blob: 175bbe7dfcbd2091f32d1296db969c3507c6c039 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <utility>
#include "base/logging.h"
#include "base/values.h"
#include "components/webcrypto/algorithm_dispatch.h"
#include "components/webcrypto/algorithms/test_helpers.h"
#include "components/webcrypto/crypto_data.h"
#include "components/webcrypto/status.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/blink/public/platform/web_crypto_algorithm_params.h"
#include "third_party/blink/public/platform/web_crypto_key_algorithm.h"
namespace webcrypto {
namespace {
// Creates an HMAC algorithm whose parameters struct is compatible with key
// generation. It is an error to call this with a hash_id that is not a SHA*.
// The key_length_bits parameter is optional, with zero meaning unspecified.
blink::WebCryptoAlgorithm CreateHmacKeyGenAlgorithm(
blink::WebCryptoAlgorithmId hash_id,
unsigned int key_length_bits) {
DCHECK(blink::WebCryptoAlgorithm::IsHash(hash_id));
// key_length_bytes == 0 means unspecified
return blink::WebCryptoAlgorithm::AdoptParamsAndCreate(
blink::kWebCryptoAlgorithmIdHmac,
new blink::WebCryptoHmacKeyGenParams(
CreateAlgorithm(hash_id), (key_length_bits != 0), key_length_bits));
}
blink::WebCryptoAlgorithm CreateHmacImportAlgorithmWithLength(
blink::WebCryptoAlgorithmId hash_id,
unsigned int length_bits) {
DCHECK(blink::WebCryptoAlgorithm::IsHash(hash_id));
return blink::WebCryptoAlgorithm::AdoptParamsAndCreate(
blink::kWebCryptoAlgorithmIdHmac,
new blink::WebCryptoHmacImportParams(CreateAlgorithm(hash_id), true,
length_bits));
}
class WebCryptoHmacTest : public WebCryptoTestBase {};
TEST_F(WebCryptoHmacTest, HMACSampleSets) {
base::ListValue tests;
ASSERT_TRUE(ReadJsonTestFileToList("hmac.json", &tests));
for (size_t test_index = 0; test_index < tests.GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests.GetDictionary(test_index, &test));
blink::WebCryptoAlgorithm test_hash = GetDigestAlgorithm(test, "hash");
const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
const std::vector<uint8_t> test_message =
GetBytesFromHexString(test, "message");
const std::vector<uint8_t> test_mac = GetBytesFromHexString(test, "mac");
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::kWebCryptoAlgorithmIdHmac);
blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithmNoLength(test_hash.Id());
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
test_key, import_algorithm,
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify);
EXPECT_EQ(test_hash.Id(), key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(test_key.size() * 8, key.Algorithm().HmacParams()->LengthBits());
// Verify exported raw key is identical to the imported data
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(test_key, raw_key);
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Sign(algorithm, key, CryptoData(test_message), &output));
EXPECT_BYTES_EQ(test_mac, output);
bool signature_match = false;
EXPECT_EQ(Status::Success(),
Verify(algorithm, key, CryptoData(output),
CryptoData(test_message), &signature_match));
EXPECT_TRUE(signature_match);
// Ensure truncated signature does not verify by passing one less byte.
EXPECT_EQ(Status::Success(),
Verify(algorithm, key,
CryptoData(output.data(),
static_cast<unsigned int>(output.size()) - 1),
CryptoData(test_message), &signature_match));
EXPECT_FALSE(signature_match);
// Ensure truncated signature does not verify by passing no bytes.
