blob: 1428db156f55edf994d1027158d7f544e8dc6e7c [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/thread_task_runner_handle.h"
#include "cc/resources/resource_pool.h"
#include "cc/test/begin_frame_args_test.h"
#include "cc/test/fake_impl_proxy.h"
#include "cc/test/fake_layer_tree_host_impl.h"
#include "cc/test/fake_output_surface.h"
#include "cc/test/fake_output_surface_client.h"
#include "cc/test/fake_picture_layer_impl.h"
#include "cc/test/fake_picture_layer_tiling_client.h"
#include "cc/test/fake_picture_pile_impl.h"
#include "cc/test/fake_tile_manager.h"
#include "cc/test/impl_side_painting_settings.h"
#include "cc/test/test_shared_bitmap_manager.h"
#include "cc/test/test_task_graph_runner.h"
#include "cc/test/test_tile_priorities.h"
#include "cc/tiles/eviction_tile_priority_queue.h"
#include "cc/tiles/raster_tile_priority_queue.h"
#include "cc/tiles/tile.h"
#include "cc/tiles/tile_priority.h"
#include "cc/tiles/tiling_set_raster_queue_all.h"
#include "cc/trees/layer_tree_impl.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cc {
namespace {
class LowResTilingsSettings : public ImplSidePaintingSettings {
public:
LowResTilingsSettings() {
tiling_interest_area_viewport_multiplier = 10000;
create_low_res_tiling = true;
}
};
class TileManagerTilePriorityQueueTest : public testing::Test {
public:
TileManagerTilePriorityQueueTest()
: memory_limit_policy_(ALLOW_ANYTHING),
max_tiles_(10000),
ready_to_activate_(false),
id_(7),
proxy_(base::ThreadTaskRunnerHandle::Get()),
host_impl_(LowResTilingsSettings(),
&proxy_,
&shared_bitmap_manager_,
&task_graph_runner_) {}
void SetTreePriority(TreePriority tree_priority) {
GlobalStateThatImpactsTilePriority state;
gfx::Size tile_size(256, 256);
state.soft_memory_limit_in_bytes = 100 * 1000 * 1000;
state.num_resources_limit = max_tiles_;
state.hard_memory_limit_in_bytes = state.soft_memory_limit_in_bytes * 2;
state.memory_limit_policy = memory_limit_policy_;
state.tree_priority = tree_priority;
global_state_ = state;
host_impl_.resource_pool()->SetResourceUsageLimits(
state.soft_memory_limit_in_bytes,
state.soft_memory_limit_in_bytes,
state.num_resources_limit);
host_impl_.tile_manager()->SetGlobalStateForTesting(state);
}
void SetUp() override {
InitializeRenderer();
SetTreePriority(SAME_PRIORITY_FOR_BOTH_TREES);
}
virtual void InitializeRenderer() {
host_impl_.InitializeRenderer(FakeOutputSurface::Create3d());
}
void SetupDefaultTrees(const gfx::Size& layer_bounds) {
gfx::Size tile_size(100, 100);
scoped_refptr<FakePicturePileImpl> pending_pile =
FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds);
scoped_refptr<FakePicturePileImpl> active_pile =
FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds);
SetupTrees(pending_pile, active_pile);
}
void ActivateTree() {
host_impl_.ActivateSyncTree();
CHECK(!host_impl_.pending_tree());
pending_layer_ = NULL;
active_layer_ = static_cast<FakePictureLayerImpl*>(
host_impl_.active_tree()->LayerById(id_));
}
void SetupDefaultTreesWithFixedTileSize(const gfx::Size& layer_bounds,
const gfx::Size& tile_size) {
SetupDefaultTrees(layer_bounds);
pending_layer_->set_fixed_tile_size(tile_size);
active_layer_->set_fixed_tile_size(tile_size);
}
void SetupTrees(scoped_refptr<PicturePileImpl> pending_pile,
scoped_refptr<PicturePileImpl> active_pile) {
SetupPendingTree(active_pile);
ActivateTree();
SetupPendingTree(pending_pile);
}
void SetupPendingTree(scoped_refptr<PicturePileImpl> pile) {
host_impl_.CreatePendingTree();
LayerTreeImpl* pending_tree = host_impl_.pending_tree();
// Steal from the recycled tree.
scoped_ptr<LayerImpl> old_pending_root = pending_tree->DetachLayerTree();
DCHECK_IMPLIES(old_pending_root, old_pending_root->id() == id_);
scoped_ptr<FakePictureLayerImpl> pending_layer;
if (old_pending_root) {
pending_layer.reset(
static_cast<FakePictureLayerImpl*>(old_pending_root.release()));
pending_layer->SetRasterSourceOnPending(pile, Region());
} else {
pending_layer =
FakePictureLayerImpl::CreateWithRasterSource(pending_tree, id_, pile);
pending_layer->SetDrawsContent(true);
pending_layer->SetHasRenderSurface(true);
}
// The bounds() just mirror the pile size.
pending_layer->SetBounds(pending_layer->raster_source()->GetSize());
pending_tree->SetRootLayer(pending_layer.Pass());
pending_layer_ = static_cast<FakePictureLayerImpl*>(
host_impl_.pending_tree()->LayerById(id_));
// Add tilings/tiles for the layer.
bool update_lcd_text = false;
host_impl_.pending_tree()->UpdateDrawProperties(update_lcd_text);
}
TileManager* tile_manager() { return host_impl_.tile_manager(); }
protected:
GlobalStateThatImpactsTilePriority global_state_;
TestSharedBitmapManager shared_bitmap_manager_;
TestTaskGraphRunner task_graph_runner_;
TileMemoryLimitPolicy memory_limit_policy_;
int max_tiles_;
bool ready_to_activate_;
int id_;
FakeImplProxy proxy_;
FakeLayerTreeHostImpl host_impl_;
FakePictureLayerImpl* pending_layer_;
FakePictureLayerImpl* active_layer_;
};
TEST_F(TileManagerTilePriorityQueueTest, RasterTilePriorityQueue) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
SetupDefaultTrees(layer_bounds);
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(queue->IsEmpty());
size_t tile_count = 0;
std::set<Tile*> all_tiles;
while (!queue->IsEmpty()) {
EXPECT_TRUE(queue->Top().tile());
all_tiles.insert(queue->Top().tile());
++tile_count;
queue->Pop();
}
EXPECT_EQ(tile_count, all_tiles.size());
EXPECT_EQ(16u, tile_count);
// Sanity check, all tiles should be visible.
