blob: 4daaaeed5c8a57145f1b0f264933147fc32750af [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/iovector.h"
#include <string.h>
#include <memory>
#include <string>
#include "net/test/gtest_util.h"
#include "testing/gtest/include/gtest/gtest.h"
using std::string;
namespace net {
namespace test {
namespace {
const char* const test_data[] = {
"test string 1, a medium size one.", "test string2",
"test string 3, a looooooooooooong loooooooooooooooong string"};
TEST(IOVectorTest, CopyConstructor) {
IOVector iov1;
for (size_t i = 0; i < arraysize(test_data); ++i) {
iov1.Append(const_cast<char*>(test_data[i]), strlen(test_data[i]));
}
IOVector iov2 = iov1;
EXPECT_EQ(iov2.Size(), iov1.Size());
for (size_t i = 0; i < iov2.Size(); ++i) {
EXPECT_TRUE(iov2.iovec()[i].iov_base == iov1.iovec()[i].iov_base);
EXPECT_EQ(iov2.iovec()[i].iov_len, iov1.iovec()[i].iov_len);
}
EXPECT_EQ(iov2.TotalBufferSize(), iov1.TotalBufferSize());
}
TEST(IOVectorTest, AssignmentOperator) {
IOVector iov1;
for (size_t i = 0; i < arraysize(test_data); ++i) {
iov1.Append(const_cast<char*>(test_data[i]), strlen(test_data[i]));
}
IOVector iov2;
iov2.Append(const_cast<char*>("ephemeral string"), 16);
// The following assignment results in a shallow copy;
// both IOVectors point to the same underlying data.
iov2 = iov1;
EXPECT_EQ(iov2.Size(), iov1.Size());
for (size_t i = 0; i < iov2.Size(); ++i) {
EXPECT_TRUE(iov2.iovec()[i].iov_base == iov1.iovec()[i].iov_base);
EXPECT_EQ(iov2.iovec()[i].iov_len, iov1.iovec()[i].iov_len);
}
EXPECT_EQ(iov2.TotalBufferSize(), iov1.TotalBufferSize());
}
TEST(IOVectorTest, Append) {
IOVector iov;
int length = 0;
const struct iovec* iov2 = iov.iovec();
ASSERT_EQ(0u, iov.Size());
ASSERT_TRUE(iov2 == nullptr);
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
const int append_len = str_len / 2;
// This should append a new block.
iov.Append(const_cast<char*>(test_data[i]), append_len);
length += append_len;
ASSERT_EQ(i + 1, static_cast<size_t>(iov.Size()));
ASSERT_TRUE(iov.LastBlockEnd() == test_data[i] + append_len);
// This should just lengthen the existing block.
iov.Append(const_cast<char*>(test_data[i] + append_len),
str_len - append_len);
length += (str_len - append_len);
ASSERT_EQ(i + 1, static_cast<size_t>(iov.Size()));
ASSERT_TRUE(iov.LastBlockEnd() == test_data[i] + str_len);
}
iov2 = iov.iovec();
ASSERT_TRUE(iov2 != nullptr);
for (size_t i = 0; i < iov.Size(); ++i) {
ASSERT_TRUE(test_data[i] == iov2[i].iov_base);
ASSERT_EQ(strlen(test_data[i]), iov2[i].iov_len);
}
}
TEST(IOVectorTest, AppendIovec) {
IOVector iov;
const struct iovec test_iov[] = {{const_cast<char*>("foo"), 3},
{const_cast<char*>("bar"), 3},
{const_cast<char*>("buzzzz"), 6}};
iov.AppendIovec(test_iov, arraysize(test_iov));
for (size_t i = 0; i < arraysize(test_iov); ++i) {
EXPECT_EQ(test_iov[i].iov_base, iov.iovec()[i].iov_base);
EXPECT_EQ(test_iov[i].iov_len, iov.iovec()[i].iov_len);
}
// Test AppendIovecAtMostBytes.
iov.Clear();
// Stop in the middle of a block.
EXPECT_EQ(5u, iov.AppendIovecAtMostBytes(test_iov, arraysize(test_iov), 5));
EXPECT_EQ(5u, iov.TotalBufferSize());
iov.Append(static_cast<char*>(test_iov[1].iov_base) + 2, 1);
// Make sure the boundary case, where max_bytes == size of block also works.
