blob: ce0cb72d31c3b8e8eccea0b8801610689588fdb9 [file] [log] [blame]
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer_buffer.h"
#include <algorithm>
#include <limits>
#include <map>
#include <string>
#include <utility>
#include "base/logging.h"
#include "base/macros.h"
#include "base/rand_util.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gmock_mutant.h"
#include "testing/gtest/include/gtest/gtest.h"
using std::min;
using std::string;
namespace net {
namespace test {
char GetCharFromIOVecs(size_t offset, iovec iov[], size_t count) {
size_t start_offset = 0;
for (size_t i = 0; i < count; i++) {
if (iov[i].iov_len == 0) {
continue;
}
size_t end_offset = start_offset + iov[i].iov_len - 1;
if (offset >= start_offset && offset <= end_offset) {
const char* buf = reinterpret_cast<const char*>(iov[i].iov_base);
return buf[offset - start_offset];
}
start_offset += iov[i].iov_len;
}
LOG(ERROR) << "Could not locate char at offset " << offset << " in " << count
<< " iovecs";
for (size_t i = 0; i < count; ++i) {
LOG(ERROR) << " iov[" << i << "].iov_len = " << iov[i].iov_len;
}
return '\0';
}
static const size_t kBlockSizeBytes =
QuicStreamSequencerBuffer::kBlockSizeBytes;
typedef QuicStreamSequencerBuffer::BufferBlock BufferBlock;
typedef QuicStreamSequencerBuffer::Gap Gap;
typedef QuicStreamSequencerBuffer::FrameInfo FrameInfo;
class QuicStreamSequencerBufferPeer {
public:
explicit QuicStreamSequencerBufferPeer(QuicStreamSequencerBuffer* buffer)
: buffer_(buffer) {}
// Read from this buffer_->into the given destination buffer_-> up to the
// size of the destination. Returns the number of bytes read. Reading from
// an empty buffer_->returns 0.
size_t Read(char* dest_buffer, size_t size) {
iovec dest;
dest.iov_base = dest_buffer, dest.iov_len = size;
return buffer_->Readv(&dest, 1);
}
// If buffer is empty, the blocks_ array must be empty, which means all
// blocks are deallocated.
bool CheckEmptyInvariants() {
return !buffer_->Empty() || IsBlockArrayEmpty();
}
bool IsBlockArrayEmpty() {
size_t count = buffer_->blocks_count_;
for (size_t i = 0; i < count; i++) {
if (buffer_->blocks_[i] != nullptr) {
return false;
}
}
return true;
}
bool CheckInitialState() {
EXPECT_TRUE(buffer_->Empty() && buffer_->total_bytes_read_ == 0 &&
buffer_->num_bytes_buffered_ == 0);
return CheckBufferInvariants();
}
bool CheckBufferInvariants() {
QuicStreamOffset data_span =
buffer_->gaps_.back().begin_offset - buffer_->total_bytes_read_;
bool capacity_sane = data_span <= buffer_->max_buffer_capacity_bytes_ &&
data_span >= buffer_->num_bytes_buffered_;
if (!capacity_sane) {
LOG(ERROR) << "data span is larger than capacity.";
LOG(ERROR) << "total read: " << buffer_->total_bytes_read_
<< " last byte: " << buffer_->gaps_.back().begin_offset;
}
bool total_read_sane =
buffer_->gaps_.front().begin_offset >= buffer_->total_bytes_read_;
if (!total_read_sane) {
LOG(ERROR) << "read across 1st gap.";
}
bool read_offset_sane = buffer_->ReadOffset() < kBlockSizeBytes;
if (!capacity_sane) {
LOG(ERROR) << "read offset go beyond 1st block";
}
bool block_match_capacity =
(buffer_->max_buffer_capacity_bytes_ <=
buffer_->blocks_count_ * kBlockSizeBytes) &&
(buffer_->max_buffer_capacity_bytes_ >
(buffer_->blocks_count_ - 1) * kBlockSizeBytes);
if (!capacity_sane) {
LOG(ERROR) << "block number not match capcaity.";
}
bool block_retired_when_empty = CheckEmptyInvariants();
if (!block_retired_when_empty) {
LOG(ERROR) << "block is not retired after use.";
}
return capacity_sane && total_read_sane && read_offset_sane &&
block_match_capacity && block_retired_when_empty;
}
size_t GetInBlockOffset(QuicStreamOffset offset) {
return buffer_->GetInBlockOffset(offset);
}
BufferBlock* GetBlock(size_t index) { return buffer_->blocks_[index]; }
int GapSize() { return buffer_->gaps_.size(); }
std::list<Gap> GetGaps() { return buffer_->gaps_; }
size_t max_buffer_capacity() { return buffer_->max_buffer_capacity_bytes_; }
size_t ReadableBytes() { return buffer_->ReadableBytes(); }
std::map<QuicStreamOffset, FrameInfo>* frame_arrival_time_map() {
return &(buffer_->frame_arrival_time_map_);
}
void set_total_bytes_read(QuicStreamOffset total_bytes_read) {
buffer_->total_bytes_read_ = total_bytes_read;
}
void set_gaps(const std::list<Gap>& gaps) { buffer_->gaps_ = gaps; }
private:
QuicStreamSequencerBuffer* buffer_;
};
namespace {
class QuicStreamSequencerBufferTest : public testing::Test {
public:
void SetUp() override { Initialize(); }
void ResetMaxCapacityBytes(size_t max_capacity_bytes) {
max_capacity_bytes_ = max_capacity_bytes;
Initialize();
}
protected:
void Initialize() {
buffer_.reset(new QuicStreamSequencerBuffer(max_capacity_bytes_));
helper_.reset(new QuicStreamSequencerBufferPeer(buffer_.get()));
}
// Use 2.5 here to make sure the buffer has more than one block and its end
// doesn't align with the end of a block in order to test all the offset
// calculation.