EXPECT_EQ(Status::Success(),
Verify(algorithm, key, CryptoData(), CryptoData(test_message),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure extra long signature does not cause issues and fails.
const unsigned char kLongSignature[1024] = {0};
EXPECT_EQ(Status::Success(),
Verify(algorithm, key,
CryptoData(kLongSignature, sizeof(kLongSignature)),
CryptoData(test_message), &signature_match));
EXPECT_FALSE(signature_match);
}
}
TEST_F(WebCryptoHmacTest, GenerateKeyIsRandom) {
// Generate a small sample of HMAC keys.
std::vector<std::vector<uint8_t>> keys;
for (int i = 0; i < 16; ++i) {
std::vector<uint8_t> key_bytes;
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::kWebCryptoAlgorithmIdSha1, 512);
ASSERT_EQ(Status::Success(),
GenerateSecretKey(algorithm, true, blink::kWebCryptoKeyUsageSign,
&key));
EXPECT_FALSE(key.IsNull());
EXPECT_TRUE(key.Handle());
EXPECT_EQ(blink::kWebCryptoKeyTypeSecret, key.GetType());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, key.Algorithm().Id());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha1,
key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(512u, key.Algorithm().HmacParams()->LengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(64U, raw_key.size());
keys.push_back(raw_key);
}
// Ensure all entries in the key sample set are unique. This is a simplistic
// estimate of whether the generated keys appear random.
EXPECT_FALSE(CopiesExist(keys));
}
// If the key length is not provided, then the block size is used.
TEST_F(WebCryptoHmacTest, GenerateKeyNoLengthSha1) {
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::kWebCryptoAlgorithmIdSha1, 0);
ASSERT_EQ(
Status::Success(),
GenerateSecretKey(algorithm, true, blink::kWebCryptoKeyUsageSign, &key));
EXPECT_TRUE(key.Handle());
EXPECT_EQ(blink::kWebCryptoKeyTypeSecret, key.GetType());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, key.Algorithm().Id());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha1,
key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(512u, key.Algorithm().HmacParams()->LengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(64U, raw_key.size());
}
// If the key length is not provided, then the block size is used.
TEST_F(WebCryptoHmacTest, GenerateKeyNoLengthSha512) {
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::kWebCryptoAlgorithmIdSha512, 0);
ASSERT_EQ(
Status::Success(),
GenerateSecretKey(algorithm, true, blink::kWebCryptoKeyUsageSign, &key));
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, key.Algorithm().Id());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha512,
key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(1024u, key.Algorithm().HmacParams()->LengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(128U, raw_key.size());
}
TEST_F(WebCryptoHmacTest, GenerateKeyEmptyUsage) {
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::kWebCryptoAlgorithmIdSha512, 0);
ASSERT_EQ(Status::ErrorCreateKeyEmptyUsages(),
GenerateSecretKey(algorithm, true, 0, &key));
}
// Generate a 1 bit key. The exported key is 1 byte long, and 7 of the bits are
// guaranteed to be zero.
TEST_F(WebCryptoHmacTest, Generate1BitKey) {
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::kWebCryptoAlgorithmIdSha1, 1);
ASSERT_EQ(
Status::Success(),
GenerateSecretKey(algorithm, true, blink::kWebCryptoKeyUsageSign, &key));
EXPECT_EQ(1u, key.Algorithm().HmacParams()->LengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
ASSERT_EQ(1U, raw_key.size());
EXPECT_FALSE(raw_key[0] & 0x7F);
}
TEST_F(WebCryptoHmacTest, ImportKeyEmptyUsage) {
blink::WebCryptoKey key;
std::string key_raw_hex_in = "025a8cf3f08b4f6c5f33bbc76a471939";
EXPECT_EQ(Status::ErrorCreateKeyEmptyUsages(),
ImportKey(blink::kWebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes(key_raw_hex_in)),
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha1),
true, 0, &key));
}
TEST_F(WebCryptoHmacTest, ImportKeyJwkKeyOpsSignVerify) {
blink::WebCryptoKey key;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg");
base::ListValue* key_ops =
dict.SetList("key_ops", std::make_unique<base::ListValue>());
key_ops->AppendString("sign");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha256),
false, blink::kWebCryptoKeyUsageSign, &key));
EXPECT_EQ(blink::kWebCryptoKeyUsageSign, key.Usages());
key_ops->AppendString("verify");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha256),
false, blink::kWebCryptoKeyUsageVerify, &key));
EXPECT_EQ(blink::kWebCryptoKeyUsageVerify, key.Usages());
}
// Test 'use' inconsistent with 'key_ops'.