EXPECT_EQ(6u, iov.AppendIovecAtMostBytes(&test_iov[2], 1, 6));
ASSERT_LE(arraysize(test_iov), static_cast<size_t>(iov.Size()));
for (size_t i = 0; i < arraysize(test_iov); ++i) {
EXPECT_EQ(test_iov[i].iov_base, iov.iovec()[i].iov_base);
EXPECT_EQ(test_iov[i].iov_len, iov.iovec()[i].iov_len);
}
}
TEST(IOVectorTest, ConsumeHalfBlocks) {
IOVector iov;
int length = 0;
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
iov.Append(const_cast<char*>(test_data[i]), str_len);
length += str_len;
}
const char* endp = iov.LastBlockEnd();
for (size_t i = 0; i < arraysize(test_data); ++i) {
const struct iovec* iov2 = iov.iovec();
const size_t str_len = strlen(test_data[i]);
size_t tmp = str_len / 2;
ASSERT_TRUE(iov2 != nullptr);
ASSERT_TRUE(iov2[0].iov_base == test_data[i]);
ASSERT_EQ(str_len, iov2[0].iov_len);
// Consume half of the first block.
size_t consumed = iov.Consume(tmp);
ASSERT_EQ(tmp, consumed);
ASSERT_EQ(arraysize(test_data) - i, static_cast<size_t>(iov.Size()));
iov2 = iov.iovec();
ASSERT_TRUE(iov2 != nullptr);
ASSERT_TRUE(iov2[0].iov_base == test_data[i] + tmp);
ASSERT_EQ(iov2[0].iov_len, str_len - tmp);
// Consume the rest of the first block.
consumed = iov.Consume(str_len - tmp);
ASSERT_EQ(str_len - tmp, consumed);
ASSERT_EQ(arraysize(test_data) - i - 1, static_cast<size_t>(iov.Size()));
iov2 = iov.iovec();
if (iov.Size() > 0) {
ASSERT_TRUE(iov2 != nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == endp);
} else {
ASSERT_TRUE(iov2 == nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == nullptr);
}
}
}
TEST(IOVectorTest, ConsumeTwoAndHalfBlocks) {
IOVector iov;
int length = 0;
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
iov.Append(const_cast<char*>(test_data[i]), str_len);
length += str_len;
}
const size_t last_len = strlen(test_data[arraysize(test_data) - 1]);
const size_t half_len = last_len / 2;
const char* endp = iov.LastBlockEnd();
size_t consumed = iov.Consume(length - half_len);
ASSERT_EQ(length - half_len, consumed);
const struct iovec* iov2 = iov.iovec();
ASSERT_TRUE(iov2 != nullptr);
ASSERT_EQ(1u, iov.Size());
ASSERT_TRUE(iov2[0].iov_base ==
test_data[arraysize(test_data) - 1] + last_len - half_len);
ASSERT_EQ(half_len, iov2[0].iov_len);
ASSERT_TRUE(iov.LastBlockEnd() == endp);
consumed = iov.Consume(half_len);
ASSERT_EQ(half_len, consumed);
iov2 = iov.iovec();
ASSERT_EQ(0u, iov.Size());
ASSERT_TRUE(iov2 == nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == nullptr);
}
TEST(IOVectorTest, ConsumeTooMuch) {
IOVector iov;
int length = 0;
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
iov.Append(const_cast<char*>(test_data[i]), str_len);
length += str_len;
}
int consumed = 0;
EXPECT_DFATAL({ consumed = iov.Consume(length + 1); },
"Attempting to consume 1 non-existent bytes.");
ASSERT_EQ(length, consumed);
const struct iovec* iov2 = iov.iovec();
ASSERT_EQ(0u, iov.Size());
ASSERT_TRUE(iov2 == nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == nullptr);
}
TEST(IOVectorTest, ConsumeAndCopyHalfBlocks) {
IOVector iov;
int length = 0;
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
iov.Append(const_cast<char*>(test_data[i]), str_len);
length += str_len;
}
const char* endp = iov.LastBlockEnd();
for (size_t i = 0; i < arraysize(test_data); ++i) {
const struct iovec* iov2 = iov.iovec();
const size_t str_len = strlen(test_data[i]);
size_t tmp = str_len / 2;
ASSERT_TRUE(iov2 != nullptr);
ASSERT_TRUE(iov2[0].iov_base == test_data[i]);
ASSERT_EQ(str_len, iov2[0].iov_len);
// Consume half of the first block.
std::unique_ptr<char[]> buffer(new char[str_len]);
size_t consumed = iov.ConsumeAndCopy(tmp, buffer.get());
EXPECT_EQ(0, memcmp(test_data[i], buffer.get(), tmp));
ASSERT_EQ(tmp, consumed);
ASSERT_EQ(arraysize(test_data) - i, static_cast<size_t>(iov.Size()));
iov2 = iov.iovec();
ASSERT_TRUE(iov2 != nullptr);
ASSERT_TRUE(iov2[0].iov_base == test_data[i] + tmp);
ASSERT_EQ(iov2[0].iov_len, str_len - tmp);
// Consume the rest of the first block.
