| // Copyright 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/layers/picture_layer_impl.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <set> |
| |
| #include "base/metrics/histogram_macros.h" |
| #include "base/time/time.h" |
| #include "base/trace_event/trace_event_argument.h" |
| #include "cc/base/math_util.h" |
| #include "cc/debug/debug_colors.h" |
| #include "cc/debug/micro_benchmark_impl.h" |
| #include "cc/debug/traced_value.h" |
| #include "cc/layers/append_quads_data.h" |
| #include "cc/layers/solid_color_layer_impl.h" |
| #include "cc/output/begin_frame_args.h" |
| #include "cc/quads/debug_border_draw_quad.h" |
| #include "cc/quads/picture_draw_quad.h" |
| #include "cc/quads/solid_color_draw_quad.h" |
| #include "cc/quads/tile_draw_quad.h" |
| #include "cc/tiles/tile_manager.h" |
| #include "cc/tiles/tiling_set_raster_queue_all.h" |
| #include "cc/trees/layer_tree_impl.h" |
| #include "cc/trees/occlusion.h" |
| #include "ui/gfx/geometry/quad_f.h" |
| #include "ui/gfx/geometry/rect_conversions.h" |
| #include "ui/gfx/geometry/size_conversions.h" |
| |
| namespace { |
| // This must be > 1 as we multiply or divide by this to find a new raster |
| // scale during pinch. |
| const float kMaxScaleRatioDuringPinch = 2.0f; |
| |
| // When creating a new tiling during pinch, snap to an existing |
| // tiling's scale if the desired scale is within this ratio. |
| const float kSnapToExistingTilingRatio = 1.2f; |
| |
| // Even for really wide viewports, at some point GPU raster should use |
| // less than 4 tiles to fill the viewport. This is set to 256 as a |
| // sane minimum for now, but we might want to tune this for low-end. |
| const int kMinHeightForGpuRasteredTile = 256; |
| |
| // When making odd-sized tiles, round them up to increase the chances |
| // of using the same tile size. |
| const int kTileRoundUp = 64; |
| |
| // Round GPU default tile sizes to a multiple of 32. This helps prevent |
| // rounding errors during compositing. |
| const int kGpuDefaultTileRoundUp = 32; |
| |
| // For performance reasons and to support compressed tile textures, tile |
| // width and height should be an even multiple of 4 in size. |
| const int kTileMinimalAlignment = 4; |
| |
| // Large contents scale can cause overflow issues. Cap the ideal contents scale |
| // by this constant, since scales larger than this are usually not correct or |
| // their scale doesn't matter as long as it's large. See |
| // Renderer4.IdealContentsScale UMA for distribution of existing contents |
| // scales. |
| const float kMaxIdealContentsScale = 10000.f; |
| |
| // Intersect rects which may have right() and bottom() that overflow integer |
| // boundaries. This code is similar to gfx::Rect::Intersect with the exception |
| // that the types are promoted to int64_t when there is a chance of overflow. |
| gfx::Rect SafeIntersectRects(const gfx::Rect& one, const gfx::Rect& two) { |
| if (one.IsEmpty() || two.IsEmpty()) |
| return gfx::Rect(); |
| |
| int rx = std::max(one.x(), two.x()); |
| int ry = std::max(one.y(), two.y()); |
| int64_t rr = std::min(static_cast<int64_t>(one.x()) + one.width(), |
| static_cast<int64_t>(two.x()) + two.width()); |
| int64_t rb = std::min(static_cast<int64_t>(one.y()) + one.height(), |
| static_cast<int64_t>(two.y()) + two.height()); |
| if (rx > rr || ry > rb) |
| return gfx::Rect(); |
| return gfx::Rect(rx, ry, static_cast<int>(rr - rx), |
| static_cast<int>(rb - ry)); |
| } |
| |
| } // namespace |
| |
| namespace cc { |
| |
| PictureLayerImpl::PictureLayerImpl(LayerTreeImpl* tree_impl, |
| int id, |
| bool is_mask) |
| : LayerImpl(tree_impl, id), |
| twin_layer_(nullptr), |
| tilings_(CreatePictureLayerTilingSet()), |
| ideal_page_scale_(0.f), |
| ideal_device_scale_(0.f), |
| ideal_source_scale_(0.f), |
| ideal_contents_scale_(0.f), |
| raster_page_scale_(0.f), |
| raster_device_scale_(0.f), |
| raster_source_scale_(0.f), |
| raster_contents_scale_(0.f), |
| low_res_raster_contents_scale_(0.f), |
| was_screen_space_transform_animating_(false), |
| only_used_low_res_last_append_quads_(false), |
| is_mask_(is_mask), |
| nearest_neighbor_(false), |
| is_directly_composited_image_(false) { |
| layer_tree_impl()->RegisterPictureLayerImpl(this); |
| } |
| |
| PictureLayerImpl::~PictureLayerImpl() { |
| if (twin_layer_) |
| twin_layer_->twin_layer_ = nullptr; |
| layer_tree_impl()->UnregisterPictureLayerImpl(this); |
| } |
| |
| const char* PictureLayerImpl::LayerTypeAsString() const { |
| return "cc::PictureLayerImpl"; |
| } |
| |
| std::unique_ptr<LayerImpl> PictureLayerImpl::CreateLayerImpl( |
| LayerTreeImpl* tree_impl) { |
| return PictureLayerImpl::Create(tree_impl, id(), is_mask_); |
| } |
| |
| void PictureLayerImpl::PushPropertiesTo(LayerImpl* base_layer) { |
| PictureLayerImpl* layer_impl = static_cast<PictureLayerImpl*>(base_layer); |
| DCHECK_EQ(layer_impl->is_mask_, is_mask_); |
| |
| LayerImpl::PushPropertiesTo(base_layer); |
| |
| // Twin relationships should never change once established. |
| DCHECK(!twin_layer_ || twin_layer_ == layer_impl); |
| DCHECK(!twin_layer_ || layer_impl->twin_layer_ == this); |
| // The twin relationship does not need to exist before the first |
| // PushPropertiesTo from pending to active layer since before that the active |
| // layer can not have a pile or tilings, it has only been created and inserted |
| // into the tree at that point. |
| twin_layer_ = layer_impl; |
| layer_impl->twin_layer_ = this; |
| |
| layer_impl->SetNearestNeighbor(nearest_neighbor_); |
| |
| // Solid color layers have no tilings. |
| DCHECK(!raster_source_->IsSolidColor() || tilings_->num_tilings() == 0); |
| // The pending tree should only have a high res (and possibly low res) tiling. |
| DCHECK_LE(tilings_->num_tilings(), |
| layer_tree_impl()->create_low_res_tiling() ? 2u : 1u); |
| |
| layer_impl->set_gpu_raster_max_texture_size(gpu_raster_max_texture_size_); |
| layer_impl->UpdateRasterSource(raster_source_, &invalidation_, |
| tilings_.get()); |
| DCHECK(invalidation_.IsEmpty()); |
| |
| // After syncing a solid color layer, the active layer has no tilings. |
| DCHECK(!raster_source_->IsSolidColor() || |
| layer_impl->tilings_->num_tilings() == 0); |
| |
| layer_impl->raster_page_scale_ = raster_page_scale_; |
| layer_impl->raster_device_scale_ = raster_device_scale_; |
| layer_impl->raster_source_scale_ = raster_source_scale_; |
| layer_impl->raster_contents_scale_ = raster_contents_scale_; |
| layer_impl->low_res_raster_contents_scale_ = low_res_raster_contents_scale_; |
| layer_impl->is_directly_composited_image_ = is_directly_composited_image_; |
| |
| layer_impl->SanityCheckTilingState(); |
| |
| // We always need to push properties. |
| // See http://crbug.com/303943 |