std::set<Tile*> smoothness_tiles;
queue = host_impl_.BuildRasterQueue(SMOOTHNESS_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::ALL);
bool had_low_res = false;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile());
EXPECT_EQ(TilePriority::NOW, prioritized_tile.priority().priority_bin);
if (prioritized_tile.priority().resolution == LOW_RESOLUTION)
had_low_res = true;
else
smoothness_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(all_tiles, smoothness_tiles);
EXPECT_TRUE(had_low_res);
// Check that everything is required for activation.
queue = host_impl_.BuildRasterQueue(
SMOOTHNESS_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::REQUIRED_FOR_ACTIVATION);
std::set<Tile*> required_for_activation_tiles;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile()->required_for_activation());
required_for_activation_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(all_tiles, required_for_activation_tiles);
// Check that everything is required for draw.
queue = host_impl_.BuildRasterQueue(
SMOOTHNESS_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::REQUIRED_FOR_DRAW);
std::set<Tile*> required_for_draw_tiles;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile()->required_for_draw());
required_for_draw_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(all_tiles, required_for_draw_tiles);
Region invalidation(gfx::Rect(0, 0, 500, 500));
// Invalidate the pending tree.
pending_layer_->set_invalidation(invalidation);
pending_layer_->HighResTiling()->Invalidate(invalidation);
pending_layer_->LowResTiling()->Invalidate(invalidation);
// Renew all of the tile priorities.
gfx::Rect viewport(50, 50, 100, 100);
pending_layer_->HighResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
pending_layer_->LowResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
active_layer_->HighResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
active_layer_->LowResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
// Populate all tiles directly from the tilings.
all_tiles.clear();
std::set<Tile*> high_res_tiles;
std::vector<Tile*> pending_high_res_tiles =
pending_layer_->HighResTiling()->AllTilesForTesting();
for (size_t i = 0; i < pending_high_res_tiles.size(); ++i) {
all_tiles.insert(pending_high_res_tiles[i]);
high_res_tiles.insert(pending_high_res_tiles[i]);
}
std::vector<Tile*> pending_low_res_tiles =
pending_layer_->LowResTiling()->AllTilesForTesting();
for (size_t i = 0; i < pending_low_res_tiles.size(); ++i)
all_tiles.insert(pending_low_res_tiles[i]);
std::vector<Tile*> active_high_res_tiles =
active_layer_->HighResTiling()->AllTilesForTesting();
for (size_t i = 0; i < active_high_res_tiles.size(); ++i) {
all_tiles.insert(active_high_res_tiles[i]);
high_res_tiles.insert(active_high_res_tiles[i]);
}
std::vector<Tile*> active_low_res_tiles =
active_layer_->LowResTiling()->AllTilesForTesting();
for (size_t i = 0; i < active_low_res_tiles.size(); ++i)
all_tiles.insert(active_low_res_tiles[i]);
PrioritizedTile last_tile;
smoothness_tiles.clear();
tile_count = 0;
size_t correct_order_tiles = 0u;
// Here we expect to get increasing ACTIVE_TREE priority_bin.
queue = host_impl_.BuildRasterQueue(SMOOTHNESS_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::ALL);
std::set<Tile*> expected_required_for_draw_tiles;
std::set<Tile*> expected_required_for_activation_tiles;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile());
if (!last_tile.tile())
last_tile = prioritized_tile;
EXPECT_LE(last_tile.priority().priority_bin,
prioritized_tile.priority().priority_bin);
bool skip_updating_last_tile = false;
if (last_tile.priority().priority_bin ==
prioritized_tile.priority().priority_bin) {
correct_order_tiles += last_tile.priority().distance_to_visible <=
prioritized_tile.priority().distance_to_visible;
} else if (prioritized_tile.priority().priority_bin == TilePriority::NOW) {
// Since we'd return pending tree now tiles before the eventually tiles on
// the active tree, update the value.
++correct_order_tiles;
skip_updating_last_tile = true;
}
if (prioritized_tile.priority().priority_bin == TilePriority::NOW &&
last_tile.priority().resolution !=
prioritized_tile.priority().resolution) {
// Low resolution should come first.
EXPECT_EQ(LOW_RESOLUTION, last_tile.priority().resolution);
}
if (!skip_updating_last_tile)
last_tile = prioritized_tile;
++tile_count;
smoothness_tiles.insert(prioritized_tile.tile());
if (prioritized_tile.tile()->required_for_draw())
expected_required_for_draw_tiles.insert(prioritized_tile.tile());
if (prioritized_tile.tile()->required_for_activation())
expected_required_for_activation_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(tile_count, smoothness_tiles.size());
EXPECT_EQ(all_tiles, smoothness_tiles);
// Since we don't guarantee increasing distance due to spiral iterator, we
// should check that we're _mostly_ right.