size_t max_capacity_bytes_ = 2.5 * kBlockSizeBytes;
MockClock clock_;
std::unique_ptr<QuicStreamSequencerBuffer> buffer_;
std::unique_ptr<QuicStreamSequencerBufferPeer> helper_;
string error_details_;
};
TEST_F(QuicStreamSequencerBufferTest, InitializationWithDifferentSizes) {
const size_t kCapacity = 2 * QuicStreamSequencerBuffer::kBlockSizeBytes;
ResetMaxCapacityBytes(kCapacity);
EXPECT_EQ(max_capacity_bytes_, helper_->max_buffer_capacity());
EXPECT_TRUE(helper_->CheckInitialState());
const size_t kCapacity1 = 8 * QuicStreamSequencerBuffer::kBlockSizeBytes;
ResetMaxCapacityBytes(kCapacity1);
EXPECT_EQ(kCapacity1, helper_->max_buffer_capacity());
EXPECT_TRUE(helper_->CheckInitialState());
}
TEST_F(QuicStreamSequencerBufferTest, ClearOnEmpty) {
buffer_->Clear();
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamData0length) {
size_t written;
QuicErrorCode error = buffer_->OnStreamData(800, "", clock_.ApproximateNow(),
&written, &error_details_);
EXPECT_EQ(error, QUIC_EMPTY_STREAM_FRAME_NO_FIN);
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithinBlock) {
string source(1024, 'a');
size_t written;
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t = clock_.ApproximateNow();
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(800, source, t, &written, &error_details_));
BufferBlock* block_ptr = helper_->GetBlock(0);
for (size_t i = 0; i < source.size(); ++i) {
ASSERT_EQ('a', block_ptr->buffer[helper_->GetInBlockOffset(800) + i]);
}
EXPECT_EQ(2, helper_->GapSize());
std::list<Gap> gaps = helper_->GetGaps();
EXPECT_EQ(800u, gaps.front().end_offset);
EXPECT_EQ(1824u, gaps.back().begin_offset);
auto frame_map = helper_->frame_arrival_time_map();
EXPECT_EQ(1u, frame_map->size());
EXPECT_EQ(800u, frame_map->begin()->first);
EXPECT_EQ(t, (*frame_map)[800].timestamp);
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithOverlap) {
string source(1024, 'a');
// Write something into [800, 1824)
size_t written;
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t1 = clock_.ApproximateNow();
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(800, source, t1, &written, &error_details_));
// Try to write to [0, 1024) and [1024, 2048).
// But no byte will be written since overlap.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t2 = clock_.ApproximateNow();
EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
buffer_->OnStreamData(0, source, t2, &written, &error_details_));
EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
buffer_->OnStreamData(1024, source, t2, &written, &error_details_));
auto frame_map = helper_->frame_arrival_time_map();
EXPECT_EQ(1u, frame_map->size());
EXPECT_EQ(t1, (*frame_map)[800].timestamp);
}
TEST_F(QuicStreamSequencerBufferTest,
OnStreamDataOverlapAndDuplicateCornerCases) {
string source(1024, 'a');
// Write something into [800, 1824)
size_t written;
buffer_->OnStreamData(800, source, clock_.ApproximateNow(), &written,
&error_details_);
source = string(800, 'b');
// Try to write to [1, 801), but should fail due to overlapping
EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
&error_details_));
// write to [0, 800)
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_));
// Try to write one byte to [1823, 1824), but should count as duplicate
string one_byte = "c";
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(1823, one_byte, clock_.ApproximateNow(),
&written, &error_details_));
EXPECT_EQ(0u, written);
// write one byte to [1824, 1825)
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(1824, one_byte, clock_.ApproximateNow(),
&written, &error_details_));
auto frame_map = helper_->frame_arrival_time_map();
EXPECT_EQ(3u, frame_map->size());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithoutOverlap) {
string source(1024, 'a');
// Write something into [800, 1824).