| // TODO(danakj): Stop always pushing properties since we don't swap tilings. |
| layer_tree_impl()->AddLayerShouldPushProperties(this); |
| } |
| |
| void PictureLayerImpl::AppendQuads(RenderPass* render_pass, |
| AppendQuadsData* append_quads_data) { |
| // The bounds and the pile size may differ if the pile wasn't updated (ie. |
| // PictureLayer::Update didn't happen). In that case the pile will be empty. |
| DCHECK(raster_source_->GetSize().IsEmpty() || |
| bounds() == raster_source_->GetSize()) |
| << " bounds " << bounds().ToString() << " pile " |
| << raster_source_->GetSize().ToString(); |
| |
| SharedQuadState* shared_quad_state = |
| render_pass->CreateAndAppendSharedQuadState(); |
| |
| if (raster_source_->IsSolidColor()) { |
| PopulateSharedQuadState(shared_quad_state); |
| |
| AppendDebugBorderQuad( |
| render_pass, bounds(), shared_quad_state, append_quads_data); |
| |
| SolidColorLayerImpl::AppendSolidQuads( |
| render_pass, draw_properties().occlusion_in_content_space, |
| shared_quad_state, visible_layer_rect(), |
| raster_source_->GetSolidColor(), append_quads_data); |
| return; |
| } |
| |
| float max_contents_scale = MaximumTilingContentsScale(); |
| PopulateScaledSharedQuadState(shared_quad_state, max_contents_scale); |
| Occlusion scaled_occlusion = |
| draw_properties() |
| .occlusion_in_content_space.GetOcclusionWithGivenDrawTransform( |
| shared_quad_state->quad_to_target_transform); |
| |
| if (current_draw_mode_ == DRAW_MODE_RESOURCELESS_SOFTWARE) { |
| AppendDebugBorderQuad( |
| render_pass, shared_quad_state->quad_layer_bounds, shared_quad_state, |
| append_quads_data, DebugColors::DirectPictureBorderColor(), |
| DebugColors::DirectPictureBorderWidth(layer_tree_impl())); |
| |
| gfx::Rect geometry_rect = shared_quad_state->visible_quad_layer_rect; |
| gfx::Rect opaque_rect = contents_opaque() ? geometry_rect : gfx::Rect(); |
| gfx::Rect visible_geometry_rect = |
| scaled_occlusion.GetUnoccludedContentRect(geometry_rect); |
| |
| // The raster source may not be valid over the entire visible rect, |
| // and rastering outside of that may cause incorrect pixels. |
| gfx::Rect scaled_recorded_viewport = gfx::ScaleToEnclosingRect( |
| raster_source_->RecordedViewport(), max_contents_scale); |
| geometry_rect.Intersect(scaled_recorded_viewport); |
| opaque_rect.Intersect(scaled_recorded_viewport); |
| visible_geometry_rect.Intersect(scaled_recorded_viewport); |
| |
| if (visible_geometry_rect.IsEmpty()) |
| return; |
| |
| DCHECK(raster_source_->HasRecordings()); |
| gfx::Rect quad_content_rect = shared_quad_state->visible_quad_layer_rect; |
| gfx::Size texture_size = quad_content_rect.size(); |
| gfx::RectF texture_rect = gfx::RectF(gfx::SizeF(texture_size)); |
| |
| PictureDrawQuad* quad = |
| render_pass->CreateAndAppendDrawQuad<PictureDrawQuad>(); |
| quad->SetNew(shared_quad_state, geometry_rect, opaque_rect, |
| visible_geometry_rect, texture_rect, texture_size, |
| nearest_neighbor_, RGBA_8888, quad_content_rect, |
| max_contents_scale, raster_source_); |
| ValidateQuadResources(quad); |
| return; |
| } |
| |
| AppendDebugBorderQuad(render_pass, shared_quad_state->quad_layer_bounds, |
| shared_quad_state, append_quads_data); |
| |
| if (ShowDebugBorders()) { |
| for (PictureLayerTilingSet::CoverageIterator iter( |
| tilings_.get(), max_contents_scale, |
| shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_); |
| iter; ++iter) { |
| SkColor color; |
| float width; |
| if (*iter && iter->draw_info().IsReadyToDraw()) { |
| TileDrawInfo::Mode mode = iter->draw_info().mode(); |
| if (mode == TileDrawInfo::SOLID_COLOR_MODE) { |
| color = DebugColors::SolidColorTileBorderColor(); |
| width = DebugColors::SolidColorTileBorderWidth(layer_tree_impl()); |
| } else if (mode == TileDrawInfo::OOM_MODE) { |
| color = DebugColors::OOMTileBorderColor(); |
| width = DebugColors::OOMTileBorderWidth(layer_tree_impl()); |
| } else if (iter->draw_info().has_compressed_resource()) { |
| color = DebugColors::CompressedTileBorderColor(); |
| width = DebugColors::CompressedTileBorderWidth(layer_tree_impl()); |
| } else if (iter.resolution() == HIGH_RESOLUTION) { |
| color = DebugColors::HighResTileBorderColor(); |
| width = DebugColors::HighResTileBorderWidth(layer_tree_impl()); |
| } else if (iter.resolution() == LOW_RESOLUTION) { |
| color = DebugColors::LowResTileBorderColor(); |
| width = DebugColors::LowResTileBorderWidth(layer_tree_impl()); |
| } else if (iter->contents_scale_key() > max_contents_scale) { |
| color = DebugColors::ExtraHighResTileBorderColor(); |
| width = DebugColors::ExtraHighResTileBorderWidth(layer_tree_impl()); |
| } else { |
| color = DebugColors::ExtraLowResTileBorderColor(); |
| width = DebugColors::ExtraLowResTileBorderWidth(layer_tree_impl()); |
| } |
| } else { |
| color = DebugColors::MissingTileBorderColor(); |
| width = DebugColors::MissingTileBorderWidth(layer_tree_impl()); |
| } |
| |
| DebugBorderDrawQuad* debug_border_quad = |
| render_pass->CreateAndAppendDrawQuad<DebugBorderDrawQuad>(); |
| gfx::Rect geometry_rect = iter.geometry_rect(); |
| gfx::Rect visible_geometry_rect = geometry_rect; |
| debug_border_quad->SetNew(shared_quad_state, |
| geometry_rect, |
| visible_geometry_rect, |
| color, |
| width); |
| } |
| } |
| |
| // Keep track of the tilings that were used so that tilings that are |
| // unused can be considered for removal. |
| last_append_quads_tilings_.clear(); |
| |
| // Ignore missing tiles outside of viewport for tile priority. This is |
| // normally the same as draw viewport but can be independently overridden by |
| // embedders like Android WebView with SetExternalTilePriorityConstraints. |
| gfx::Rect scaled_viewport_for_tile_priority = gfx::ScaleToEnclosingRect( |
| viewport_rect_for_tile_priority_in_content_space_, max_contents_scale); |
| |
| size_t missing_tile_count = 0u; |
| size_t on_demand_missing_tile_count = 0u; |
| only_used_low_res_last_append_quads_ = true; |
| gfx::Rect scaled_recorded_viewport = gfx::ScaleToEnclosingRect( |
| raster_source_->RecordedViewport(), max_contents_scale); |
| for (PictureLayerTilingSet::CoverageIterator iter( |
| tilings_.get(), max_contents_scale, |
| shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_); |
| iter; ++iter) { |
| gfx::Rect geometry_rect = iter.geometry_rect(); |
| gfx::Rect opaque_rect = contents_opaque() ? geometry_rect : gfx::Rect(); |
| gfx::Rect visible_geometry_rect = |
| scaled_occlusion.GetUnoccludedContentRect(geometry_rect); |
| if (visible_geometry_rect.IsEmpty()) |
| continue; |
| |
| int64_t visible_geometry_area = |
| static_cast<int64_t>(visible_geometry_rect.width()) * |
| visible_geometry_rect.height(); |
| append_quads_data->visible_layer_area += visible_geometry_area; |
| |
| bool has_draw_quad = false; |
| if (*iter && iter->draw_info().IsReadyToDraw()) { |