EXPECT_GT(correct_order_tiles, 3 * tile_count / 4);
// Check that we have consistent required_for_activation tiles.
queue = host_impl_.BuildRasterQueue(
SMOOTHNESS_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::REQUIRED_FOR_ACTIVATION);
required_for_activation_tiles.clear();
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile()->required_for_activation());
required_for_activation_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(expected_required_for_activation_tiles,
required_for_activation_tiles);
EXPECT_NE(all_tiles, required_for_activation_tiles);
// Check that we have consistent required_for_draw tiles.
queue = host_impl_.BuildRasterQueue(
SMOOTHNESS_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::REQUIRED_FOR_DRAW);
required_for_draw_tiles.clear();
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile()->required_for_draw());
required_for_draw_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(expected_required_for_draw_tiles, required_for_draw_tiles);
EXPECT_NE(all_tiles, required_for_draw_tiles);
std::set<Tile*> new_content_tiles;
last_tile = PrioritizedTile();
size_t increasing_distance_tiles = 0u;
// Here we expect to get increasing PENDING_TREE priority_bin.
queue = host_impl_.BuildRasterQueue(NEW_CONTENT_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::ALL);
tile_count = 0;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile());
if (!last_tile.tile())
last_tile = prioritized_tile;
EXPECT_LE(last_tile.priority().priority_bin,
prioritized_tile.priority().priority_bin);
if (last_tile.priority().priority_bin ==
prioritized_tile.priority().priority_bin) {
increasing_distance_tiles +=
last_tile.priority().distance_to_visible <=
prioritized_tile.priority().distance_to_visible;
}
if (prioritized_tile.priority().priority_bin == TilePriority::NOW &&
last_tile.priority().resolution !=
prioritized_tile.priority().resolution) {
// High resolution should come first.
EXPECT_EQ(HIGH_RESOLUTION, last_tile.priority().resolution);
}
last_tile = prioritized_tile;
new_content_tiles.insert(prioritized_tile.tile());
++tile_count;
queue->Pop();
}
EXPECT_EQ(tile_count, new_content_tiles.size());
EXPECT_EQ(high_res_tiles, new_content_tiles);
// Since we don't guarantee increasing distance due to spiral iterator, we
// should check that we're _mostly_ right.
EXPECT_GE(increasing_distance_tiles, 3 * tile_count / 4);
// Check that we have consistent required_for_activation tiles.
queue = host_impl_.BuildRasterQueue(
NEW_CONTENT_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::REQUIRED_FOR_ACTIVATION);
required_for_activation_tiles.clear();
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile()->required_for_activation());
required_for_activation_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(expected_required_for_activation_tiles,
required_for_activation_tiles);
EXPECT_NE(new_content_tiles, required_for_activation_tiles);
// Check that we have consistent required_for_draw tiles.
queue = host_impl_.BuildRasterQueue(
NEW_CONTENT_TAKES_PRIORITY,
RasterTilePriorityQueue::Type::REQUIRED_FOR_DRAW);
required_for_draw_tiles.clear();
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile()->required_for_draw());
required_for_draw_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(expected_required_for_draw_tiles, required_for_draw_tiles);
EXPECT_NE(new_content_tiles, required_for_draw_tiles);
}
TEST_F(TileManagerTilePriorityQueueTest,
RasterTilePriorityQueueHighNonIdealTilings) {
const gfx::Size layer_bounds(1000, 1000);
const gfx::Size viewport(800, 800);
host_impl_.SetViewportSize(viewport);
SetupDefaultTrees(layer_bounds);
pending_layer_->tilings()->AddTiling(1.5f, pending_layer_->raster_source());
active_layer_->tilings()->AddTiling(1.5f, active_layer_->raster_source());
pending_layer_->tilings()->AddTiling(1.7f, pending_layer_->raster_source());
active_layer_->tilings()->AddTiling(1.7f, active_layer_->raster_source());
pending_layer_->tilings()->UpdateTilePriorities(gfx::Rect(viewport), 1.f, 5.0,
Occlusion(), true);
active_layer_->tilings()->UpdateTilePriorities(gfx::Rect(viewport), 1.f, 5.0,
Occlusion(), true);
std::set<Tile*> all_expected_tiles;
for (size_t i = 0; i < pending_layer_->num_tilings(); ++i) {
PictureLayerTiling* tiling = pending_layer_->tilings()->tiling_at(i);
if (tiling->contents_scale() == 1.f) {
tiling->set_resolution(HIGH_RESOLUTION);
const auto& all_tiles = tiling->AllTilesForTesting();
all_expected_tiles.insert(all_tiles.begin(), all_tiles.end());
} else {
tiling->set_resolution(NON_IDEAL_RESOLUTION);
}
}
for (size_t i = 0; i < active_layer_->num_tilings(); ++i) {
PictureLayerTiling* tiling = active_layer_->tilings()->tiling_at(i);
if (tiling->contents_scale() == 1.5f) {
tiling->set_resolution(HIGH_RESOLUTION);
const auto& all_tiles = tiling->AllTilesForTesting();
all_expected_tiles.insert(all_tiles.begin(), all_tiles.end());
} else {
tiling->set_resolution(NON_IDEAL_RESOLUTION);
// Non ideal tilings with a high res pending twin have to be processed
// because of possible activation tiles.
if (tiling->contents_scale() == 1.f) {
tiling->UpdateAndGetAllPrioritizedTilesForTesting();
const auto& all_tiles = tiling->AllTilesForTesting();
for (auto* tile : all_tiles)
EXPECT_TRUE(tile->required_for_activation());
all_expected_tiles.insert(all_tiles.begin(), all_tiles.end());
}
}
}
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SMOOTHNESS_TAKES_PRIORITY, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(queue->IsEmpty());
size_t tile_count = 0;
std::set<Tile*> all_actual_tiles;
while (!queue->IsEmpty()) {
EXPECT_TRUE(queue->Top().tile());
all_actual_tiles.insert(queue->Top().tile());
++tile_count;
queue->Pop();
}
EXPECT_EQ(tile_count, all_actual_tiles.size());
EXPECT_EQ(all_expected_tiles.size(), all_actual_tiles.size());
EXPECT_EQ(all_expected_tiles, all_actual_tiles);
}
TEST_F(TileManagerTilePriorityQueueTest, RasterTilePriorityQueueInvalidation) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(gfx::Size(500, 500));
SetupDefaultTrees(layer_bounds);
// Use a tile's content rect as an invalidation. We should inset it a bit to
// ensure that border math doesn't invalidate neighbouring tiles.
gfx::Rect invalidation =
active_layer_->HighResTiling()->TileAt(1, 0)->content_rect();
invalidation.Inset(2, 2);
pending_layer_->set_invalidation(invalidation);
pending_layer_->HighResTiling()->Invalidate(invalidation);
pending_layer_->HighResTiling()->CreateMissingTilesInLiveTilesRect();
pending_layer_->LowResTiling()->Invalidate(invalidation);
pending_layer_->LowResTiling()->CreateMissingTilesInLiveTilesRect();
// Sanity checks: Tile at 0, 0 not exist on the pending tree (it's not
// invalidated). Tile 1, 0 should exist on both.