size_t written;
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(800, source, clock_.ApproximateNow(),
&written, &error_details_));
source = string(100, 'b');
// Write something into [kBlockSizeBytes * 2 - 20, kBlockSizeBytes * 2 + 80).
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(kBlockSizeBytes * 2 - 20, source,
clock_.ApproximateNow(), &written,
&error_details_));
EXPECT_EQ(3, helper_->GapSize());
EXPECT_EQ(1024u + 100u, buffer_->BytesBuffered());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamDataInLongStreamWithOverlap) {
// Assume a stream has already buffered almost 4GB.
uint64_t total_bytes_read = pow(2, 32) - 1;
helper_->set_total_bytes_read(total_bytes_read);
helper_->set_gaps(std::list<Gap>(
1, Gap(total_bytes_read, std::numeric_limits<QuicStreamOffset>::max())));
// Three new out of order frames arrive.
const size_t kBytesToWrite = 100;
string source(kBytesToWrite, 'a');
size_t written;
// Frame [2^32 + 500, 2^32 + 600).
QuicStreamOffset offset = pow(2, 32) + 500;
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
&written, &error_details_));
EXPECT_EQ(2, helper_->GapSize());
// Frame [2^32 + 700, 2^32 + 800).
offset = pow(2, 32) + 700;
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
&written, &error_details_));
EXPECT_EQ(3, helper_->GapSize());
// Another frame [2^32 + 300, 2^32 + 400).
offset = pow(2, 32) + 300;
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
&written, &error_details_));
EXPECT_EQ(4, helper_->GapSize());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEnd) {
// Write 50 bytes to the end.
const size_t kBytesToWrite = 50;
string source(kBytesToWrite, 'a');
size_t written;
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source,
clock_.ApproximateNow(), &written,
&error_details_));
EXPECT_EQ(50u, buffer_->BytesBuffered());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEndCorner) {
// Write 1 byte to the end.
const size_t kBytesToWrite = 1;
string source(kBytesToWrite, 'a');
size_t written;
EXPECT_EQ(QUIC_NO_ERROR,
buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source,
clock_.ApproximateNow(), &written,
&error_details_));
EXPECT_EQ(1u, buffer_->BytesBuffered());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, OnStreamDataBeyondCapacity) {
string source(60, 'a');
size_t written;
EXPECT_EQ(QUIC_INTERNAL_ERROR,
buffer_->OnStreamData(max_capacity_bytes_ - 50, source,
clock_.ApproximateNow(), &written,
&error_details_));
EXPECT_TRUE(helper_->CheckBufferInvariants());
source = "b";
EXPECT_EQ(QUIC_INTERNAL_ERROR,
buffer_->OnStreamData(max_capacity_bytes_, source,
clock_.ApproximateNow(), &written,
&error_details_));
EXPECT_TRUE(helper_->CheckBufferInvariants());
EXPECT_EQ(QUIC_INTERNAL_ERROR,
buffer_->OnStreamData(max_capacity_bytes_ * 1000, source,
clock_.ApproximateNow(), &written,
&error_details_));
EXPECT_TRUE(helper_->CheckBufferInvariants());
EXPECT_EQ(0u, buffer_->BytesBuffered());
}
TEST_F(QuicStreamSequencerBufferTest, Readv100Bytes) {
string source(1024, 'a');
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t1 = clock_.ApproximateNow();
// Write something into [kBlockSizeBytes, kBlockSizeBytes + 1024).
size_t written;
buffer_->OnStreamData(kBlockSizeBytes, source, t1, &written, &error_details_);
EXPECT_FALSE(buffer_->HasBytesToRead());
source = string(100, 'b');
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t2 = clock_.ApproximateNow();
// Write something into [0, 100).
buffer_->OnStreamData(0, source, t2, &written, &error_details_);
EXPECT_TRUE(buffer_->HasBytesToRead());
EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size());
// Read into a iovec array with total capacity of 120 bytes.
char dest[120];
iovec iovecs[3]{iovec{dest, 40}, iovec{dest + 40, 40}, iovec{dest + 80, 40}};
size_t read = buffer_->Readv(iovecs, 3);
EXPECT_EQ(100u, read);
EXPECT_EQ(100u, buffer_->BytesConsumed());
EXPECT_EQ(source, string(dest, read));
EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossBlocks) {
string source(kBlockSizeBytes + 50, 'a');
// Write 1st block to full and extand 50 bytes to next block.
