blob: 0279135e0830b5d9da3d05e874d18ec29e07ebbe [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "remoting/host/audio_capturer_win.h"
#include <windows.h>
#include <avrt.h>
#include <mmreg.h>
#include <mmsystem.h>
#include <algorithm>
#include <stdlib.h>
#include "base/logging.h"
namespace {
const int kChannels = 2;
const int kBytesPerSample = 2;
const int kBitsPerSample = kBytesPerSample * 8;
// Conversion factor from 100ns to 1ms.
const int k100nsPerMillisecond = 10000;
// Tolerance for catching packets of silence. If all samples have absolute
// value less than this threshold, the packet will be counted as a packet of
// silence. A value of 2 was chosen, because Windows can give samples of 1 and
// -1, even when no audio is playing.
const int kSilenceThreshold = 2;
// Lower bound for timer intervals, in milliseconds.
const int kMinTimerInterval = 30;
// Upper bound for the timer precision error, in milliseconds.
// Timers are supposed to be accurate to 20ms, so we use 30ms to be safe.
const int kMaxExpectedTimerLag = 30;
} // namespace
namespace remoting {
AudioCapturerWin::AudioCapturerWin()
: sampling_rate_(AudioPacket::SAMPLING_RATE_INVALID),
silence_detector_(kSilenceThreshold),
last_capture_error_(S_OK) {
thread_checker_.DetachFromThread();
}
AudioCapturerWin::~AudioCapturerWin() {
}
bool AudioCapturerWin::Start(const PacketCapturedCallback& callback) {
DCHECK(!audio_capture_client_.get());
DCHECK(!audio_client_.get());
DCHECK(!mm_device_.get());
DCHECK(static_cast<PWAVEFORMATEX>(wave_format_ex_) == NULL);
DCHECK(thread_checker_.CalledOnValidThread());
callback_ = callback;
// Initialize the capture timer.
capture_timer_.reset(new base::RepeatingTimer<AudioCapturerWin>());
HRESULT hr = S_OK;
base::win::ScopedComPtr<IMMDeviceEnumerator> mm_device_enumerator;
hr = mm_device_enumerator.CreateInstance(__uuidof(MMDeviceEnumerator));
if (FAILED(hr)) {
LOG(ERROR) << "Failed to create IMMDeviceEnumerator. Error " << hr;
return false;
}
// Get the audio endpoint.
hr = mm_device_enumerator->GetDefaultAudioEndpoint(eRender,
eConsole,
mm_device_.Receive());
if (FAILED(hr)) {
LOG(ERROR) << "Failed to get IMMDevice. Error " << hr;
return false;
}
// Get an audio client.
hr = mm_device_->Activate(__uuidof(IAudioClient),
CLSCTX_ALL,
NULL,
audio_client_.ReceiveVoid());
if (FAILED(hr)) {
LOG(ERROR) << "Failed to get an IAudioClient. Error " << hr;
return false;
}
REFERENCE_TIME device_period;
hr = audio_client_->GetDevicePeriod(&device_period, NULL);
if (FAILED(hr)) {
LOG(ERROR) << "IAudioClient::GetDevicePeriod failed. Error " << hr;
return false;
}
// We round up, if |device_period| / |k100nsPerMillisecond|
// is not a whole number.
int device_period_in_milliseconds =
1 + ((device_period - 1) / k100nsPerMillisecond);
audio_device_period_ = base::TimeDelta::FromMilliseconds(
std::max(device_period_in_milliseconds, kMinTimerInterval));
// Get the wave format.
hr = audio_client_->GetMixFormat(&wave_format_ex_);
if (FAILED(hr)) {
LOG(ERROR) << "Failed to get WAVEFORMATEX. Error " << hr;
return false;
}
// Set the wave format
switch (wave_format_ex_->wFormatTag) {
case WAVE_FORMAT_IEEE_FLOAT:
// Intentional fall-through.