EXPECT_FALSE(pending_layer_->HighResTiling()->TileAt(0, 0));
EXPECT_TRUE(active_layer_->HighResTiling()->TileAt(0, 0));
EXPECT_TRUE(pending_layer_->HighResTiling()->TileAt(1, 0));
EXPECT_TRUE(active_layer_->HighResTiling()->TileAt(1, 0));
EXPECT_NE(pending_layer_->HighResTiling()->TileAt(1, 0),
active_layer_->HighResTiling()->TileAt(1, 0));
std::set<Tile*> expected_now_tiles;
std::set<Tile*> expected_required_for_draw_tiles;
std::set<Tile*> expected_required_for_activation_tiles;
for (int i = 0; i <= 1; ++i) {
for (int j = 0; j <= 1; ++j) {
bool have_pending_tile = false;
if (pending_layer_->HighResTiling()->TileAt(i, j)) {
expected_now_tiles.insert(
pending_layer_->HighResTiling()->TileAt(i, j));
expected_required_for_activation_tiles.insert(
pending_layer_->HighResTiling()->TileAt(i, j));
have_pending_tile = true;
}
Tile* active_tile = active_layer_->HighResTiling()->TileAt(i, j);
EXPECT_TRUE(active_tile);
expected_now_tiles.insert(active_tile);
expected_required_for_draw_tiles.insert(active_tile);
if (!have_pending_tile)
expected_required_for_activation_tiles.insert(active_tile);
}
}
// Expect 3 shared tiles and 1 unshared tile in total.
EXPECT_EQ(5u, expected_now_tiles.size());
// Expect 4 tiles for each draw and activation, but not all the same.
EXPECT_EQ(4u, expected_required_for_activation_tiles.size());
EXPECT_EQ(4u, expected_required_for_draw_tiles.size());
EXPECT_NE(expected_required_for_draw_tiles,
expected_required_for_activation_tiles);
std::set<Tile*> expected_all_tiles;
for (int i = 0; i <= 3; ++i) {
for (int j = 0; j <= 3; ++j) {
if (pending_layer_->HighResTiling()->TileAt(i, j))
expected_all_tiles.insert(
pending_layer_->HighResTiling()->TileAt(i, j));
EXPECT_TRUE(active_layer_->HighResTiling()->TileAt(i, j));
expected_all_tiles.insert(active_layer_->HighResTiling()->TileAt(i, j));
}
}
// Expect 15 shared tiles and 1 unshared tile.
EXPECT_EQ(17u, expected_all_tiles.size());
// The actual test will now build different queues and verify that the queues
// return the same information as computed manually above.
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
std::set<Tile*> actual_now_tiles;
std::set<Tile*> actual_all_tiles;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
queue->Pop();
if (prioritized_tile.priority().priority_bin == TilePriority::NOW)
actual_now_tiles.insert(prioritized_tile.tile());
actual_all_tiles.insert(prioritized_tile.tile());
}
EXPECT_EQ(expected_now_tiles, actual_now_tiles);
EXPECT_EQ(expected_all_tiles, actual_all_tiles);
queue = host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES,
RasterTilePriorityQueue::Type::REQUIRED_FOR_DRAW);
std::set<Tile*> actual_required_for_draw_tiles;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
queue->Pop();
actual_required_for_draw_tiles.insert(prioritized_tile.tile());
}
EXPECT_EQ(expected_required_for_draw_tiles, actual_required_for_draw_tiles);
queue = host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES,
RasterTilePriorityQueue::Type::REQUIRED_FOR_ACTIVATION);
std::set<Tile*> actual_required_for_activation_tiles;
while (!queue->IsEmpty()) {
Tile* tile = queue->Top().tile();
queue->Pop();
actual_required_for_activation_tiles.insert(tile);
}
EXPECT_EQ(expected_required_for_activation_tiles,
actual_required_for_activation_tiles);
}
TEST_F(TileManagerTilePriorityQueueTest, ActivationComesBeforeEventually) {
base::TimeTicks time_ticks;
time_ticks += base::TimeDelta::FromMilliseconds(1);
host_impl_.SetCurrentBeginFrameArgs(
CreateBeginFrameArgsForTesting(BEGINFRAME_FROM_HERE, time_ticks));
gfx::Size layer_bounds(1000, 1000);
SetupDefaultTrees(layer_bounds);
// Create a pending child layer.
gfx::Size tile_size(256, 256);
scoped_refptr<FakePicturePileImpl> pending_pile =
FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds);
scoped_ptr<FakePictureLayerImpl> pending_child =
FakePictureLayerImpl::CreateWithRasterSource(host_impl_.pending_tree(),
id_ + 1, pending_pile);
FakePictureLayerImpl* pending_child_raw = pending_child.get();
pending_child_raw->SetDrawsContent(true);
pending_layer_->AddChild(pending_child.Pass());
// Set a small viewport, so we have soon and eventually tiles.
host_impl_.SetViewportSize(gfx::Size(200, 200));
time_ticks += base::TimeDelta::FromMilliseconds(1);
host_impl_.SetCurrentBeginFrameArgs(
CreateBeginFrameArgsForTesting(BEGINFRAME_FROM_HERE, time_ticks));
bool update_lcd_text = false;
host_impl_.pending_tree()->UpdateDrawProperties(update_lcd_text);
host_impl_.SetRequiresHighResToDraw();
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SMOOTHNESS_TAKES_PRIORITY, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(queue->IsEmpty());
// Get all the tiles that are NOW or SOON and make sure they are ready to
// draw.
std::vector<Tile*> all_tiles;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
if (prioritized_tile.priority().priority_bin >= TilePriority::EVENTUALLY)
break;
all_tiles.push_back(prioritized_tile.tile());
queue->Pop();
}
tile_manager()->InitializeTilesWithResourcesForTesting(
std::vector<Tile*>(all_tiles.begin(), all_tiles.end()));
// Ensure we can activate.