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
EXPECT_EQ(source.size(), helper_->ReadableBytes());
// Iteratively read 512 bytes from buffer_-> Overwrite dest[] each time.
char dest[512];
while (helper_->ReadableBytes()) {
std::fill(dest, dest + 512, 0);
iovec iovecs[2]{iovec{dest, 256}, iovec{dest + 256, 256}};
buffer_->Readv(iovecs, 2);
}
// The last read only reads the rest 50 bytes in 2nd block.
EXPECT_EQ(string(50, 'a'), string(dest, 50));
EXPECT_EQ(0, dest[50]) << "Dest[50] shouln't be filled.";
EXPECT_EQ(source.size(), buffer_->BytesConsumed());
EXPECT_TRUE(buffer_->Empty());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, ClearAfterRead) {
string source(kBlockSizeBytes + 50, 'a');
// Write 1st block to full with 'a'.
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
// Read first 512 bytes from buffer to make space at the beginning.
char dest[512]{0};
const iovec iov{dest, 512};
buffer_->Readv(&iov, 1);
// Clear() should make buffer empty while preserving BytesConsumed()
buffer_->Clear();
EXPECT_TRUE(buffer_->Empty());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest,
OnStreamDataAcrossLastBlockAndFillCapacity) {
string source(kBlockSizeBytes + 50, 'a');
// Write 1st block to full with 'a'.
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
// Read first 512 bytes from buffer to make space at the beginning.
char dest[512]{0};
const iovec iov{dest, 512};
buffer_->Readv(&iov, 1);
EXPECT_EQ(source.size(), written);
// Write more than half block size of bytes in the last block with 'b', which
// will wrap to the beginning and reaches the full capacity.
source = string(0.5 * kBlockSizeBytes + 512, 'b');
EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(2 * kBlockSizeBytes, source,
clock_.ApproximateNow(),
&written, &error_details_));
EXPECT_EQ(source.size(), written);
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest,
OnStreamDataAcrossLastBlockAndExceedCapacity) {
string source(kBlockSizeBytes + 50, 'a');
// Write 1st block to full.
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
// Read first 512 bytes from buffer to make space at the beginning.
char dest[512]{0};
const iovec iov{dest, 512};
buffer_->Readv(&iov, 1);
// Try to write from [max_capacity_bytes_ - 0.5 * kBlockSizeBytes,
// max_capacity_bytes_ + 512 + 1). But last bytes exceeds current capacity.
source = string(0.5 * kBlockSizeBytes + 512 + 1, 'b');
EXPECT_EQ(QUIC_INTERNAL_ERROR,
buffer_->OnStreamData(2 * kBlockSizeBytes, source,
clock_.ApproximateNow(), &written,
&error_details_));
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossLastBlock) {
// Write to full capacity and read out 512 bytes at beginning and continue
// appending 256 bytes.
string source(max_capacity_bytes_, 'a');
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t = clock_.ApproximateNow();
size_t written;
buffer_->OnStreamData(0, source, t, &written, &error_details_);
char dest[512]{0};
const iovec iov{dest, 512};
buffer_->Readv(&iov, 1);
source = string(256, 'b');
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t2 = clock_.ApproximateNow();
buffer_->OnStreamData(max_capacity_bytes_, source, t2, &written,
&error_details_);
EXPECT_TRUE(helper_->CheckBufferInvariants());
EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size());
// Read all data out.
std::unique_ptr<char[]> dest1{new char[max_capacity_bytes_]};
dest1[0] = 0;
const iovec iov1{dest1.get(), max_capacity_bytes_};
EXPECT_EQ(max_capacity_bytes_ - 512 + 256, buffer_->Readv(&iov1, 1));
EXPECT_EQ(max_capacity_bytes_ + 256, buffer_->BytesConsumed());
EXPECT_TRUE(buffer_->Empty());
EXPECT_TRUE(helper_->CheckBufferInvariants());
EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size());
}
TEST_F(QuicStreamSequencerBufferTest, ReadvEmpty) {
char dest[512]{0};
iovec iov{dest, 512};
size_t read = buffer_->Readv(&iov, 1);
EXPECT_EQ(0u, read);
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsEmpty) {
iovec iovs[2];
int iov_count = buffer_->GetReadableRegions(iovs, 2);
EXPECT_EQ(0, iov_count);
EXPECT_EQ(nullptr, iovs[iov_count].iov_base);
EXPECT_EQ(0u, iovs[iov_count].iov_len);
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsBlockedByGap) {
// Write into [1, 1024).