| const TileDrawInfo& draw_info = iter->draw_info(); |
| switch (draw_info.mode()) { |
| case TileDrawInfo::RESOURCE_MODE: { |
| gfx::RectF texture_rect = iter.texture_rect(); |
| |
| // The raster_contents_scale_ is the best scale that the layer is |
| // trying to produce, even though it may not be ideal. Since that's |
| // the best the layer can promise in the future, consider those as |
| // complete. But if a tile is ideal scale, we don't want to consider |
| // it incomplete and trying to replace it with a tile at a worse |
| // scale. |
| if (iter->contents_scale_key() != raster_contents_scale_ && |
| iter->contents_scale_key() != ideal_contents_scale_ && |
| geometry_rect.Intersects(scaled_viewport_for_tile_priority)) { |
| append_quads_data->num_incomplete_tiles++; |
| } |
| |
| TileDrawQuad* quad = |
| render_pass->CreateAndAppendDrawQuad<TileDrawQuad>(); |
| quad->SetNew(shared_quad_state, geometry_rect, opaque_rect, |
| visible_geometry_rect, draw_info.resource_id(), |
| texture_rect, draw_info.resource_size(), |
| draw_info.contents_swizzled(), nearest_neighbor_); |
| ValidateQuadResources(quad); |
| iter->draw_info().set_was_ever_used_to_draw(); |
| has_draw_quad = true; |
| break; |
| } |
| case TileDrawInfo::SOLID_COLOR_MODE: { |
| SolidColorDrawQuad* quad = |
| render_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>(); |
| quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, |
| draw_info.solid_color(), false); |
| ValidateQuadResources(quad); |
| iter->draw_info().set_was_ever_used_to_draw(); |
| has_draw_quad = true; |
| break; |
| } |
| case TileDrawInfo::OOM_MODE: |
| break; // Checkerboard. |
| } |
| } |
| |
| if (!has_draw_quad) { |
| // Checkerboard. |
| SkColor color = SafeOpaqueBackgroundColor(); |
| if (ShowDebugBorders()) { |
| // Fill the whole tile with the missing tile color. |
| color = DebugColors::OOMTileBorderColor(); |
| } |
| SolidColorDrawQuad* quad = |
| render_pass->CreateAndAppendDrawQuad<SolidColorDrawQuad>(); |
| quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect, |
| color, false); |
| ValidateQuadResources(quad); |
| |
| if (geometry_rect.Intersects(scaled_viewport_for_tile_priority)) { |
| append_quads_data->num_missing_tiles++; |
| ++missing_tile_count; |
| } |
| append_quads_data->checkerboarded_visible_content_area += |
| visible_geometry_area; |
| // Intersect checkerboard rect with interest rect to generate rect where |
| // we checkerboarded and has recording. The area where we don't have |
| // recording is not necessarily a Rect, and its area is calculated using |
| // subtraction. |
| gfx::Rect visible_rect_has_recording = visible_geometry_rect; |
| visible_rect_has_recording.Intersect(scaled_recorded_viewport); |
| int64_t checkerboarded_has_recording_area = |
| static_cast<int64_t>(visible_rect_has_recording.width()) * |
| visible_rect_has_recording.height(); |
| append_quads_data->checkerboarded_needs_raster_content_area += |
| checkerboarded_has_recording_area; |
| append_quads_data->checkerboarded_no_recording_content_area += |
| visible_geometry_area - checkerboarded_has_recording_area; |
| continue; |
| } |
| |
| if (iter.resolution() != HIGH_RESOLUTION) { |
| append_quads_data->approximated_visible_content_area += |
| visible_geometry_area; |
| } |
| |
| // If we have a draw quad, but it's not low resolution, then |
| // mark that we've used something other than low res to draw. |
| if (iter.resolution() != LOW_RESOLUTION) |
| only_used_low_res_last_append_quads_ = false; |
| |
| if (last_append_quads_tilings_.empty() || |
| last_append_quads_tilings_.back() != iter.CurrentTiling()) { |
| last_append_quads_tilings_.push_back(iter.CurrentTiling()); |
| } |
| } |
| |
| if (missing_tile_count) { |
| TRACE_EVENT_INSTANT2("cc", |
| "PictureLayerImpl::AppendQuads checkerboard", |
| TRACE_EVENT_SCOPE_THREAD, |
| "missing_tile_count", |
| missing_tile_count, |
| "on_demand_missing_tile_count", |
| on_demand_missing_tile_count); |
| } |
| |
| // Aggressively remove any tilings that are not seen to save memory. Note |
| // that this is at the expense of doing cause more frequent re-painting. A |
| // better scheme would be to maintain a tighter visible_layer_rect for the |
| // finer tilings. |
| CleanUpTilingsOnActiveLayer(last_append_quads_tilings_); |
| } |
| |
| bool PictureLayerImpl::UpdateTiles() { |
| if (!CanHaveTilings()) { |
| ideal_page_scale_ = 0.f; |
| ideal_device_scale_ = 0.f; |
| ideal_contents_scale_ = 0.f; |
| ideal_source_scale_ = 0.f; |
| SanityCheckTilingState(); |
| return false; |
| } |
| |
| // Remove any non-ideal tilings that were not used last time we generated |
| // quads to save memory and processing time. Note that pending tree should |
| // only have one or two tilings (high and low res), so only clean up the |
| // active layer. This cleans it up here in case AppendQuads didn't run. |
| // If it did run, this would not remove any additional tilings. |
| if (layer_tree_impl()->IsActiveTree()) |
| CleanUpTilingsOnActiveLayer(last_append_quads_tilings_); |
| |
| UpdateIdealScales(); |
| |
| if (!raster_contents_scale_ || ShouldAdjustRasterScale()) { |
| RecalculateRasterScales(); |
| AddTilingsForRasterScale(); |
| } |
| |
| if (layer_tree_impl()->IsActiveTree()) |
| AddLowResolutionTilingIfNeeded(); |
| |
| DCHECK(raster_page_scale_); |
| DCHECK(raster_device_scale_); |
| DCHECK(raster_source_scale_); |
| DCHECK(raster_contents_scale_); |
| DCHECK(low_res_raster_contents_scale_); |
| |
| was_screen_space_transform_animating_ = |
| draw_properties().screen_space_transform_is_animating; |
| |
| if (screen_space_transform_is_animating()) |
| raster_source_->SetShouldAttemptToUseDistanceFieldText(); |
| |
| double current_frame_time_in_seconds = |
| (layer_tree_impl()->CurrentBeginFrameArgs().frame_time - |
| base::TimeTicks()).InSecondsF(); |
| UpdateViewportRectForTilePriorityInContentSpace(); |
| |
| // The tiling set can require tiles for activation any of the following |
| // conditions are true: |
| // - This layer produced a high-res or non-ideal-res tile last frame. |
| // - We're in requires high res to draw mode. |
| // - We're not in smoothness takes priority mode. |
| // To put different, the tiling set can't require tiles for activation if |
| // we're in smoothness mode and only used low-res or checkerboard to draw last |
| // frame and we don't need high res to draw. |
| // |
| // The reason for this is that we should be able to activate sooner and get a |
| // more up to date recording, so we don't run out of recording on the active |
| // tree. |
| bool can_require_tiles_for_activation = |
| !only_used_low_res_last_append_quads_ || RequiresHighResToDraw() || |
| !layer_tree_impl()->SmoothnessTakesPriority(); |
| |