case WAVE_FORMAT_PCM:
if (!AudioCapturer::IsValidSampleRate(wave_format_ex_->nSamplesPerSec)) {
LOG(ERROR) << "Host sampling rate is neither 44.1 kHz nor 48 kHz.";
return false;
}
sampling_rate_ = static_cast<AudioPacket::SamplingRate>(
wave_format_ex_->nSamplesPerSec);
wave_format_ex_->wFormatTag = WAVE_FORMAT_PCM;
wave_format_ex_->nChannels = kChannels;
wave_format_ex_->wBitsPerSample = kBitsPerSample;
wave_format_ex_->nBlockAlign = kChannels * kBytesPerSample;
wave_format_ex_->nAvgBytesPerSec =
sampling_rate_ * kChannels * kBytesPerSample;
break;
case WAVE_FORMAT_EXTENSIBLE: {
PWAVEFORMATEXTENSIBLE wave_format_extensible =
reinterpret_cast<WAVEFORMATEXTENSIBLE*>(
static_cast<WAVEFORMATEX*>(wave_format_ex_));
if (IsEqualGUID(KSDATAFORMAT_SUBTYPE_IEEE_FLOAT,
wave_format_extensible->SubFormat)) {
if (!AudioCapturer::IsValidSampleRate(
wave_format_extensible->Format.nSamplesPerSec)) {
LOG(ERROR) << "Host sampling rate is neither 44.1 kHz nor 48 kHz.";
return false;
}
sampling_rate_ = static_cast<AudioPacket::SamplingRate>(
wave_format_extensible->Format.nSamplesPerSec);
wave_format_extensible->SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
wave_format_extensible->Samples.wValidBitsPerSample = kBitsPerSample;
wave_format_extensible->Format.nChannels = kChannels;
wave_format_extensible->Format.nSamplesPerSec = sampling_rate_;
wave_format_extensible->Format.wBitsPerSample = kBitsPerSample;
wave_format_extensible->Format.nBlockAlign =
kChannels * kBytesPerSample;
wave_format_extensible->Format.nAvgBytesPerSec =
sampling_rate_ * kChannels * kBytesPerSample;
} else {
LOG(ERROR) << "Failed to force 16-bit samples";
return false;
}
break;
}
default:
LOG(ERROR) << "Failed to force 16-bit PCM";
return false;
}
// Initialize the IAudioClient.
hr = audio_client_->Initialize(
AUDCLNT_SHAREMODE_SHARED,
AUDCLNT_STREAMFLAGS_LOOPBACK,
(kMaxExpectedTimerLag + audio_device_period_.InMilliseconds()) *
k100nsPerMillisecond,
0,
wave_format_ex_,
NULL);
if (FAILED(hr)) {
LOG(ERROR) << "Failed to initialize IAudioClient. Error " << hr;
return false;
}
// Get an IAudioCaptureClient.
hr = audio_client_->GetService(__uuidof(IAudioCaptureClient),
audio_capture_client_.ReceiveVoid());
if (FAILED(hr)) {
LOG(ERROR) << "Failed to get an IAudioCaptureClient. Error " << hr;
return false;
}
// Start the IAudioClient.
hr = audio_client_->Start();
if (FAILED(hr)) {
LOG(ERROR) << "Failed to start IAudioClient. Error " << hr;
return false;
}
silence_detector_.Reset(sampling_rate_, kChannels);
// Start capturing.
capture_timer_->Start(FROM_HERE,
audio_device_period_,
this,
&AudioCapturerWin::DoCapture);
return true;
}
void AudioCapturerWin::Stop() {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(IsStarted());
capture_timer_.reset();
mm_device_.Release();
audio_client_.Release();
audio_capture_client_.Release();
wave_format_ex_.Reset(NULL);
thread_checker_.DetachFromThread();
}
bool AudioCapturerWin::IsStarted() {
DCHECK(thread_checker_.CalledOnValidThread());
return capture_timer_.get() != NULL;
}
void AudioCapturerWin::DoCapture() {
DCHECK(AudioCapturer::IsValidSampleRate(sampling_rate_));
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(IsStarted());
// Fetch all packets from the audio capture endpoint buffer.
HRESULT hr = S_OK;
while (true) {
UINT32 next_packet_size;
HRESULT hr = audio_capture_client_->GetNextPacketSize(&next_packet_size);
if (FAILED(hr))
break;
if (next_packet_size <= 0) {
return;
}
BYTE* data;
UINT32 frames;
DWORD flags;
hr = audio_capture_client_->GetBuffer(&data, &frames, &flags, NULL, NULL);
if (FAILED(hr))
break;
if ((flags & AUDCLNT_BUFFERFLAGS_SILENT) == 0 &&
!silence_detector_.IsSilence(
reinterpret_cast<const int16*>(data), frames * kChannels)) {
scoped_ptr<AudioPacket> packet(new AudioPacket());
packet->add_data(data, frames * wave_format_ex_->nBlockAlign);
packet->set_encoding(AudioPacket::ENCODING_RAW);
packet->set_sampling_rate(sampling_rate_);
packet->set_bytes_per_sample(AudioPacket::BYTES_PER_SAMPLE_2);
packet->set_channels(AudioPacket::CHANNELS_STEREO);
callback_.Run(packet.Pass());
}
hr = audio_capture_client_->ReleaseBuffer(frames);
if (FAILED(hr))
break;
}
// There is nothing to capture if the audio endpoint device has been unplugged
// or disabled.
if (hr == AUDCLNT_E_DEVICE_INVALIDATED)
return;
// Avoid reporting the same error multiple times.
if (FAILED(hr) && hr != last_capture_error_) {
last_capture_error_ = hr;
LOG(ERROR) << "Failed to capture an audio packet: 0x"
<< std::hex << hr << std::dec << ".";
}
}
bool AudioCapturer::IsSupported() {
return true;
}
scoped_ptr<AudioCapturer> AudioCapturer::Create() {
return make_scoped_ptr(new AudioCapturerWin());
}
} // namespace remoting