string source(1023, 'a');
size_t written;
buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
&error_details_);
// Try to get readable regions, but none is there.
iovec iovs[2];
int iov_count = buffer_->GetReadableRegions(iovs, 2);
EXPECT_EQ(0, iov_count);
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsTillEndOfBlock) {
// Write first block to full with [0, 256) 'a' and the rest 'b' then read out
// [0, 256)
string source(kBlockSizeBytes, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[256];
helper_->Read(dest, 256);
// Get readable region from [256, 1024)
iovec iovs[2];
int iov_count = buffer_->GetReadableRegions(iovs, 2);
EXPECT_EQ(1, iov_count);
EXPECT_EQ(
string(kBlockSizeBytes - 256, 'a'),
string(reinterpret_cast<const char*>(iovs[0].iov_base), iovs[0].iov_len));
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsWithinOneBlock) {
// Write into [0, 1024) and then read out [0, 256)
string source(1024, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[256];
helper_->Read(dest, 256);
// Get readable region from [256, 1024)
iovec iovs[2];
int iov_count = buffer_->GetReadableRegions(iovs, 2);
EXPECT_EQ(1, iov_count);
EXPECT_EQ(
string(1024 - 256, 'a'),
string(reinterpret_cast<const char*>(iovs[0].iov_base), iovs[0].iov_len));
}
TEST_F(QuicStreamSequencerBufferTest,
GetReadableRegionsAcrossBlockWithLongIOV) {
// Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
string source(2 * kBlockSizeBytes + 1024, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[1024];
helper_->Read(dest, 1024);
iovec iovs[4];
int iov_count = buffer_->GetReadableRegions(iovs, 4);
EXPECT_EQ(3, iov_count);
EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len);
EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len);
EXPECT_EQ(1024u, iovs[2].iov_len);
}
TEST_F(QuicStreamSequencerBufferTest,
GetReadableRegionsWithMultipleIOVsAcrossEnd) {
// Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
// and then append 1024 + 512 bytes.
string source(2.5 * kBlockSizeBytes - 1024, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[1024];
helper_->Read(dest, 1024);
// Write across the end.
source = string(1024 + 512, 'b');
buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source,
clock_.ApproximateNow(), &written, &error_details_);
// Use short iovec's.
iovec iovs[2];
int iov_count = buffer_->GetReadableRegions(iovs, 2);
EXPECT_EQ(2, iov_count);
EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len);
EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len);
// Use long iovec's and wrap the end of buffer.
iovec iovs1[5];
EXPECT_EQ(4, buffer_->GetReadableRegions(iovs1, 5));
EXPECT_EQ(0.5 * kBlockSizeBytes, iovs1[2].iov_len);
EXPECT_EQ(512u, iovs1[3].iov_len);
EXPECT_EQ(string(512, 'b'),
string(reinterpret_cast<const char*>(iovs1[3].iov_base),
iovs1[3].iov_len));
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionEmpty) {
iovec iov;
QuicTime t = QuicTime::Zero();
EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t));
EXPECT_EQ(nullptr, iov.iov_base);
EXPECT_EQ(0u, iov.iov_len);
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionBeforeGap) {
// Write into [1, 1024).
string source(1023, 'a');
size_t written;
buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
&error_details_);
// GetReadableRegion should return false because range [0,1) hasn't been
// filled yet.