| static const Occlusion kEmptyOcclusion; |
| const Occlusion& occlusion_in_content_space = |
| layer_tree_impl()->settings().use_occlusion_for_tile_prioritization |
| ? draw_properties().occlusion_in_content_space |
| : kEmptyOcclusion; |
| |
| // Pass |occlusion_in_content_space| for |occlusion_in_layer_space| since |
| // they are the same space in picture layer, as contents scale is always 1. |
| bool updated = tilings_->UpdateTilePriorities( |
| viewport_rect_for_tile_priority_in_content_space_, ideal_contents_scale_, |
| current_frame_time_in_seconds, occlusion_in_content_space, |
| can_require_tiles_for_activation); |
| return updated; |
| } |
| |
| void PictureLayerImpl::UpdateViewportRectForTilePriorityInContentSpace() { |
| // If visible_layer_rect() is empty or viewport_rect_for_tile_priority is |
| // set to be different from the device viewport, try to inverse project the |
| // viewport into layer space and use that. Otherwise just use |
| // visible_layer_rect(). |
| gfx::Rect visible_rect_in_content_space = visible_layer_rect(); |
| gfx::Rect viewport_rect_for_tile_priority = |
| layer_tree_impl()->ViewportRectForTilePriority(); |
| if (visible_rect_in_content_space.IsEmpty() || |
| layer_tree_impl()->DeviceViewport() != viewport_rect_for_tile_priority) { |
| gfx::Transform view_to_layer(gfx::Transform::kSkipInitialization); |
| if (ScreenSpaceTransform().GetInverse(&view_to_layer)) { |
| // Transform from view space to content space. |
| visible_rect_in_content_space = MathUtil::ProjectEnclosingClippedRect( |
| view_to_layer, viewport_rect_for_tile_priority); |
| |
| // We have to allow for a viewport that is outside of the layer bounds in |
| // order to compute tile priorities correctly for offscreen content that |
| // is going to make it on screen. However, we also have to limit the |
| // viewport since it can be very large due to screen_space_transforms. As |
| // a heuristic, we clip to bounds padded by skewport_extrapolation_limit * |
| // maximum tiling scale, since this should allow sufficient room for |
| // skewport calculations. |
| gfx::Rect padded_bounds(bounds()); |
| int padding_amount = layer_tree_impl() |
| ->settings() |
| .skewport_extrapolation_limit_in_screen_pixels * |
| MaximumTilingContentsScale(); |
| padded_bounds.Inset(-padding_amount, -padding_amount); |
| visible_rect_in_content_space = |
| SafeIntersectRects(visible_rect_in_content_space, padded_bounds); |
| } |
| } |
| viewport_rect_for_tile_priority_in_content_space_ = |
| visible_rect_in_content_space; |
| } |
| |
| PictureLayerImpl* PictureLayerImpl::GetPendingOrActiveTwinLayer() const { |
| if (!twin_layer_ || !twin_layer_->IsOnActiveOrPendingTree()) |
| return nullptr; |
| return twin_layer_; |
| } |
| |
| void PictureLayerImpl::UpdateRasterSource( |
| scoped_refptr<RasterSource> raster_source, |
| Region* new_invalidation, |
| const PictureLayerTilingSet* pending_set) { |
| // The bounds and the pile size may differ if the pile wasn't updated (ie. |
| // PictureLayer::Update didn't happen). In that case the pile will be empty. |
| DCHECK(raster_source->GetSize().IsEmpty() || |
| bounds() == raster_source->GetSize()) |
| << " bounds " << bounds().ToString() << " pile " |
| << raster_source->GetSize().ToString(); |
| |
| // The |raster_source_| is initially null, so have to check for that for the |
| // first frame. |
| bool could_have_tilings = raster_source_.get() && CanHaveTilings(); |
| raster_source_.swap(raster_source); |
| |
| // Only set the image decode controller when we're committing. |
| if (!pending_set) { |
| raster_source_->set_image_decode_controller( |
| layer_tree_impl()->image_decode_controller()); |
| } |
| |
| // The |new_invalidation| must be cleared before updating tilings since they |
| // access the invalidation through the PictureLayerTilingClient interface. |
| invalidation_.Clear(); |
| invalidation_.Swap(new_invalidation); |
| |
| bool can_have_tilings = CanHaveTilings(); |
| DCHECK(!pending_set || |
| can_have_tilings == GetPendingOrActiveTwinLayer()->CanHaveTilings()); |
| |
| // Need to call UpdateTiles again if CanHaveTilings changed. |
| if (could_have_tilings != can_have_tilings) |
| layer_tree_impl()->set_needs_update_draw_properties(); |
| |
| if (!can_have_tilings) { |
| RemoveAllTilings(); |
| return; |
| } |
| |
| // We could do this after doing UpdateTiles, which would avoid doing this for |
| // tilings that are going to disappear on the pending tree (if scale changed). |
| // But that would also be more complicated, so we just do it here for now. |
| if (pending_set) { |
| tilings_->UpdateTilingsToCurrentRasterSourceForActivation( |
| raster_source_, pending_set, invalidation_, MinimumContentsScale(), |
| MaximumContentsScale()); |
| } else { |
| tilings_->UpdateTilingsToCurrentRasterSourceForCommit( |
| raster_source_, invalidation_, MinimumContentsScale(), |
| MaximumContentsScale()); |
| } |
| } |
| |
| void PictureLayerImpl::UpdateCanUseLCDTextAfterCommit() { |
| // This function is only allowed to be called after commit, due to it not |
| // being smart about sharing tiles and because otherwise it would cause |
| // flashes by switching out tiles in place that may be currently on screen. |
| DCHECK(layer_tree_impl()->IsSyncTree()); |
| |
| // Don't allow the LCD text state to change once disabled. |
| if (!RasterSourceUsesLCDText()) |
| return; |
| if (CanUseLCDText() == RasterSourceUsesLCDText()) |
| return; |
| |
| // Raster sources are considered const, so in order to update the state |
| // a new one must be created and all tiles recreated. |
| scoped_refptr<RasterSource> new_raster_source = |
| raster_source_->CreateCloneWithoutLCDText(); |
| raster_source_.swap(new_raster_source); |
| |
| // Synthetically invalidate everything. |
| gfx::Rect bounds_rect(bounds()); |
| invalidation_ = Region(bounds_rect); |
| tilings_->UpdateRasterSourceDueToLCDChange(raster_source_, invalidation_); |
| SetUpdateRect(bounds_rect); |
| |
| DCHECK(!RasterSourceUsesLCDText()); |
| } |
| |
| bool PictureLayerImpl::RasterSourceUsesLCDText() const { |
| return raster_source_ ? raster_source_->CanUseLCDText() |
| : layer_tree_impl()->settings().can_use_lcd_text; |
| } |
| |
| void PictureLayerImpl::NotifyTileStateChanged(const Tile* tile) { |
| if (layer_tree_impl()->IsActiveTree()) { |
| gfx::Rect layer_damage_rect = gfx::ScaleToEnclosingRect( |
| tile->content_rect(), 1.f / tile->raster_scales().width(), |
| 1.f / tile->raster_scales().height()); |
| AddDamageRect(layer_damage_rect); |
| } |
| if (tile->draw_info().NeedsRaster()) { |
| PictureLayerTiling* tiling = |
| tilings_->FindTilingWithScaleKey(tile->contents_scale_key()); |
| if (tiling) |
| tiling->set_all_tiles_done(false); |
| } |
| } |
| |
| void PictureLayerImpl::DidBeginTracing() { |
