blob: 665203ecd6db07186a0a98a34240deb6d6c11b30 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/big_endian.h"
#include <stdint.h>
#include <limits>
#include "base/strings/string_piece.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
TEST(ReadBigEndianTest, ReadSignedPositive) {
char data[] = {0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x1A, 0X2A};
int8_t s8 = 0;
int16_t s16 = 0;
int32_t s32 = 0;
int64_t s64 = 0;
ReadBigEndian(data, &s8);
ReadBigEndian(data, &s16);
ReadBigEndian(data, &s32);
ReadBigEndian(data, &s64);
EXPECT_EQ(0x0A, s8);
EXPECT_EQ(0x0A0B, s16);
EXPECT_EQ(int32_t{0x0A0B0C0D}, s32);
EXPECT_EQ(int64_t{0x0A0B0C0D0E0F1A2All}, s64);
}
TEST(ReadBigEndianTest, ReadSignedNegative) {
char data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0XFF};
int8_t s8 = 0;
int16_t s16 = 0;
int32_t s32 = 0;
int64_t s64 = 0;
ReadBigEndian(data, &s8);
ReadBigEndian(data, &s16);
ReadBigEndian(data, &s32);
ReadBigEndian(data, &s64);
EXPECT_EQ(-1, s8);
EXPECT_EQ(-1, s16);
EXPECT_EQ(-1, s32);
EXPECT_EQ(-1, s64);
}
TEST(ReadBigEndianTest, ReadUnsignedSigned) {
char data[] = {0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0, 0xA1, 0XA2};
uint8_t u8 = 0;
uint16_t u16 = 0;
uint32_t u32 = 0;
uint64_t u64 = 0;
ReadBigEndian(data, &u8);
ReadBigEndian(data, &u16);
ReadBigEndian(data, &u32);
ReadBigEndian(data, &u64);
EXPECT_EQ(0xA0, u8);
EXPECT_EQ(0xA0B0, u16);
EXPECT_EQ(0xA0B0C0D0, u32);
EXPECT_EQ(0xA0B0C0D0E0F0A1A2ull, u64);
}
TEST(ReadBigEndianTest, TryAll16BitValues) {
using signed_type = int16_t;
char data[sizeof(signed_type)];
for (int i = std::numeric_limits<signed_type>::min();
i <= std::numeric_limits<signed_type>::max(); i++) {
signed_type expected = i;
signed_type actual = 0;
WriteBigEndian(data, expected);
ReadBigEndian(data, &actual);
EXPECT_EQ(expected, actual);
}
}
TEST(BigEndianReaderTest, ReadsValues) {
char data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF,
0x1A, 0x2B, 0x3C, 0x4D, 0x5E };
char buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
BigEndianReader reader(data, sizeof(data));
EXPECT_TRUE(reader.Skip(2));
EXPECT_EQ(data + 2, reader.ptr());
EXPECT_EQ(reader.remaining(), sizeof(data) - 2);
EXPECT_TRUE(reader.ReadBytes(buf, sizeof(buf)));
EXPECT_EQ(0x2, buf[0]);
EXPECT_EQ(0x3, buf[1]);
EXPECT_TRUE(reader.ReadU8(&u8));
EXPECT_EQ(0x4, u8);
EXPECT_TRUE(reader.ReadU16(&u16));
EXPECT_EQ(0x0506, u16);
EXPECT_TRUE(reader.ReadU32(&u32));
EXPECT_EQ(0x0708090Au, u32);
EXPECT_TRUE(reader.ReadU64(&u64));
EXPECT_EQ(0x0B0C0D0E0F1A2B3Cllu, u64);
base::StringPiece expected(reader.ptr(), 2);
EXPECT_TRUE(reader.ReadPiece(&piece, 2));
EXPECT_EQ(2u, piece.size());
EXPECT_EQ(expected.data(), piece.data());
}
TEST(BigEndianReaderTest, ReadsLengthPrefixedValues) {
{
char u8_prefixed_data[] = {8, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u8_prefixed_data, sizeof(u8_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU8LengthPrefixed(&piece));
// |reader| should skip both a u8 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u8_prefixed_data + 9);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(piece.data(), u8_prefixed_data + 1);
}
{
char u16_prefixed_data[] = {0, 8, 0xD, 0xE, 0xF,
0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
// |reader| should skip both a u16 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 10);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(piece.data(), u16_prefixed_data + 2);
// With no data left, we shouldn't be able to
// read another u8 length prefix (or a u16 length prefix,
// for that matter).