EXPECT_TRUE(tile_manager()->IsReadyToActivate());
}
TEST_F(TileManagerTilePriorityQueueTest, EvictionTilePriorityQueue) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
SetupDefaultTrees(layer_bounds);
scoped_ptr<EvictionTilePriorityQueue> empty_queue(
host_impl_.BuildEvictionQueue(SAME_PRIORITY_FOR_BOTH_TREES));
EXPECT_TRUE(empty_queue->IsEmpty());
std::set<Tile*> all_tiles;
size_t tile_count = 0;
scoped_ptr<RasterTilePriorityQueue> raster_queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
while (!raster_queue->IsEmpty()) {
++tile_count;
EXPECT_TRUE(raster_queue->Top().tile());
all_tiles.insert(raster_queue->Top().tile());
raster_queue->Pop();
}
EXPECT_EQ(tile_count, all_tiles.size());
EXPECT_EQ(16u, tile_count);
tile_manager()->InitializeTilesWithResourcesForTesting(
std::vector<Tile*>(all_tiles.begin(), all_tiles.end()));
scoped_ptr<EvictionTilePriorityQueue> queue(
host_impl_.BuildEvictionQueue(SMOOTHNESS_TAKES_PRIORITY));
EXPECT_FALSE(queue->IsEmpty());
// Sanity check, all tiles should be visible.
std::set<Tile*> smoothness_tiles;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
EXPECT_TRUE(prioritized_tile.tile());
EXPECT_EQ(TilePriority::NOW, prioritized_tile.priority().priority_bin);
EXPECT_TRUE(prioritized_tile.tile()->draw_info().has_resource());
smoothness_tiles.insert(prioritized_tile.tile());
queue->Pop();
}
EXPECT_EQ(all_tiles, smoothness_tiles);
tile_manager()->ReleaseTileResourcesForTesting(
std::vector<Tile*>(all_tiles.begin(), all_tiles.end()));
Region invalidation(gfx::Rect(0, 0, 500, 500));
// Invalidate the pending tree.
pending_layer_->set_invalidation(invalidation);
pending_layer_->HighResTiling()->Invalidate(invalidation);
pending_layer_->HighResTiling()->CreateMissingTilesInLiveTilesRect();
pending_layer_->LowResTiling()->Invalidate(invalidation);
pending_layer_->LowResTiling()->CreateMissingTilesInLiveTilesRect();
// Renew all of the tile priorities.
gfx::Rect viewport(50, 50, 100, 100);
pending_layer_->HighResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
pending_layer_->LowResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
active_layer_->HighResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
active_layer_->LowResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
// Populate all tiles directly from the tilings.
all_tiles.clear();
std::vector<Tile*> pending_high_res_tiles =
pending_layer_->HighResTiling()->AllTilesForTesting();
for (size_t i = 0; i < pending_high_res_tiles.size(); ++i)
all_tiles.insert(pending_high_res_tiles[i]);
std::vector<Tile*> pending_low_res_tiles =
pending_layer_->LowResTiling()->AllTilesForTesting();
for (size_t i = 0; i < pending_low_res_tiles.size(); ++i)
all_tiles.insert(pending_low_res_tiles[i]);
std::vector<Tile*> active_high_res_tiles =
active_layer_->HighResTiling()->AllTilesForTesting();
for (size_t i = 0; i < active_high_res_tiles.size(); ++i)
all_tiles.insert(active_high_res_tiles[i]);
std::vector<Tile*> active_low_res_tiles =
active_layer_->LowResTiling()->AllTilesForTesting();
for (size_t i = 0; i < active_low_res_tiles.size(); ++i)
all_tiles.insert(active_low_res_tiles[i]);
tile_manager()->InitializeTilesWithResourcesForTesting(
std::vector<Tile*>(all_tiles.begin(), all_tiles.end()));
PrioritizedTile last_tile;
smoothness_tiles.clear();
tile_count = 0;
// Here we expect to get increasing combined priority_bin.
queue = host_impl_.BuildEvictionQueue(SMOOTHNESS_TAKES_PRIORITY);
int distance_increasing = 0;
int distance_decreasing = 0;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
Tile* tile = prioritized_tile.tile();
EXPECT_TRUE(tile);
EXPECT_TRUE(tile->draw_info().has_resource());
if (!last_tile.tile())
last_tile = prioritized_tile;
const TilePriority& last_priority = last_tile.priority();
const TilePriority& priority = prioritized_tile.priority();
EXPECT_GE(last_priority.priority_bin, priority.priority_bin);
if (last_priority.priority_bin == priority.priority_bin) {
EXPECT_LE(last_tile.tile()->required_for_activation(),
tile->required_for_activation());
if (last_tile.tile()->required_for_activation() ==
tile->required_for_activation()) {
if (last_priority.distance_to_visible >= priority.distance_to_visible)
++distance_decreasing;
else
++distance_increasing;
}
}
last_tile = prioritized_tile;
++tile_count;
smoothness_tiles.insert(tile);
queue->Pop();
}
// Ensure that the distance is decreasing many more times than increasing.