| raster_source_->DidBeginTracing(); |
| } |
| |
| void PictureLayerImpl::ReleaseResources() { |
| // Recreate tilings with new settings, since some of those might change when |
| // we release resources. |
| tilings_ = nullptr; |
| ResetRasterScale(); |
| } |
| |
| void PictureLayerImpl::ReleaseTileResources() { |
| // All resources are tile resources. |
| ReleaseResources(); |
| } |
| |
| void PictureLayerImpl::RecreateTileResources() { |
| tilings_ = CreatePictureLayerTilingSet(); |
| if (raster_source_) { |
| raster_source_->set_image_decode_controller( |
| layer_tree_impl()->image_decode_controller()); |
| } |
| } |
| |
| Region PictureLayerImpl::GetInvalidationRegionForDebugging() { |
| // |invalidation_| gives the invalidation contained in the source frame, but |
| // is not cleared after drawing from the layer. However, update_rect() is |
| // cleared once the invalidation is drawn, which is useful for debugging |
| // visualizations. This method intersects the two to give a more exact |
| // representation of what was invalidated that is cleared after drawing. |
| return IntersectRegions(invalidation_, update_rect()); |
| } |
| |
| ScopedTilePtr PictureLayerImpl::CreateTile(const Tile::CreateInfo& info) { |
| int flags = 0; |
| |
| // We don't handle solid color masks, so we shouldn't bother analyzing those. |
| // Otherwise, always analyze to maximize memory savings. |
| if (!is_mask_) |
| flags = Tile::USE_PICTURE_ANALYSIS; |
| |
| if (contents_opaque()) |
| flags |= Tile::IS_OPAQUE; |
| |
| return layer_tree_impl()->tile_manager()->CreateTile( |
| info, id(), layer_tree_impl()->source_frame_number(), flags); |
| } |
| |
| const Region* PictureLayerImpl::GetPendingInvalidation() { |
| if (layer_tree_impl()->IsPendingTree()) |
| return &invalidation_; |
| if (layer_tree_impl()->IsRecycleTree()) |
| return nullptr; |
| DCHECK(layer_tree_impl()->IsActiveTree()); |
| if (PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer()) |
| return &twin_layer->invalidation_; |
| return nullptr; |
| } |
| |
| const PictureLayerTiling* PictureLayerImpl::GetPendingOrActiveTwinTiling( |
| const PictureLayerTiling* tiling) const { |
| PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer(); |
| if (!twin_layer) |
| return nullptr; |
| return twin_layer->tilings_->FindTilingWithScaleKey( |
| tiling->contents_scale_key()); |
| } |
| |
| bool PictureLayerImpl::RequiresHighResToDraw() const { |
| return layer_tree_impl()->RequiresHighResToDraw(); |
| } |
| |
| gfx::Rect PictureLayerImpl::GetEnclosingRectInTargetSpace() const { |
| return GetScaledEnclosingRectInTargetSpace(MaximumTilingContentsScale()); |
| } |
| |
| gfx::Size PictureLayerImpl::CalculateTileSize( |
| const gfx::Size& content_bounds) const { |
| int max_texture_size = |
| layer_tree_impl()->resource_provider()->max_texture_size(); |
| |
| if (is_mask_) { |
| // Masks are not tiled, so if we can't cover the whole mask with one tile, |
| // we shouldn't have such a tiling at all. |
| DCHECK_LE(content_bounds.width(), max_texture_size); |
| DCHECK_LE(content_bounds.height(), max_texture_size); |
| return content_bounds; |
| } |
| |
| int default_tile_width = 0; |
| int default_tile_height = 0; |
| if (layer_tree_impl()->use_gpu_rasterization()) { |
| // For GPU rasterization, we pick an ideal tile size using the viewport |
| // so we don't need any settings. The current approach uses 4 tiles |
| // to cover the viewport vertically. |
| int viewport_width = gpu_raster_max_texture_size_.width(); |
| int viewport_height = gpu_raster_max_texture_size_.height(); |
| default_tile_width = viewport_width; |
| |
| // Also, increase the height proportionally as the width decreases, and |
| // pad by our border texels to make the tiles exactly match the viewport. |
| int divisor = 4; |
| if (content_bounds.width() <= viewport_width / 2) |
| divisor = 2; |
| if (content_bounds.width() <= viewport_width / 4) |
| divisor = 1; |
| default_tile_height = |
| MathUtil::UncheckedRoundUp(viewport_height, divisor) / divisor; |
| |
| // Grow default sizes to account for overlapping border texels. |
| default_tile_width += 2 * PictureLayerTiling::kBorderTexels; |
| default_tile_height += 2 * PictureLayerTiling::kBorderTexels; |
| |
| // Round GPU default tile sizes to a multiple of kGpuDefaultTileAlignment. |
| // This helps prevent rounding errors in our CA path. crbug.com/632274 |
| default_tile_width = |
| MathUtil::UncheckedRoundUp(default_tile_width, kGpuDefaultTileRoundUp); |
| default_tile_height = |
| MathUtil::UncheckedRoundUp(default_tile_height, kGpuDefaultTileRoundUp); |
| |
| default_tile_height = |
| std::max(default_tile_height, kMinHeightForGpuRasteredTile); |
| } else { |
| // For CPU rasterization we use tile-size settings. |
| const LayerTreeSettings& settings = layer_tree_impl()->settings(); |
| int max_untiled_content_width = settings.max_untiled_layer_size.width(); |
| int max_untiled_content_height = settings.max_untiled_layer_size.height(); |
| default_tile_width = settings.default_tile_size.width(); |
| default_tile_height = settings.default_tile_size.height(); |
| |
| // If the content width is small, increase tile size vertically. |
| // If the content height is small, increase tile size horizontally. |
| // If both are less than the untiled-size, use a single tile. |
| if (content_bounds.width() < default_tile_width) |
| default_tile_height = max_untiled_content_height; |
| if (content_bounds.height() < default_tile_height) |
| default_tile_width = max_untiled_content_width; |
| if (content_bounds.width() < max_untiled_content_width && |
| content_bounds.height() < max_untiled_content_height) { |
| default_tile_height = max_untiled_content_height; |
| default_tile_width = max_untiled_content_width; |
| } |
| } |
| |
| int tile_width = default_tile_width; |
| int tile_height = default_tile_height; |
| |
| // Clamp the tile width/height to the content width/height to save space. |
| if (content_bounds.width() < default_tile_width) { |
| tile_width = std::min(tile_width, content_bounds.width()); |
| tile_width = MathUtil::UncheckedRoundUp(tile_width, kTileRoundUp); |
| tile_width = std::min(tile_width, default_tile_width); |
| } |
| if (content_bounds.height() < default_tile_height) { |
| tile_height = std::min(tile_height, content_bounds.height()); |
| tile_height = MathUtil::UncheckedRoundUp(tile_height, kTileRoundUp); |
| tile_height = std::min(tile_height, default_tile_height); |
| } |
| |
| // Ensure that tile width and height are properly aligned. |
| tile_width = MathUtil::UncheckedRoundUp(tile_width, kTileMinimalAlignment); |
| tile_height = MathUtil::UncheckedRoundUp(tile_height, kTileMinimalAlignment); |
| |
| // Under no circumstance should we be larger than the max texture size. |