TEST_F(WebCryptoHmacTest, ImportKeyJwkUseInconsisteWithKeyOps) {
blink::WebCryptoKey key;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg");
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
auto key_ops = std::make_unique<base::ListValue>();
key_ops->AppendString("sign");
key_ops->AppendString("verify");
key_ops->AppendString("encrypt");
dict.Set("key_ops", std::move(key_ops));
EXPECT_EQ(
Status::ErrorJwkUseAndKeyopsInconsistent(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256),
false,
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify,
&key));
}
// Test JWK composite 'sig' use
TEST_F(WebCryptoHmacTest, ImportKeyJwkUseSig) {
blink::WebCryptoKey key;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg");
dict.SetString("use", "sig");
EXPECT_EQ(
Status::Success(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256),
false,
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify,
&key));
EXPECT_EQ(blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify,
key.Usages());
}
TEST_F(WebCryptoHmacTest, ImportJwkInputConsistency) {
// The Web Crypto spec says that if a JWK value is present, but is
// inconsistent with the input value, the operation must fail.
// Consistency rules when JWK value is not present: Inputs should be used.
blink::WebCryptoKey key;
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageVerify;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
std::vector<uint8_t> json_vec = MakeJsonVector(dict);
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec),
algorithm, extractable, usages, &key));
EXPECT_TRUE(key.Handle());
EXPECT_EQ(blink::kWebCryptoKeyTypeSecret, key.GetType());
EXPECT_EQ(extractable, key.Extractable());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, key.Algorithm().Id());
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha256,
key.Algorithm().HmacParams()->GetHash().Id());
EXPECT_EQ(320u, key.Algorithm().HmacParams()->LengthBits());
EXPECT_EQ(blink::kWebCryptoKeyUsageVerify, key.Usages());
key = blink::WebCryptoKey::CreateNull();
// Consistency rules when JWK value exists: Fail if inconsistency is found.
// Pass: All input values are consistent with the JWK values.
dict.Clear();
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
dict.SetBoolean("ext", false);
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
json_vec = MakeJsonVector(dict);
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec),
algorithm, extractable, usages, &key));
// Extractable cases:
// 1. input=T, JWK=F ==> fail (inconsistent)
// 4. input=F, JWK=F ==> pass, result extractable is F
// 2. input=T, JWK=T ==> pass, result extractable is T
// 3. input=F, JWK=T ==> pass, result extractable is F
EXPECT_EQ(Status::ErrorJwkExtInconsistent(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec),
algorithm, true, usages, &key));
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec),
algorithm, false, usages, &key));
EXPECT_FALSE(key.Extractable());
dict.SetBoolean("ext", true);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, true, usages, &key));
EXPECT_TRUE(key.Extractable());
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usages, &key));
EXPECT_FALSE(key.Extractable());
dict.SetBoolean("ext", true); // restore previous value
// Fail: Input algorithm (AES-CBC) is inconsistent with JWK value
// (HMAC SHA256).
dict.Clear();
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
EXPECT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
ImportKeyJwkFromDict(
dict, CreateAlgorithm(blink::kWebCryptoAlgorithmIdAesCbc),
extractable, blink::kWebCryptoKeyUsageEncrypt, &key));
// Fail: Input usage (encrypt) is inconsistent with JWK value (use=sig).
EXPECT_EQ(Status::ErrorJwkUseInconsistent(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec),
CreateAlgorithm(blink::kWebCryptoAlgorithmIdAesCbc),
extractable, blink::kWebCryptoKeyUsageEncrypt, &key));
// Fail: Input algorithm (HMAC SHA1) is inconsistent with JWK value
// (HMAC SHA256).