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
}
{
// Make sure there's no issue reading a zero-value length prefix.
char u16_prefixed_data[3] = {};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 2);
EXPECT_EQ(piece.data(), u16_prefixed_data + 2);
EXPECT_EQ(piece.size(), 0u);
}
}
TEST(BigEndianReaderTest, LengthPrefixedReadsFailGracefully) {
// We can't read 0xF (or, for that matter, 0xF8) bytes after the length
// prefix: there isn't enough data.
char data[] = {0xF, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(data, sizeof(data));
base::StringPiece piece;
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
}
TEST(BigEndianReaderTest, RespectsLength) {
char data[8];
char buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
BigEndianReader reader(data, sizeof(data));
// 8 left
EXPECT_FALSE(reader.Skip(9));
EXPECT_TRUE(reader.Skip(1));
// 7 left
EXPECT_FALSE(reader.ReadU64(&u64));
EXPECT_TRUE(reader.Skip(4));
// 3 left
EXPECT_FALSE(reader.ReadU32(&u32));
EXPECT_FALSE(reader.ReadPiece(&piece, 4));
EXPECT_TRUE(reader.Skip(2));
// 1 left
EXPECT_FALSE(reader.ReadU16(&u16));
EXPECT_FALSE(reader.ReadBytes(buf, 2));
EXPECT_TRUE(reader.Skip(1));
// 0 left
EXPECT_FALSE(reader.ReadU8(&u8));
EXPECT_EQ(0u, reader.remaining());
}
TEST(BigEndianReaderTest, SafePointerMath) {
char data[] = "foo";
BigEndianReader reader(data, sizeof(data));
// The test should fail without ever dereferencing the |dummy_buf| pointer.
char* dummy_buf = reinterpret_cast<char*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
base::StringPiece piece;
EXPECT_FALSE(reader.Skip(extreme_length));
EXPECT_FALSE(reader.ReadBytes(dummy_buf, extreme_length));
EXPECT_FALSE(reader.ReadPiece(&piece, extreme_length));
}
TEST(BigEndianWriterTest, WritesValues) {
char expected[] = { 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE,
0xF, 0x1A, 0x2B, 0x3C };
char data[sizeof(expected)];
char buf[] = { 0x2, 0x3 };
memset(data, 0, sizeof(data));
BigEndianWriter writer(data, sizeof(data));
EXPECT_TRUE(writer.Skip(2));
EXPECT_TRUE(writer.WriteBytes(buf, sizeof(buf)));
EXPECT_TRUE(writer.WriteU8(0x4));
EXPECT_TRUE(writer.WriteU16(0x0506));
EXPECT_TRUE(writer.WriteU32(0x0708090A));
EXPECT_TRUE(writer.WriteU64(0x0B0C0D0E0F1A2B3Cllu));
EXPECT_EQ(0, memcmp(expected, data, sizeof(expected)));
}
TEST(BigEndianWriterTest, RespectsLength) {
char data[8];
char buf[2];
uint8_t u8 = 0;
uint16_t u16 = 0;
uint32_t u32 = 0;
uint64_t u64 = 0;
BigEndianWriter writer(data, sizeof(data));
// 8 left
EXPECT_FALSE(writer.Skip(9));
EXPECT_TRUE(writer.Skip(1));
// 7 left
EXPECT_FALSE(writer.WriteU64(u64));
EXPECT_TRUE(writer.Skip(4));
// 3 left
EXPECT_FALSE(writer.WriteU32(u32));
EXPECT_TRUE(writer.Skip(2));
// 1 left
EXPECT_FALSE(writer.WriteU16(u16));
EXPECT_FALSE(writer.WriteBytes(buf, 2));
EXPECT_TRUE(writer.Skip(1));
// 0 left
EXPECT_FALSE(writer.WriteU8(u8));
EXPECT_EQ(0u, writer.remaining());
}
TEST(BigEndianWriterTest, SafePointerMath) {
char data[3];
BigEndianWriter writer(data, sizeof(data));
// The test should fail without ever dereferencing the |dummy_buf| pointer.
const char* dummy_buf = reinterpret_cast<const char*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
EXPECT_FALSE(writer.Skip(extreme_length));
EXPECT_FALSE(writer.WriteBytes(dummy_buf, extreme_length));
}
} // namespace base