iovec iov;
QuicTime t = QuicTime::Zero();
EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t));
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillEndOfBlock) {
// Write into [0, kBlockSizeBytes + 1) and then read out [0, 256)
string source(kBlockSizeBytes + 1, 'a');
size_t written;
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t = clock_.ApproximateNow();
buffer_->OnStreamData(0, source, t, &written, &error_details_);
char dest[256];
helper_->Read(dest, 256);
// Get readable region from [256, 1024)
iovec iov;
QuicTime t2 = QuicTime::Zero();
EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
EXPECT_EQ(t, t2);
EXPECT_EQ(string(kBlockSizeBytes - 256, 'a'),
string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillGap) {
// Write into [0, kBlockSizeBytes - 1) and then read out [0, 256)
string source(kBlockSizeBytes - 1, 'a');
size_t written;
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t = clock_.ApproximateNow();
buffer_->OnStreamData(0, source, t, &written, &error_details_);
char dest[256];
helper_->Read(dest, 256);
// Get readable region from [256, 1023)
iovec iov;
QuicTime t2 = QuicTime::Zero();
EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
EXPECT_EQ(t, t2);
EXPECT_EQ(string(kBlockSizeBytes - 1 - 256, 'a'),
string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
}
TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionByArrivalTime) {
// Write into [0, kBlockSizeBytes - 100) and then read out [0, 256)
string source(kBlockSizeBytes - 100, 'a');
size_t written;
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t = clock_.ApproximateNow();
buffer_->OnStreamData(0, source, t, &written, &error_details_);
char dest[256];
helper_->Read(dest, 256);
// Write into [kBlockSizeBytes - 100, kBlockSizeBytes - 50)] in same time
string source2(50, 'b');
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
buffer_->OnStreamData(kBlockSizeBytes - 100, source2, t, &written,
&error_details_);
// Write into [kBlockSizeBytes - 50, kBlockSizeBytes)] in another time
string source3(50, 'c');
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
QuicTime t3 = clock_.ApproximateNow();
buffer_->OnStreamData(kBlockSizeBytes - 50, source3, t3, &written,
&error_details_);
// Get readable region from [256, 1024 - 50)
iovec iov;
QuicTime t4 = QuicTime::Zero();
EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t4));
EXPECT_EQ(t, t4);
EXPECT_EQ(string(kBlockSizeBytes - 100 - 256, 'a') + source2,
string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
}
TEST_F(QuicStreamSequencerBufferTest, MarkConsumedInOneBlock) {
// Write into [0, 1024) and then read out [0, 256)
string source(1024, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[256];
helper_->Read(dest, 256);
EXPECT_TRUE(buffer_->MarkConsumed(512));
EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
EXPECT_EQ(256u, helper_->ReadableBytes());
EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size());
buffer_->MarkConsumed(256);
EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size());
EXPECT_TRUE(buffer_->Empty());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, MarkConsumedNotEnoughBytes) {
// Write into [0, 1024) and then read out [0, 256)
string source(1024, 'a');
size_t written;
QuicTime t = clock_.ApproximateNow();
buffer_->OnStreamData(0, source, t, &written, &error_details_);
char dest[256];
helper_->Read(dest, 256);
// Consume 1st 512 bytes
EXPECT_TRUE(buffer_->MarkConsumed(512));
EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
EXPECT_EQ(256u, helper_->ReadableBytes());
// Try to consume one bytes more than available. Should return false.
EXPECT_FALSE(buffer_->MarkConsumed(257));
EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
QuicTime t2 = QuicTime::Zero();
iovec iov;
EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
EXPECT_EQ(t, t2);
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossBlock) {
// Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
string source(2 * kBlockSizeBytes + 1024, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[1024];
helper_->Read(dest, 1024);
buffer_->MarkConsumed(2 * kBlockSizeBytes);
EXPECT_EQ(source.size(), buffer_->BytesConsumed());
EXPECT_TRUE(buffer_->Empty());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossEnd) {
// Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024)
// and then append 1024 + 512 bytes.
string source(2.5 * kBlockSizeBytes - 1024, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[1024];
helper_->Read(dest, 1024);
source = string(1024 + 512, 'b');
buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source,
clock_.ApproximateNow(), &written, &error_details_);
EXPECT_EQ(1024u, buffer_->BytesConsumed());
// Consume to the end of 2nd block.
buffer_->MarkConsumed(2 * kBlockSizeBytes - 1024);
EXPECT_EQ(2 * kBlockSizeBytes, buffer_->BytesConsumed());
// Consume across the physical end of buffer
buffer_->MarkConsumed(0.5 * kBlockSizeBytes + 500);
EXPECT_EQ(max_capacity_bytes_ + 500, buffer_->BytesConsumed());
EXPECT_EQ(12u, helper_->ReadableBytes());
// Consume to the logical end of buffer
buffer_->MarkConsumed(12);
EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
EXPECT_TRUE(buffer_->Empty());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
TEST_F(QuicStreamSequencerBufferTest, FlushBufferedFrames) {
// Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024).
string source(max_capacity_bytes_ - 1024, 'a');
size_t written;
buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
&error_details_);
char dest[1024];
helper_->Read(dest, 1024);
EXPECT_EQ(1024u, buffer_->BytesConsumed());
// Write [1024, 512) to the physical beginning.
source = string(512, 'b');
buffer_->OnStreamData(max_capacity_bytes_, source, clock_.ApproximateNow(),
&written, &error_details_);
EXPECT_EQ(512u, written);
EXPECT_EQ(max_capacity_bytes_ - 1024 + 512, buffer_->FlushBufferedFrames());
EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
EXPECT_TRUE(buffer_->Empty());
EXPECT_TRUE(helper_->CheckBufferInvariants());
// Clear buffer at this point should still preserve BytesConsumed().