EXPECT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec),
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha1),
extractable, usages, &key));
// Pass: JWK alg missing but input algorithm specified: use input value
dict.Remove("alg", nullptr);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha256),
extractable, usages, &key));
EXPECT_EQ(blink::kWebCryptoAlgorithmIdHmac, algorithm.Id());
dict.SetString("alg", "HS256");
// Fail: Input usages (encrypt) is not a subset of the JWK value
// (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
EXPECT_EQ(
Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec), algorithm,
extractable, blink::kWebCryptoKeyUsageEncrypt, &key));
// Fail: Input usages (encrypt|sign|verify) is not a subset of the JWK
// value (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
usages = blink::kWebCryptoKeyUsageEncrypt | blink::kWebCryptoKeyUsageSign |
blink::kWebCryptoKeyUsageVerify;
EXPECT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json_vec),
algorithm, extractable, usages, &key));
// TODO(padolph): kty vs alg consistency tests: Depending on the kty value,
// only certain alg values are permitted. For example, when kty = "RSA" alg
// must be of the RSA family, or when kty = "oct" alg must be symmetric
// algorithm.
// TODO(padolph): key_ops consistency tests
}
TEST_F(WebCryptoHmacTest, ImportJwkHappy) {
// This test verifies the happy path of JWK import, including the application
// of the imported key material.
blink::WebCryptoKey key;
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
// Import a symmetric key JWK and HMAC-SHA256 sign()
// Uses the first SHA256 test vector from the HMAC sample set above.
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
dict.SetBoolean("ext", false);
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, extractable, usages, &key));
EXPECT_EQ(blink::kWebCryptoAlgorithmIdSha256,
key.Algorithm().HmacParams()->GetHash().Id());
const std::vector<uint8_t> message_raw = HexStringToBytes(
"b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a"
"92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92"
"d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f"
"22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e");
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Sign(CreateAlgorithm(blink::kWebCryptoAlgorithmIdHmac), key,
CryptoData(message_raw), &output));
const std::string mac_raw =
"769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b";
EXPECT_BYTES_EQ_HEX(mac_raw, output);
// TODO(padolph): Import an RSA public key JWK and use it
}
TEST_F(WebCryptoHmacTest, ImportExportJwk) {
// HMAC SHA-1
ImportExportJwkSymmetricKey(
256, CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha1),
blink::kWebCryptoKeyUsageSign | blink::kWebCryptoKeyUsageVerify, "HS1");
// HMAC SHA-384
ImportExportJwkSymmetricKey(
384,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha384),
blink::kWebCryptoKeyUsageSign, "HS384");
// HMAC SHA-512
ImportExportJwkSymmetricKey(
512,
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha512),
blink::kWebCryptoKeyUsageVerify, "HS512");
}
TEST_F(WebCryptoHmacTest, ExportJwkEmptyKey) {
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
// Importing empty HMAC key is no longer allowed. However such a key can be
// created via de-serialization.
blink::WebCryptoKey key;
ASSERT_TRUE(DeserializeKeyForClone(blink::WebCryptoKeyAlgorithm::CreateHmac(
blink::kWebCryptoAlgorithmIdSha1, 0),
blink::kWebCryptoKeyTypeSecret, true,
usages, CryptoData(), &key));
// Export the key in JWK format and validate.
std::vector<uint8_t> json;
ASSERT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatJwk, key, &json));
EXPECT_TRUE(VerifySecretJwk(json, "HS1", "", usages));
// Now try re-importing the JWK key.
key = blink::WebCryptoKey::CreateNull();
EXPECT_EQ(Status::ErrorHmacImportEmptyKey(),
ImportKey(blink::kWebCryptoKeyFormatJwk, CryptoData(json),
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha1),
true, usages, &key));
}
// Imports an HMAC key contaning no byte data.