EXPECT_EQ(3, distance_increasing);
EXPECT_EQ(17, distance_decreasing);
EXPECT_EQ(tile_count, smoothness_tiles.size());
EXPECT_EQ(all_tiles, smoothness_tiles);
std::set<Tile*> new_content_tiles;
last_tile = PrioritizedTile();
// Again, we expect to get increasing combined priority_bin.
queue = host_impl_.BuildEvictionQueue(NEW_CONTENT_TAKES_PRIORITY);
distance_decreasing = 0;
distance_increasing = 0;
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
Tile* tile = prioritized_tile.tile();
EXPECT_TRUE(tile);
if (!last_tile.tile())
last_tile = prioritized_tile;
const TilePriority& last_priority = last_tile.priority();
const TilePriority& priority = prioritized_tile.priority();
EXPECT_GE(last_priority.priority_bin, priority.priority_bin);
if (last_priority.priority_bin == priority.priority_bin) {
EXPECT_LE(last_tile.tile()->required_for_activation(),
tile->required_for_activation());
if (last_tile.tile()->required_for_activation() ==
tile->required_for_activation()) {
if (last_priority.distance_to_visible >= priority.distance_to_visible)
++distance_decreasing;
else
++distance_increasing;
}
}
last_tile = prioritized_tile;
new_content_tiles.insert(tile);
queue->Pop();
}
// Ensure that the distance is decreasing many more times than increasing.
EXPECT_EQ(3, distance_increasing);
EXPECT_EQ(17, distance_decreasing);
EXPECT_EQ(tile_count, new_content_tiles.size());
EXPECT_EQ(all_tiles, new_content_tiles);
}
TEST_F(TileManagerTilePriorityQueueTest,
EvictionTilePriorityQueueWithOcclusion) {
base::TimeTicks time_ticks;
time_ticks += base::TimeDelta::FromMilliseconds(1);
host_impl_.SetCurrentBeginFrameArgs(
CreateBeginFrameArgsForTesting(BEGINFRAME_FROM_HERE, time_ticks));
gfx::Size tile_size(102, 102);
gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
scoped_refptr<FakePicturePileImpl> pending_pile =
FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds);
SetupPendingTree(pending_pile);
scoped_ptr<FakePictureLayerImpl> pending_child =
FakePictureLayerImpl::CreateWithRasterSource(host_impl_.pending_tree(), 2,
pending_pile);
pending_layer_->AddChild(pending_child.Pass());
FakePictureLayerImpl* pending_child_layer =
static_cast<FakePictureLayerImpl*>(pending_layer_->children()[0]);
pending_child_layer->SetDrawsContent(true);
time_ticks += base::TimeDelta::FromMilliseconds(1);
host_impl_.SetCurrentBeginFrameArgs(
CreateBeginFrameArgsForTesting(BEGINFRAME_FROM_HERE, time_ticks));
bool update_lcd_text = false;
host_impl_.pending_tree()->UpdateDrawProperties(update_lcd_text);
ActivateTree();
SetupPendingTree(pending_pile);
FakePictureLayerImpl* active_child_layer =
static_cast<FakePictureLayerImpl*>(active_layer_->children()[0]);
std::set<Tile*> all_tiles;
size_t tile_count = 0;
scoped_ptr<RasterTilePriorityQueue> raster_queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
while (!raster_queue->IsEmpty()) {
++tile_count;
EXPECT_TRUE(raster_queue->Top().tile());
all_tiles.insert(raster_queue->Top().tile());
raster_queue->Pop();
}
EXPECT_EQ(tile_count, all_tiles.size());
EXPECT_EQ(32u, tile_count);
// Renew all of the tile priorities.
gfx::Rect viewport(layer_bounds);
pending_layer_->HighResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
pending_layer_->LowResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
pending_child_layer->HighResTiling()->ComputeTilePriorityRects(
viewport, 1.0f, 1.0, Occlusion());
pending_child_layer->LowResTiling()->ComputeTilePriorityRects(
viewport, 1.0f, 1.0, Occlusion());
active_layer_->HighResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
active_layer_->LowResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
active_child_layer->HighResTiling()->ComputeTilePriorityRects(
viewport, 1.0f, 1.0, Occlusion());
active_child_layer->LowResTiling()->ComputeTilePriorityRects(
viewport, 1.0f, 1.0, Occlusion());
// Populate all tiles directly from the tilings.
all_tiles.clear();
std::vector<Tile*> pending_high_res_tiles =
pending_layer_->HighResTiling()->AllTilesForTesting();
all_tiles.insert(pending_high_res_tiles.begin(),
pending_high_res_tiles.end());
std::vector<Tile*> pending_low_res_tiles =
pending_layer_->LowResTiling()->AllTilesForTesting();
all_tiles.insert(pending_low_res_tiles.begin(), pending_low_res_tiles.end());
// Set all tiles on the pending_child_layer as occluded on the pending tree.
std::vector<Tile*> pending_child_high_res_tiles =
pending_child_layer->HighResTiling()->AllTilesForTesting();
pending_child_layer->HighResTiling()->SetAllTilesOccludedForTesting();
active_child_layer->HighResTiling()->SetAllTilesOccludedForTesting();
all_tiles.insert(pending_child_high_res_tiles.begin(),
pending_child_high_res_tiles.end());
std::vector<Tile*> pending_child_low_res_tiles =
pending_child_layer->LowResTiling()->AllTilesForTesting();
pending_child_layer->LowResTiling()->SetAllTilesOccludedForTesting();
active_child_layer->LowResTiling()->SetAllTilesOccludedForTesting();
all_tiles.insert(pending_child_low_res_tiles.begin(),
pending_child_low_res_tiles.end());
tile_manager()->InitializeTilesWithResourcesForTesting(
std::vector<Tile*>(all_tiles.begin(), all_tiles.end()));
// Verify occlusion is considered by EvictionTilePriorityQueue.