buffer_->Clear();
EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
EXPECT_TRUE(helper_->CheckBufferInvariants());
}
class QuicStreamSequencerBufferRandomIOTest
: public QuicStreamSequencerBufferTest {
public:
typedef std::pair<QuicStreamOffset, size_t> OffsetSizePair;
void SetUp() override {
// Test against a larger capacity then above tests. Also make sure the last
// block is partially available to use.
max_capacity_bytes_ = 6.25 * kBlockSizeBytes;
// Stream to be buffered should be larger than the capacity to test wrap
// around.
bytes_to_buffer_ = 2 * max_capacity_bytes_;
Initialize();
uint32_t seed = base::RandInt(0, std::numeric_limits<int32_t>::max());
LOG(INFO) << "RandomWriteAndProcessInPlace test seed is " << seed;
rng_.set_seed(seed);
}
// Create an out-of-order source stream with given size to populate
// shuffled_buf_.
void CreateSourceAndShuffle(size_t max_chunk_size_bytes) {
max_chunk_size_bytes_ = max_chunk_size_bytes;
std::unique_ptr<OffsetSizePair[]> chopped_stream(
new OffsetSizePair[bytes_to_buffer_]);
// Split stream into small chunks with random length. chopped_stream will be
// populated with segmented stream chunks.
size_t start_chopping_offset = 0;
size_t iterations = 0;
while (start_chopping_offset < bytes_to_buffer_) {
size_t max_chunk = min<size_t>(max_chunk_size_bytes_,
bytes_to_buffer_ - start_chopping_offset);
size_t chunk_size = rng_.RandUint64() % max_chunk + 1;
chopped_stream[iterations] =
OffsetSizePair(start_chopping_offset, chunk_size);
start_chopping_offset += chunk_size;
++iterations;
}
DCHECK(start_chopping_offset == bytes_to_buffer_);
size_t chunk_num = iterations;
// Randomly change the sequence of in-ordered OffsetSizePairs to make a
// out-of-order array of OffsetSizePairs.
for (int i = chunk_num - 1; i >= 0; --i) {
size_t random_idx = rng_.RandUint64() % (i + 1);
DVLOG(1) << "chunk offset " << chopped_stream[random_idx].first
<< " size " << chopped_stream[random_idx].second;
shuffled_buf_.push_front(chopped_stream[random_idx]);
chopped_stream[random_idx] = chopped_stream[i];
}
}
// Write the currently first chunk of data in the out-of-order stream into
// QuicStreamSequencerBuffer. If current chuck cannot be written into buffer
// because it goes beyond current capacity, move it to the end of
// shuffled_buf_ and write it later.
void WriteNextChunkToBuffer() {
OffsetSizePair& chunk = shuffled_buf_.front();
QuicStreamOffset offset = chunk.first;
const size_t num_to_write = chunk.second;
std::unique_ptr<char[]> write_buf{new char[max_chunk_size_bytes_]};
for (size_t i = 0; i < num_to_write; ++i) {
write_buf[i] = (offset + i) % 256;
}
base::StringPiece string_piece_w(write_buf.get(), num_to_write);
size_t written;
auto result =
buffer_->OnStreamData(offset, string_piece_w, clock_.ApproximateNow(),
&written, &error_details_);
if (result == QUIC_NO_ERROR) {
shuffled_buf_.pop_front();
total_bytes_written_ += num_to_write;
} else {
// This chunk offset exceeds window size.
shuffled_buf_.push_back(chunk);
shuffled_buf_.pop_front();
}
DVLOG(1) << " write at offset: " << offset
<< " len to write: " << num_to_write << " write result: " << result
<< " left over: " << shuffled_buf_.size();
}
protected:
std::list<OffsetSizePair> shuffled_buf_;
size_t max_chunk_size_bytes_;
QuicStreamOffset bytes_to_buffer_;
size_t total_bytes_written_ = 0;
size_t total_bytes_read_ = 0;
SimpleRandom rng_;
};
TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndReadv) {
// Set kMaxReadSize larger than kBlockSizeBytes to test both small and large
// read.
const size_t kMaxReadSize = kBlockSizeBytes * 2;
// kNumReads is larger than 1 to test how multiple read destinations work.
const size_t kNumReads = 2;
// Since write and read operation have equal possibility to be called. Bytes
// to be written into and read out of should roughly the same.