consumed = iov.ConsumeAndCopy(str_len - tmp, buffer.get());
ASSERT_EQ(str_len - tmp, consumed);
ASSERT_EQ(arraysize(test_data) - i - 1, static_cast<size_t>(iov.Size()));
iov2 = iov.iovec();
if (iov.Size() > 0) {
ASSERT_TRUE(iov2 != nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == endp);
} else {
ASSERT_TRUE(iov2 == nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == nullptr);
}
}
}
TEST(IOVectorTest, ConsumeAndCopyTwoAndHalfBlocks) {
IOVector iov;
size_t length = 0;
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
iov.Append(const_cast<char*>(test_data[i]), str_len);
length += str_len;
}
const size_t last_len = strlen(test_data[arraysize(test_data) - 1]);
const size_t half_len = last_len / 2;
const char* endp = iov.LastBlockEnd();
std::unique_ptr<char[]> buffer(new char[length]);
size_t consumed = iov.ConsumeAndCopy(length - half_len, buffer.get());
ASSERT_EQ(length - half_len, consumed);
const struct iovec* iov2 = iov.iovec();
ASSERT_TRUE(iov2 != nullptr);
ASSERT_EQ(1u, iov.Size());
ASSERT_TRUE(iov2[0].iov_base ==
test_data[arraysize(test_data) - 1] + last_len - half_len);
ASSERT_EQ(half_len, iov2[0].iov_len);
ASSERT_TRUE(iov.LastBlockEnd() == endp);
consumed = iov.Consume(half_len);
ASSERT_EQ(half_len, consumed);
iov2 = iov.iovec();
ASSERT_EQ(0u, iov.Size());
ASSERT_TRUE(iov2 == nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == nullptr);
}
TEST(IOVectorTest, ConsumeAndCopyTooMuch) {
IOVector iov;
int length = 0;
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
iov.Append(const_cast<char*>(test_data[i]), str_len);
length += str_len;
}
int consumed = 0;
std::unique_ptr<char[]> buffer(new char[length + 1]);
EXPECT_DFATAL({ consumed = iov.ConsumeAndCopy(length + 1, buffer.get()); },
"Attempting to consume 1 non-existent bytes.");
ASSERT_EQ(length, consumed);
const struct iovec* iov2 = iov.iovec();
ASSERT_EQ(0u, iov.Size());
ASSERT_TRUE(iov2 == nullptr);
ASSERT_TRUE(iov.LastBlockEnd() == nullptr);
}
TEST(IOVectorTest, Clear) {
IOVector iov;
int length = 0;
for (size_t i = 0; i < arraysize(test_data); ++i) {
const int str_len = strlen(test_data[i]);
iov.Append(const_cast<char*>(test_data[i]), str_len);
length += str_len;
}
const struct iovec* iov2 = iov.iovec();
ASSERT_TRUE(iov2 != nullptr);
ASSERT_EQ(arraysize(test_data), static_cast<size_t>(iov.Size()));
iov.Clear();
iov2 = iov.iovec();
ASSERT_EQ(0u, iov.Size());
ASSERT_TRUE(iov2 == nullptr);
}
TEST(IOVectorTest, Capacity) {
IOVector iov;
// Note: IOVector merges adjacent Appends() into a single iov.
// Therefore, if we expect final size of iov to be 3, we must insure
// that the items we are appending are not adjacent. To achieve that
// we use use an array (a[1] provides a buffer between a[0] and b[0],
// and makes them non-adjacent).
char a[2], b[2], c[2];
iov.Append(&a[0], 1);
iov.Append(&b[0], 1);
iov.Append(&c[0], 1);
ASSERT_EQ(3u, iov.Size());
size_t capacity = iov.Capacity();
EXPECT_LE(iov.Size(), capacity);
iov.Consume(2);
// The capacity should not have changed.
EXPECT_EQ(capacity, iov.Capacity());
}
TEST(IOVectorTest, Swap) {
IOVector iov1, iov2;
// See IOVector merge comment above.
char a[2], b[2], c[2], d[2], e[2];
iov1.Append(&a[0], 1);
iov1.Append(&b[0], 1);
iov2.Append(&c[0], 1);
iov2.Append(&d[0], 1);
iov2.Append(&e[0], 1);
iov1.Swap(&iov2);
ASSERT_EQ(3u, iov1.Size());
EXPECT_EQ(&c[0], iov1.iovec()[0].iov_base);
EXPECT_EQ(1u, iov1.iovec()[0].iov_len);
EXPECT_EQ(&d[0], iov1.iovec()[1].iov_base);
EXPECT_EQ(1u, iov1.iovec()[1].iov_len);
EXPECT_EQ(&e[0], iov1.iovec()[2].iov_base);
EXPECT_EQ(1u, iov1.iovec()[2].iov_len);
ASSERT_EQ(2u, iov2.Size());
EXPECT_EQ(&a[0], iov2.iovec()[0].iov_base);
EXPECT_EQ(1u, iov2.iovec()[0].iov_len);
EXPECT_EQ(&b[0], iov2.iovec()[1].iov_base);
EXPECT_EQ(1u, iov2.iovec()[1].iov_len);
}
} // namespace
} // namespace test
} // namespace net