TreePriority tree_priority = NEW_CONTENT_TAKES_PRIORITY;
size_t occluded_count = 0u;
PrioritizedTile last_tile;
scoped_ptr<EvictionTilePriorityQueue> queue(
host_impl_.BuildEvictionQueue(tree_priority));
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
if (!last_tile.tile())
last_tile = prioritized_tile;
bool tile_is_occluded = prioritized_tile.is_occluded();
// The only way we will encounter an occluded tile after an unoccluded
// tile is if the priorty bin decreased, the tile is required for
// activation, or the scale changed.
if (tile_is_occluded) {
occluded_count++;
bool last_tile_is_occluded = last_tile.is_occluded();
if (!last_tile_is_occluded) {
TilePriority::PriorityBin tile_priority_bin =
prioritized_tile.priority().priority_bin;
TilePriority::PriorityBin last_tile_priority_bin =
last_tile.priority().priority_bin;
EXPECT_TRUE((tile_priority_bin < last_tile_priority_bin) ||
prioritized_tile.tile()->required_for_activation() ||
(prioritized_tile.tile()->contents_scale() !=
last_tile.tile()->contents_scale()));
}
}
last_tile = prioritized_tile;
queue->Pop();
}
size_t expected_occluded_count =
pending_child_high_res_tiles.size() + pending_child_low_res_tiles.size();
EXPECT_EQ(expected_occluded_count, occluded_count);
}
TEST_F(TileManagerTilePriorityQueueTest,
EvictionTilePriorityQueueWithTransparentLayer) {
base::TimeTicks time_ticks;
time_ticks += base::TimeDelta::FromMilliseconds(1);
host_impl_.SetCurrentBeginFrameArgs(
CreateBeginFrameArgsForTesting(BEGINFRAME_FROM_HERE, time_ticks));
gfx::Size tile_size(102, 102);
gfx::Size layer_bounds(1000, 1000);
scoped_refptr<FakePicturePileImpl> pending_pile =
FakePicturePileImpl::CreateFilledPile(tile_size, layer_bounds);
SetupPendingTree(pending_pile);
scoped_ptr<FakePictureLayerImpl> pending_child =
FakePictureLayerImpl::CreateWithRasterSource(host_impl_.pending_tree(), 2,
pending_pile);
FakePictureLayerImpl* pending_child_layer = pending_child.get();
pending_layer_->AddChild(pending_child.Pass());
// Create a fully transparent child layer so that its tile priorities are not
// considered to be valid.
pending_child_layer->SetDrawsContent(true);
time_ticks += base::TimeDelta::FromMilliseconds(1);
host_impl_.SetCurrentBeginFrameArgs(
CreateBeginFrameArgsForTesting(BEGINFRAME_FROM_HERE, time_ticks));
bool update_lcd_text = false;
host_impl_.pending_tree()->UpdateDrawProperties(update_lcd_text);
pending_child_layer->SetOpacity(0.0);
time_ticks += base::TimeDelta::FromMilliseconds(1);
host_impl_.SetCurrentBeginFrameArgs(
CreateBeginFrameArgsForTesting(BEGINFRAME_FROM_HERE, time_ticks));
host_impl_.pending_tree()->UpdateDrawProperties(update_lcd_text);
// Renew all of the tile priorities.
gfx::Rect viewport(layer_bounds);
pending_layer_->HighResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
pending_layer_->LowResTiling()->ComputeTilePriorityRects(viewport, 1.0f, 1.0,
Occlusion());
pending_child_layer->HighResTiling()->ComputeTilePriorityRects(
viewport, 1.0f, 1.0, Occlusion());
pending_child_layer->LowResTiling()->ComputeTilePriorityRects(
viewport, 1.0f, 1.0, Occlusion());
// Populate all tiles directly from the tilings.
std::set<Tile*> all_pending_tiles;
std::vector<Tile*> pending_high_res_tiles =
pending_layer_->HighResTiling()->AllTilesForTesting();
all_pending_tiles.insert(pending_high_res_tiles.begin(),
pending_high_res_tiles.end());
EXPECT_EQ(16u, pending_high_res_tiles.size());
std::vector<Tile*> pending_low_res_tiles =
pending_layer_->LowResTiling()->AllTilesForTesting();
all_pending_tiles.insert(pending_low_res_tiles.begin(),
pending_low_res_tiles.end());
EXPECT_EQ(1u, pending_low_res_tiles.size());
std::set<Tile*> all_pending_child_tiles;
std::vector<Tile*> pending_child_high_res_tiles =
pending_child_layer->HighResTiling()->AllTilesForTesting();
all_pending_child_tiles.insert(pending_child_high_res_tiles.begin(),
pending_child_high_res_tiles.end());
EXPECT_EQ(16u, pending_child_high_res_tiles.size());
std::vector<Tile*> pending_child_low_res_tiles =
pending_child_layer->LowResTiling()->AllTilesForTesting();
all_pending_child_tiles.insert(pending_child_low_res_tiles.begin(),
pending_child_low_res_tiles.end());
EXPECT_EQ(1u, pending_child_low_res_tiles.size());
std::set<Tile*> all_tiles = all_pending_tiles;
all_tiles.insert(all_pending_child_tiles.begin(),
all_pending_child_tiles.end());
tile_manager()->InitializeTilesWithResourcesForTesting(
std::vector<Tile*>(all_tiles.begin(), all_tiles.end()));
EXPECT_TRUE(pending_layer_->HasValidTilePriorities());
EXPECT_FALSE(pending_child_layer->HasValidTilePriorities());
// Verify that eviction queue returns tiles also from layers without valid
// tile priorities and that the tile priority bin of those tiles is (at most)
// EVENTUALLY.