| tile_width = std::min(tile_width, max_texture_size); |
| tile_height = std::min(tile_height, max_texture_size); |
| return gfx::Size(tile_width, tile_height); |
| } |
| |
| void PictureLayerImpl::GetContentsResourceId(ResourceId* resource_id, |
| gfx::Size* resource_size) const { |
| // The bounds and the pile size may differ if the pile wasn't updated (ie. |
| // PictureLayer::Update didn't happen). In that case the pile will be empty. |
| DCHECK(raster_source_->GetSize().IsEmpty() || |
| bounds() == raster_source_->GetSize()) |
| << " bounds " << bounds().ToString() << " pile " |
| << raster_source_->GetSize().ToString(); |
| float dest_scale = MaximumTilingContentsScale(); |
| gfx::Rect content_rect = |
| gfx::ScaleToEnclosingRect(gfx::Rect(bounds()), dest_scale); |
| PictureLayerTilingSet::CoverageIterator iter( |
| tilings_.get(), dest_scale, content_rect, ideal_contents_scale_); |
| |
| // Mask resource not ready yet. |
| if (!iter || !*iter) { |
| *resource_id = 0; |
| return; |
| } |
| |
| // Masks only supported if they fit on exactly one tile. |
| DCHECK(iter.geometry_rect() == content_rect) |
| << "iter rect " << iter.geometry_rect().ToString() << " content rect " |
| << content_rect.ToString(); |
| |
| const TileDrawInfo& draw_info = iter->draw_info(); |
| if (!draw_info.IsReadyToDraw() || |
| draw_info.mode() != TileDrawInfo::RESOURCE_MODE) { |
| *resource_id = 0; |
| return; |
| } |
| |
| *resource_id = draw_info.resource_id(); |
| *resource_size = draw_info.resource_size(); |
| } |
| |
| void PictureLayerImpl::SetNearestNeighbor(bool nearest_neighbor) { |
| if (nearest_neighbor_ == nearest_neighbor) |
| return; |
| |
| nearest_neighbor_ = nearest_neighbor; |
| NoteLayerPropertyChanged(); |
| } |
| |
| PictureLayerTiling* PictureLayerImpl::AddTiling(float contents_scale) { |
| DCHECK(CanHaveTilings()); |
| DCHECK_GE(contents_scale, MinimumContentsScale()); |
| DCHECK_LE(contents_scale, MaximumContentsScale()); |
| DCHECK(raster_source_->HasRecordings()); |
| return tilings_->AddTiling(contents_scale, raster_source_); |
| } |
| |
| void PictureLayerImpl::RemoveAllTilings() { |
| tilings_->RemoveAllTilings(); |
| // If there are no tilings, then raster scales are no longer meaningful. |
| ResetRasterScale(); |
| } |
| |
| void PictureLayerImpl::AddTilingsForRasterScale() { |
| // Reset all resolution enums on tilings, we'll be setting new values in this |
| // function. |
| tilings_->MarkAllTilingsNonIdeal(); |
| |
| PictureLayerTiling* high_res = |
| tilings_->FindTilingWithScaleKey(raster_contents_scale_); |
| if (!high_res) { |
| // We always need a high res tiling, so create one if it doesn't exist. |
| high_res = AddTiling(raster_contents_scale_); |
| } else if (high_res->may_contain_low_resolution_tiles()) { |
| // If the tiling we find here was LOW_RESOLUTION previously, it may not be |
| // fully rastered, so destroy the old tiles. |
| high_res->Reset(); |
| // Reset the flag now that we'll make it high res, it will have fully |
| // rastered content. |
| high_res->reset_may_contain_low_resolution_tiles(); |
| } |
| high_res->set_resolution(HIGH_RESOLUTION); |
| |
| if (layer_tree_impl()->IsPendingTree()) { |
| // On the pending tree, drop any tilings that are non-ideal since we don't |
| // need them to activate anyway. |
| tilings_->RemoveNonIdealTilings(); |
| } |
| |
| SanityCheckTilingState(); |
| } |
| |
| bool PictureLayerImpl::ShouldAdjustRasterScale() const { |
| if (is_directly_composited_image_) { |
| float max_scale = std::max(1.f, MinimumContentsScale()); |
| if (raster_source_scale_ < std::min(ideal_source_scale_, max_scale)) |
| return true; |
| if (raster_source_scale_ > 4 * ideal_source_scale_) |
| return true; |
| return false; |
| } |
| |
| if (was_screen_space_transform_animating_ != |
| draw_properties().screen_space_transform_is_animating) |
| return true; |
| |
| bool is_pinching = layer_tree_impl()->PinchGestureActive(); |
| if (is_pinching && raster_page_scale_) { |
| // We change our raster scale when it is: |
| // - Higher than ideal (need a lower-res tiling available) |
| // - Too far from ideal (need a higher-res tiling available) |
| float ratio = ideal_page_scale_ / raster_page_scale_; |
| if (raster_page_scale_ > ideal_page_scale_ || |
| ratio > kMaxScaleRatioDuringPinch) |
| return true; |
| } |
| |
| if (!is_pinching) { |
| // When not pinching, match the ideal page scale factor. |
| if (raster_page_scale_ != ideal_page_scale_) |
| return true; |
| } |
| |
| // Always match the ideal device scale factor. |
| if (raster_device_scale_ != ideal_device_scale_) |
| return true; |
| |
| if (raster_contents_scale_ > MaximumContentsScale()) |
| return true; |
| if (raster_contents_scale_ < MinimumContentsScale()) |
| return true; |
| |
| // Don't change the raster scale if any of the following are true: |
| // - We have an animating transform. |
| // - We have a will-change transform hint. |
| // - The raster scale is already ideal. |
| if (draw_properties().screen_space_transform_is_animating || |
| has_will_change_transform_hint() || |
| raster_source_scale_ == ideal_source_scale_) { |
| return false; |
| } |
| |
| // Match the raster scale in all other cases. |
| return true; |
| } |
| |
| void PictureLayerImpl::AddLowResolutionTilingIfNeeded() { |
| DCHECK(layer_tree_impl()->IsActiveTree()); |
| |
| if (!layer_tree_impl()->create_low_res_tiling()) |
| return; |
| |
| // We should have a high resolution tiling at raster_contents_scale, so if the |
| // low res one is the same then we shouldn't try to override this tiling by |
| // marking it as a low res. |
| if (raster_contents_scale_ == low_res_raster_contents_scale_) |
| return; |
| |
| PictureLayerTiling* low_res = |
| tilings_->FindTilingWithScaleKey(low_res_raster_contents_scale_); |
| DCHECK(!low_res || low_res->resolution() != HIGH_RESOLUTION); |
| |
| // Only create new low res tilings when the transform is static. This |
| // prevents wastefully creating a paired low res tiling for every new high |
| // res tiling during a pinch or a CSS animation. |
| bool is_pinching = layer_tree_impl()->PinchGestureActive(); |
| bool is_animating = draw_properties().screen_space_transform_is_animating; |
| if (!is_pinching && !is_animating) { |
| if (!low_res) |
| low_res = AddTiling(low_res_raster_contents_scale_); |
| low_res->set_resolution(LOW_RESOLUTION); |
| } |
| } |
| |
| void PictureLayerImpl::RecalculateRasterScales() { |
| if (is_directly_composited_image_) { |
| if (!raster_source_scale_) |
| raster_source_scale_ = 1.f; |
| |
| float min_scale = MinimumContentsScale(); |
| float max_scale = std::max(1.f, MinimumContentsScale()); |
| float clamped_ideal_source_scale_ = |
| std::max(min_scale, std::min(ideal_source_scale_, max_scale)); |
| |
