&external_nodes_[i * kExternalNodeSize]);
}
uint8_t* StrikeRegister::external_node(unsigned i) {
return &external_nodes_[i * kExternalNodeSize];
}
uint32_t StrikeRegister::GetFreeExternalNode() {
uint32_t index = external_node_free_head_;
DCHECK(index != kNil);
external_node_free_head_ = external_node_next_ptr(index);
return index;
}
uint32_t StrikeRegister::GetFreeInternalNode() {
uint32_t index = internal_node_free_head_;
DCHECK(index != kNil);
internal_node_free_head_ = internal_nodes_[index].next();
return index;
}
void StrikeRegister::DropOldestNode() {
// DropOldestNode should never be called on an empty tree.
DCHECK(internal_node_head_ != kNil);
// An internal node in a crit-bit tree always has exactly two children.
// This means that, if we are removing an external node (which is one of
// those children), then we also need to remove an internal node. In order
// to do that we keep pointers to the parent (wherep) and grandparent
// (whereq) when walking down the tree.
uint32_t p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
*whereq = nullptr;
while ((p & kExternalFlag) == 0) {
whereq = wherep;
InternalNode* inode = &internal_nodes_[p];
// We always go left, towards the smallest element, exploiting the fact
// that the timestamp is big-endian and at the start of the value.
wherep = &inode->data_[0];
p = (*wherep) >> 8;
}
const uint32_t ext_index = p & ~kExternalFlag;
const uint8_t* ext_node = external_node(ext_index);
uint32_t new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1;
DCHECK_LE(horizon_, new_horizon);
horizon_ = new_horizon;
if (!whereq) {
// We are removing the last element in a tree.
internal_node_head_ = kNil;
FreeExternalNode(ext_index);
return;
}
// |wherep| points to the left child pointer in the parent so we can add
// one and dereference to get the right child.
const uint32_t other_child = wherep[1];
FreeInternalNode((*whereq) >> 8);
*whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
FreeExternalNode(ext_index);
}
void StrikeRegister::FreeExternalNode(uint32_t index) {
external_node_next_ptr(index) = external_node_free_head_;
external_node_free_head_ = index;
}
void StrikeRegister::FreeInternalNode(uint32_t index) {
internal_nodes_[index].SetNextPtr(internal_node_free_head_);
internal_node_free_head_ = index;
}
void StrikeRegister::ValidateTree(uint32_t internal_node,
int last_bit,
const vector<pair<unsigned, bool>>& bits,
const set<uint32_t>& free_internal_nodes,
const set<uint32_t>& free_external_nodes,
set<uint32_t>* used_internal_nodes,
set<uint32_t>* used_external_nodes) {
CHECK_LT(internal_node, max_entries_);
const InternalNode* i = &internal_nodes_[internal_node];
unsigned bit = 0;
switch (i->otherbits()) {
case 0xff & ~(1 << 7):
bit = 0;
break;
case 0xff & ~(1 << 6):
bit = 1;
break;
case 0xff & ~(1 << 5):
bit = 2;
break;
case 0xff & ~(1 << 4):
bit = 3;
break;
case 0xff & ~(1 << 3):
bit = 4;
break;
case 0xff & ~(1 << 2):
bit = 5;
break;
case 0xff & ~(1 << 1):
bit = 6;
break;
case 0xff & ~1:
bit = 7;
break;
default:
CHECK(false);
}
bit += 8 * i->critbyte();
if (last_bit > -1) {
CHECK_GT(bit, static_cast<unsigned>(last_bit));
}
CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
for (unsigned child = 0; child < 2; child++) {
if (i->child(child) & kExternalFlag) {
uint32_t ext = i->child(child) & ~kExternalFlag;
CHECK_EQ(free_external_nodes.count(ext), 0u);
CHECK_EQ(used_external_nodes->count(ext), 0u);
used_external_nodes->insert(ext);
const uint8_t* bytes = external_node(ext);
for (const pair<unsigned, bool>& pair : bits) {
unsigned byte = pair.first / 8;
DCHECK_LE(byte, 0xffu);
unsigned bit_new = pair.first % 8;
static const uint8_t kMasks[8] = {0x80, 0x40, 0x20, 0x10,
0x08, 0x04, 0x02, 0x01};
CHECK_EQ((bytes[byte] & kMasks[bit_new]) != 0, pair.second);
}
} else {
uint32_t inter = i->child(child);
vector<pair<unsigned, bool>> new_bits(bits);
new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
CHECK_EQ(free_internal_nodes.count(inter), 0u);
CHECK_EQ(used_internal_nodes->count(inter), 0u);
used_internal_nodes->insert(inter);
ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
used_internal_nodes, used_external_nodes);
}
}
}
} // namespace net