TEST_F(WebCryptoHmacTest, ImportRawEmptyKey) {
const blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithmNoLength(blink::kWebCryptoAlgorithmIdSha1);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
blink::WebCryptoKey key;
ASSERT_EQ(Status::ErrorHmacImportEmptyKey(),
ImportKey(blink::kWebCryptoKeyFormatRaw, CryptoData(),
import_algorithm, true, usages, &key));
}
// Imports an HMAC key contaning 1 byte data, however the length was set to 0.
TEST_F(WebCryptoHmacTest, ImportRawKeyWithZeroLength) {
const blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithm(blink::kWebCryptoAlgorithmIdSha1, 0);
blink::WebCryptoKeyUsageMask usages = blink::kWebCryptoKeyUsageSign;
blink::WebCryptoKey key;
std::vector<uint8_t> key_data(1);
ASSERT_EQ(Status::ErrorHmacImportBadLength(),
ImportKey(blink::kWebCryptoKeyFormatRaw, CryptoData(key_data),
import_algorithm, true, usages, &key));
}
// Import a huge hmac key (UINT_MAX bytes). This will fail before actually
// reading the bytes, as the key is too large.
TEST_F(WebCryptoHmacTest, ImportRawKeyTooLarge) {
CryptoData big_data(nullptr, UINT_MAX); // Invalid data of big length.
blink::WebCryptoKey key;
EXPECT_EQ(Status::ErrorDataTooLarge(),
ImportKey(blink::kWebCryptoKeyFormatRaw, CryptoData(big_data),
CreateHmacImportAlgorithmNoLength(
blink::kWebCryptoAlgorithmIdSha1),
true, blink::kWebCryptoKeyUsageSign, &key));
}
// Import an HMAC key with 120 bits of data, however request 128 bits worth.
TEST_F(WebCryptoHmacTest, ImportRawKeyLengthTooLarge) {
blink::WebCryptoKey key;
EXPECT_EQ(Status::ErrorHmacImportBadLength(),
ImportKey(blink::kWebCryptoKeyFormatRaw,
CryptoData(std::vector<uint8_t>(15)),
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 128),
true, blink::kWebCryptoKeyUsageSign, &key));
}
// Import an HMAC key with 128 bits of data, however request 120 bits worth.
TEST_F(WebCryptoHmacTest, ImportRawKeyLengthTooSmall) {
blink::WebCryptoKey key;
EXPECT_EQ(Status::ErrorHmacImportBadLength(),
ImportKey(blink::kWebCryptoKeyFormatRaw,
CryptoData(std::vector<uint8_t>(16)),
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 120),
true, blink::kWebCryptoKeyUsageSign, &key));
}
// Import an HMAC key with 16 bits of data and request a 12 bit key, using the
// "raw" format.
TEST_F(WebCryptoHmacTest, ImportRawKeyTruncation) {
const std::vector<uint8_t> data = HexStringToBytes("b1ff");
blink::WebCryptoKey key;
EXPECT_EQ(Status::Success(),
ImportKey(blink::kWebCryptoKeyFormatRaw, CryptoData(data),
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 12),
true, blink::kWebCryptoKeyUsageSign, &key));
// On export the last 4 bits has been set to zero.
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(HexStringToBytes("b1f0"), raw_key);
}
// The same test as above, but using the JWK format.
TEST_F(WebCryptoHmacTest, ImportJwkKeyTruncation) {
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "sf8"); // 0xB1FF
blink::WebCryptoKey key;
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
CreateHmacImportAlgorithmWithLength(
blink::kWebCryptoAlgorithmIdSha1, 12),
true, blink::kWebCryptoKeyUsageSign, &key));
// On export the last 4 bits has been set to zero.
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::kWebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(HexStringToBytes("b1f0"), raw_key);
}
} // namespace
} // namespace webcrypto