| while (raster_source_scale_ < clamped_ideal_source_scale_) |
| raster_source_scale_ *= 2.f; |
| while (raster_source_scale_ > 4 * clamped_ideal_source_scale_) |
| raster_source_scale_ /= 2.f; |
| |
| raster_source_scale_ = |
| std::max(min_scale, std::min(raster_source_scale_, max_scale)); |
| |
| raster_page_scale_ = 1.f; |
| raster_device_scale_ = 1.f; |
| raster_contents_scale_ = raster_source_scale_; |
| low_res_raster_contents_scale_ = raster_contents_scale_; |
| return; |
| } |
| |
| float old_raster_contents_scale = raster_contents_scale_; |
| float old_raster_page_scale = raster_page_scale_; |
| |
| raster_device_scale_ = ideal_device_scale_; |
| raster_page_scale_ = ideal_page_scale_; |
| raster_source_scale_ = ideal_source_scale_; |
| raster_contents_scale_ = ideal_contents_scale_; |
| |
| // During pinch we completely ignore the current ideal scale, and just use |
| // a multiple of the previous scale. |
| bool is_pinching = layer_tree_impl()->PinchGestureActive(); |
| if (is_pinching && old_raster_contents_scale) { |
| // See ShouldAdjustRasterScale: |
| // - When zooming out, preemptively create new tiling at lower resolution. |
| // - When zooming in, approximate ideal using multiple of kMaxScaleRatio. |
| bool zooming_out = old_raster_page_scale > ideal_page_scale_; |
| float desired_contents_scale = old_raster_contents_scale; |
| if (zooming_out) { |
| while (desired_contents_scale > ideal_contents_scale_) |
| desired_contents_scale /= kMaxScaleRatioDuringPinch; |
| } else { |
| while (desired_contents_scale < ideal_contents_scale_) |
| desired_contents_scale *= kMaxScaleRatioDuringPinch; |
| } |
| raster_contents_scale_ = tilings_->GetSnappedContentsScaleKey( |
| desired_contents_scale, kSnapToExistingTilingRatio); |
| raster_page_scale_ = |
| raster_contents_scale_ / raster_device_scale_ / raster_source_scale_; |
| } |
| |
| // We rasterize at the maximum scale that will occur during the animation, if |
| // the maximum scale is known. However we want to avoid excessive memory use. |
| // If the scale is smaller than what we would choose otherwise, then it's |
| // always better off for us memory-wise. But otherwise, we don't choose a |
| // scale at which this layer's rastered content would become larger than the |
| // viewport. |
| if (draw_properties().screen_space_transform_is_animating) { |
| bool can_raster_at_maximum_scale = false; |
| bool should_raster_at_starting_scale = false; |
| CombinedAnimationScale animation_scales = |
| layer_tree_impl()->property_trees()->GetAnimationScales( |
| transform_tree_index(), layer_tree_impl()); |
| float maximum_scale = animation_scales.maximum_animation_scale; |
| float starting_scale = animation_scales.starting_animation_scale; |
| if (maximum_scale) { |
| gfx::Size bounds_at_maximum_scale = |
| gfx::ScaleToCeiledSize(raster_source_->GetSize(), maximum_scale); |
| int64_t maximum_area = |
| static_cast<int64_t>(bounds_at_maximum_scale.width()) * |
| static_cast<int64_t>(bounds_at_maximum_scale.height()); |
| gfx::Size viewport = layer_tree_impl()->device_viewport_size(); |
| int64_t viewport_area = static_cast<int64_t>(viewport.width()) * |
| static_cast<int64_t>(viewport.height()); |
| if (maximum_area <= viewport_area) |
| can_raster_at_maximum_scale = true; |
| } |
| if (starting_scale && starting_scale > maximum_scale) { |
| gfx::Size bounds_at_starting_scale = |
| gfx::ScaleToCeiledSize(raster_source_->GetSize(), starting_scale); |
| int64_t start_area = |
| static_cast<int64_t>(bounds_at_starting_scale.width()) * |
| static_cast<int64_t>(bounds_at_starting_scale.height()); |
| gfx::Size viewport = layer_tree_impl()->device_viewport_size(); |
| int64_t viewport_area = static_cast<int64_t>(viewport.width()) * |
| static_cast<int64_t>(viewport.height()); |
| if (start_area <= viewport_area) |
| should_raster_at_starting_scale = true; |
| } |
| // Use the computed scales for the raster scale directly, do not try to use |
| // the ideal scale here. The current ideal scale may be way too large in the |
| // case of an animation with scale, and will be constantly changing. |
| if (should_raster_at_starting_scale) |
| raster_contents_scale_ = starting_scale; |
| else if (can_raster_at_maximum_scale) |
| raster_contents_scale_ = maximum_scale; |
| else |
| raster_contents_scale_ = 1.f * ideal_page_scale_ * ideal_device_scale_; |
| } |
| |
| raster_contents_scale_ = |
| std::max(raster_contents_scale_, MinimumContentsScale()); |
| raster_contents_scale_ = |
| std::min(raster_contents_scale_, MaximumContentsScale()); |
| DCHECK_GE(raster_contents_scale_, MinimumContentsScale()); |
| DCHECK_LE(raster_contents_scale_, MaximumContentsScale()); |
| |
| // If this layer would create zero or one tiles at this content scale, |
| // don't create a low res tiling. |
| gfx::Size raster_bounds = |
| gfx::ScaleToCeiledSize(raster_source_->GetSize(), raster_contents_scale_); |
| gfx::Size tile_size = CalculateTileSize(raster_bounds); |
| bool tile_covers_bounds = tile_size.width() >= raster_bounds.width() && |
| tile_size.height() >= raster_bounds.height(); |
| if (tile_size.IsEmpty() || tile_covers_bounds) { |
| low_res_raster_contents_scale_ = raster_contents_scale_; |
| return; |
| } |
| |
| float low_res_factor = |
| layer_tree_impl()->settings().low_res_contents_scale_factor; |
| low_res_raster_contents_scale_ = |
| std::max(raster_contents_scale_ * low_res_factor, MinimumContentsScale()); |
| DCHECK_LE(low_res_raster_contents_scale_, raster_contents_scale_); |
| DCHECK_GE(low_res_raster_contents_scale_, MinimumContentsScale()); |
| DCHECK_LE(low_res_raster_contents_scale_, MaximumContentsScale()); |
| } |
| |
| void PictureLayerImpl::CleanUpTilingsOnActiveLayer( |
| const std::vector<PictureLayerTiling*>& used_tilings) { |
| DCHECK(layer_tree_impl()->IsActiveTree()); |
| if (tilings_->num_tilings() == 0) |
| return; |
| |
| float min_acceptable_high_res_scale = std::min( |
| raster_contents_scale_, ideal_contents_scale_); |
| float max_acceptable_high_res_scale = std::max( |
| raster_contents_scale_, ideal_contents_scale_); |
| |
| PictureLayerImpl* twin = GetPendingOrActiveTwinLayer(); |
| if (twin && twin->CanHaveTilings()) { |
| min_acceptable_high_res_scale = std::min( |
| min_acceptable_high_res_scale, |
| std::min(twin->raster_contents_scale_, twin->ideal_contents_scale_)); |
| max_acceptable_high_res_scale = std::max( |
| max_acceptable_high_res_scale, |
| std::max(twin->raster_contents_scale_, twin->ideal_contents_scale_)); |
| } |
| |
| PictureLayerTilingSet* twin_set = twin ? twin->tilings_.get() : nullptr; |
| tilings_->CleanUpTilings(min_acceptable_high_res_scale, |
| max_acceptable_high_res_scale, used_tilings, |
| twin_set); |
| DCHECK_GT(tilings_->num_tilings(), 0u); |
| SanityCheckTilingState(); |
| } |
| |