const size_t kMaxWriteSize = kNumReads * kMaxReadSize;
size_t iterations = 0;
CreateSourceAndShuffle(kMaxWriteSize);
while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) &&
iterations <= 2 * bytes_to_buffer_) {
uint8_t next_action =
shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2;
DVLOG(1) << "iteration: " << iterations;
switch (next_action) {
case 0: { // write
WriteNextChunkToBuffer();
ASSERT_TRUE(helper_->CheckBufferInvariants());
break;
}
case 1: { // readv
std::unique_ptr<char[][kMaxReadSize]> read_buf{
new char[kNumReads][kMaxReadSize]};
iovec dest_iov[kNumReads];
size_t num_to_read = 0;
for (size_t i = 0; i < kNumReads; ++i) {
dest_iov[i].iov_base =
reinterpret_cast<void*>(const_cast<char*>(read_buf[i]));
dest_iov[i].iov_len = rng_.RandUint64() % kMaxReadSize;
num_to_read += dest_iov[i].iov_len;
}
size_t actually_read = buffer_->Readv(dest_iov, kNumReads);
ASSERT_LE(actually_read, num_to_read);
DVLOG(1) << " read from offset: " << total_bytes_read_
<< " size: " << num_to_read
<< " actual read: " << actually_read;
for (size_t i = 0; i < actually_read; ++i) {
char ch = (i + total_bytes_read_) % 256;
ASSERT_EQ(ch, GetCharFromIOVecs(i, dest_iov, kNumReads))
<< " at iteration " << iterations;
}
total_bytes_read_ += actually_read;
ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed());
ASSERT_TRUE(helper_->CheckBufferInvariants());
break;
}
}
++iterations;
ASSERT_LE(total_bytes_read_, total_bytes_written_);
}
EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test";
EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: "
<< iterations;
EXPECT_LE(bytes_to_buffer_, total_bytes_written_);
}
TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndConsumeInPlace) {
// The value 4 is chosen such that the max write size is no larger than the
// maximum buffer capacity.
const size_t kMaxNumReads = 4;
// Adjust write amount be roughly equal to that GetReadableRegions() can get.
const size_t kMaxWriteSize = kMaxNumReads * kBlockSizeBytes;
ASSERT_LE(kMaxWriteSize, max_capacity_bytes_);
size_t iterations = 0;
CreateSourceAndShuffle(kMaxWriteSize);
while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) &&
iterations <= 2 * bytes_to_buffer_) {
uint8_t next_action =
shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2;
DVLOG(1) << "iteration: " << iterations;
switch (next_action) {
case 0: { // write
WriteNextChunkToBuffer();
ASSERT_TRUE(helper_->CheckBufferInvariants());
break;
}
case 1: { // GetReadableRegions and then MarkConsumed
size_t num_read = rng_.RandUint64() % kMaxNumReads + 1;
iovec dest_iov[kMaxNumReads];
ASSERT_TRUE(helper_->CheckBufferInvariants());
size_t actually_num_read =
buffer_->GetReadableRegions(dest_iov, num_read);
ASSERT_LE(actually_num_read, num_read);
size_t avail_bytes = 0;
for (size_t i = 0; i < actually_num_read; ++i) {
avail_bytes += dest_iov[i].iov_len;
}
// process random number of bytes (check the value of each byte).
size_t bytes_to_process = rng_.RandUint64() % (avail_bytes + 1);
size_t bytes_processed = 0;
for (size_t i = 0; i < actually_num_read; ++i) {
size_t bytes_in_block = min<size_t>(
bytes_to_process - bytes_processed, dest_iov[i].iov_len);
if (bytes_in_block == 0) {
break;
}
for (size_t j = 0; j < bytes_in_block; ++j) {
ASSERT_LE(bytes_processed, bytes_to_process);
char char_expected =
(buffer_->BytesConsumed() + bytes_processed) % 256;
ASSERT_EQ(char_expected,
reinterpret_cast<const char*>(dest_iov[i].iov_base)[j])
<< " at iteration " << iterations;
++bytes_processed;
}
}
buffer_->MarkConsumed(bytes_processed);
DVLOG(1) << "iteration " << iterations << ": try to get " << num_read
<< " readable regions, actually get " << actually_num_read
<< " from offset: " << total_bytes_read_
<< "\nprocesse bytes: " << bytes_processed;
total_bytes_read_ += bytes_processed;
ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed());
ASSERT_TRUE(helper_->CheckBufferInvariants());
break;
}
}
++iterations;
ASSERT_LE(total_bytes_read_, total_bytes_written_);
}
EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test";
EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: "
<< iterations;
EXPECT_LE(bytes_to_buffer_, total_bytes_written_);
}
} // anonymous namespace
} // namespace test
} // namespace net