| float PictureLayerImpl::MinimumContentsScale() const { |
| float setting_min = layer_tree_impl()->settings().minimum_contents_scale; |
| |
| // If the contents scale is less than 1 / width (also for height), |
| // then it will end up having less than one pixel of content in that |
| // dimension. Bump the minimum contents scale up in this case to prevent |
| // this from happening. |
| int min_dimension = std::min(raster_source_->GetSize().width(), |
| raster_source_->GetSize().height()); |
| if (!min_dimension) |
| return setting_min; |
| |
| return std::max(1.f / min_dimension, setting_min); |
| } |
| |
| float PictureLayerImpl::MaximumContentsScale() const { |
| // Masks can not have tilings that would become larger than the |
| // max_texture_size since they use a single tile for the entire |
| // tiling. Other layers can have tilings of any scale. |
| if (!is_mask_) |
| return std::numeric_limits<float>::max(); |
| |
| int max_texture_size = |
| layer_tree_impl()->resource_provider()->max_texture_size(); |
| float max_scale_width = |
| static_cast<float>(max_texture_size) / bounds().width(); |
| float max_scale_height = |
| static_cast<float>(max_texture_size) / bounds().height(); |
| float max_scale = std::min(max_scale_width, max_scale_height); |
| // We require that multiplying the layer size by the contents scale and |
| // ceiling produces a value <= |max_texture_size|. Because for large layer |
| // sizes floating point ambiguity may crop up, making the result larger or |
| // smaller than expected, we use a slightly smaller floating point value for |
| // the scale, to help ensure that the resulting content bounds will never end |
| // up larger than |max_texture_size|. |
| return nextafterf(max_scale, 0.f); |
| } |
| |
| void PictureLayerImpl::ResetRasterScale() { |
| raster_page_scale_ = 0.f; |
| raster_device_scale_ = 0.f; |
| raster_source_scale_ = 0.f; |
| raster_contents_scale_ = 0.f; |
| low_res_raster_contents_scale_ = 0.f; |
| } |
| |
| bool PictureLayerImpl::CanHaveTilings() const { |
| if (raster_source_->IsSolidColor()) |
| return false; |
| if (!DrawsContent()) |
| return false; |
| if (!raster_source_->HasRecordings()) |
| return false; |
| // If the |raster_source_| has a recording it should have non-empty bounds. |
| DCHECK(!raster_source_->GetSize().IsEmpty()); |
| if (MaximumContentsScale() < MinimumContentsScale()) |
| return false; |
| return true; |
| } |
| |
| void PictureLayerImpl::SanityCheckTilingState() const { |
| #if DCHECK_IS_ON() |
| if (!CanHaveTilings()) { |
| DCHECK_EQ(0u, tilings_->num_tilings()); |
| return; |
| } |
| if (tilings_->num_tilings() == 0) |
| return; |
| |
| // We should only have one high res tiling. |
| DCHECK_EQ(1, tilings_->NumHighResTilings()); |
| #endif |
| } |
| |
| float PictureLayerImpl::MaximumTilingContentsScale() const { |
| float max_contents_scale = tilings_->GetMaximumContentsScale(); |
| return std::max(max_contents_scale, MinimumContentsScale()); |
| } |
| |
| std::unique_ptr<PictureLayerTilingSet> |
| PictureLayerImpl::CreatePictureLayerTilingSet() { |
| const LayerTreeSettings& settings = layer_tree_impl()->settings(); |
| return PictureLayerTilingSet::Create( |
| GetTree(), this, settings.tiling_interest_area_padding, |
| layer_tree_impl()->use_gpu_rasterization() |
| ? settings.gpu_rasterization_skewport_target_time_in_seconds |
| : settings.skewport_target_time_in_seconds, |
| settings.skewport_extrapolation_limit_in_screen_pixels, |
| settings.max_preraster_distance_in_screen_pixels); |
| } |
| |
| void PictureLayerImpl::UpdateIdealScales() { |
| DCHECK(CanHaveTilings()); |
| |
| float min_contents_scale = MinimumContentsScale(); |
| DCHECK_GT(min_contents_scale, 0.f); |
| |
| ideal_page_scale_ = IsAffectedByPageScale() |
| ? layer_tree_impl()->current_page_scale_factor() |
| : 1.f; |
| ideal_device_scale_ = layer_tree_impl()->device_scale_factor(); |
| ideal_contents_scale_ = |
| std::min(kMaxIdealContentsScale, |
| std::max(GetIdealContentsScale(), min_contents_scale)); |
| ideal_source_scale_ = |
| ideal_contents_scale_ / ideal_page_scale_ / ideal_device_scale_; |
| UMA_HISTOGRAM_CUSTOM_COUNTS("Renderer4.IdealContentsScale", |
| ideal_contents_scale_, 1, 10000, 50); |
| } |
| |
| void PictureLayerImpl::GetDebugBorderProperties( |
| SkColor* color, |
| float* width) const { |
| if (is_directly_composited_image_) { |
| *color = DebugColors::ImageLayerBorderColor(); |
| *width = DebugColors::ImageLayerBorderWidth(layer_tree_impl()); |
| } else { |
| *color = DebugColors::TiledContentLayerBorderColor(); |
| *width = DebugColors::TiledContentLayerBorderWidth(layer_tree_impl()); |
| } |
| } |
| |
| void PictureLayerImpl::GetAllPrioritizedTilesForTracing( |
| std::vector<PrioritizedTile>* prioritized_tiles) const { |
| if (!tilings_) |
| return; |
| tilings_->GetAllPrioritizedTilesForTracing(prioritized_tiles); |
| } |
| |
| void PictureLayerImpl::AsValueInto( |
| base::trace_event::TracedValue* state) const { |
| LayerImpl::AsValueInto(state); |
| state->SetDouble("ideal_contents_scale", ideal_contents_scale_); |
| state->SetDouble("geometry_contents_scale", MaximumTilingContentsScale()); |
| state->BeginArray("tilings"); |
| tilings_->AsValueInto(state); |
| state->EndArray(); |
| |
| MathUtil::AddToTracedValue("tile_priority_rect", |
| viewport_rect_for_tile_priority_in_content_space_, |
| state); |
| MathUtil::AddToTracedValue("visible_rect", visible_layer_rect(), state); |
| |
| state->BeginArray("pictures"); |
| raster_source_->AsValueInto(state); |
| state->EndArray(); |
| |
| state->BeginArray("invalidation"); |
| invalidation_.AsValueInto(state); |
| state->EndArray(); |
| |
| state->BeginArray("coverage_tiles"); |
| for (PictureLayerTilingSet::CoverageIterator iter( |
| tilings_.get(), 1.f, gfx::Rect(raster_source_->GetSize()), |
| ideal_contents_scale_); |
| iter; ++iter) { |
| state->BeginDictionary(); |
| |
| MathUtil::AddToTracedValue("geometry_rect", iter.geometry_rect(), state); |
| |
| if (*iter) |
| TracedValue::SetIDRef(*iter, state, "tile"); |
| |
| state->EndDictionary(); |
| } |
| state->EndArray(); |
| } |
| |
| size_t PictureLayerImpl::GPUMemoryUsageInBytes() const { |
| return tilings_->GPUMemoryUsageInBytes(); |
| } |
| |
| void PictureLayerImpl::RunMicroBenchmark(MicroBenchmarkImpl* benchmark) { |
| benchmark->RunOnLayer(this); |
| } |
| |
| WhichTree PictureLayerImpl::GetTree() const { |
| return layer_tree_impl()->IsActiveTree() ? ACTIVE_TREE : PENDING_TREE; |
| } |
| |
| bool PictureLayerImpl::IsOnActiveOrPendingTree() const { |
| return !layer_tree_impl()->IsRecycleTree(); |
| } |
| |
| bool PictureLayerImpl::HasValidTilePriorities() const { |
| return IsOnActiveOrPendingTree() && |
| is_drawn_render_surface_layer_list_member(); |
| } |
| |
| } // namespace cc |