TreePriority tree_priority = NEW_CONTENT_TAKES_PRIORITY;
std::set<Tile*> new_content_tiles;
size_t tile_count = 0;
scoped_ptr<EvictionTilePriorityQueue> queue(
host_impl_.BuildEvictionQueue(tree_priority));
while (!queue->IsEmpty()) {
PrioritizedTile prioritized_tile = queue->Top();
Tile* tile = prioritized_tile.tile();
const TilePriority& pending_priority = prioritized_tile.priority();
EXPECT_NE(std::numeric_limits<float>::infinity(),
pending_priority.distance_to_visible);
if (all_pending_child_tiles.find(tile) != all_pending_child_tiles.end())
EXPECT_EQ(TilePriority::EVENTUALLY, pending_priority.priority_bin);
else
EXPECT_EQ(TilePriority::NOW, pending_priority.priority_bin);
new_content_tiles.insert(tile);
++tile_count;
queue->Pop();
}
EXPECT_EQ(tile_count, new_content_tiles.size());
EXPECT_EQ(all_tiles, new_content_tiles);
}
TEST_F(TileManagerTilePriorityQueueTest, RasterTilePriorityQueueEmptyLayers) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
SetupDefaultTrees(layer_bounds);
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(queue->IsEmpty());
size_t tile_count = 0;
std::set<Tile*> all_tiles;
while (!queue->IsEmpty()) {
EXPECT_TRUE(queue->Top().tile());
all_tiles.insert(queue->Top().tile());
++tile_count;
queue->Pop();
}
EXPECT_EQ(tile_count, all_tiles.size());
EXPECT_EQ(16u, tile_count);
for (int i = 1; i < 10; ++i) {
scoped_ptr<FakePictureLayerImpl> pending_layer =
FakePictureLayerImpl::Create(host_impl_.pending_tree(), id_ + i);
pending_layer->SetDrawsContent(true);
pending_layer->set_has_valid_tile_priorities(true);
pending_layer_->AddChild(pending_layer.Pass());
}
queue = host_impl_.BuildRasterQueue(SAME_PRIORITY_FOR_BOTH_TREES,
RasterTilePriorityQueue::Type::ALL);
EXPECT_FALSE(queue->IsEmpty());
tile_count = 0;
all_tiles.clear();
while (!queue->IsEmpty()) {
EXPECT_TRUE(queue->Top().tile());
all_tiles.insert(queue->Top().tile());
++tile_count;
queue->Pop();
}
EXPECT_EQ(tile_count, all_tiles.size());
EXPECT_EQ(16u, tile_count);
}
TEST_F(TileManagerTilePriorityQueueTest, EvictionTilePriorityQueueEmptyLayers) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
SetupDefaultTrees(layer_bounds);
scoped_ptr<RasterTilePriorityQueue> raster_queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(raster_queue->IsEmpty());
size_t tile_count = 0;
std::set<Tile*> all_tiles;
while (!raster_queue->IsEmpty()) {
EXPECT_TRUE(raster_queue->Top().tile());
all_tiles.insert(raster_queue->Top().tile());
++tile_count;
raster_queue->Pop();
}
EXPECT_EQ(tile_count, all_tiles.size());
EXPECT_EQ(16u, tile_count);
std::vector<Tile*> tiles(all_tiles.begin(), all_tiles.end());
host_impl_.tile_manager()->InitializeTilesWithResourcesForTesting(tiles);
for (int i = 1; i < 10; ++i) {
scoped_ptr<FakePictureLayerImpl> pending_layer =
FakePictureLayerImpl::Create(host_impl_.pending_tree(), id_ + i);
pending_layer->SetDrawsContent(true);
pending_layer->set_has_valid_tile_priorities(true);
pending_layer_->AddChild(pending_layer.Pass());
}
scoped_ptr<EvictionTilePriorityQueue> queue(
host_impl_.BuildEvictionQueue(SAME_PRIORITY_FOR_BOTH_TREES));
EXPECT_FALSE(queue->IsEmpty());
tile_count = 0;
all_tiles.clear();
while (!queue->IsEmpty()) {
EXPECT_TRUE(queue->Top().tile());
all_tiles.insert(queue->Top().tile());
++tile_count;
queue->Pop();
}
EXPECT_EQ(tile_count, all_tiles.size());
EXPECT_EQ(16u, tile_count);
}
TEST_F(TileManagerTilePriorityQueueTest,
RasterTilePriorityQueueStaticViewport) {
FakePictureLayerTilingClient client;
gfx::Rect viewport(50, 50, 500, 500);
gfx::Size layer_bounds(1600, 1600);
float inset = PictureLayerTiling::CalculateSoonBorderDistance(viewport, 1.0f);
gfx::Rect soon_rect = viewport;
soon_rect.Inset(-inset, -inset);
client.SetTileSize(gfx::Size(30, 30));
LayerTreeSettings settings;
settings.tiling_interest_area_viewport_multiplier = 10000;
scoped_ptr<PictureLayerTilingSet> tiling_set = PictureLayerTilingSet::Create(
ACTIVE_TREE, &client, settings.tiling_interest_area_viewport_multiplier,
settings.skewport_target_time_in_seconds,
settings.skewport_extrapolation_limit_in_content_pixels);
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFilledPileWithDefaultTileSize(layer_bounds);
PictureLayerTiling* tiling = tiling_set->AddTiling(1.0f, pile);
tiling->set_resolution(HIGH_RESOLUTION);
tiling_set->UpdateTilePriorities(viewport, 1.0f, 1.0, Occlusion(), true);
std::vector<Tile*> all_tiles = tiling->AllTilesForTesting();
// Sanity check.
EXPECT_EQ(3364u, all_tiles.size());
// The explanation of each iteration is as follows:
// 1. First iteration tests that we can get all of the tiles correctly.
// 2. Second iteration ensures that we can get all of the tiles again (first
// iteration didn't change any tiles), as well set all tiles to be ready to
// draw.
// 3. Third iteration ensures that no tiles are returned, since they were all
// marked as ready to draw.
for (int i = 0; i < 3; ++i) {
scoped_ptr<TilingSetRasterQueueAll> queue(
new TilingSetRasterQueueAll(tiling_set.get(), false));
// There are 3 bins in TilePriority.
bool have_tiles[3] = {};
// On the third iteration, we should get no tiles since everything was
// marked as ready to draw.
if (i == 2) {
EXPECT_TRUE(queue->IsEmpty());
continue;
}
EXPECT_FALSE(queue->IsEmpty());
std::set<Tile*> unique_tiles;
unique_tiles.insert(queue->Top().tile());
PrioritizedTile last_tile = queue->Top();
have_tiles[last_tile.priority().priority_bin] = true;
// On the second iteration, mark everything as ready to draw (solid color).
if (i == 1) {
TileDrawInfo& draw_info = last_tile.tile()->draw_info();
draw_info.SetSolidColorForTesting(SK_ColorRED);
}
queue->Pop();
int eventually_bin_order_correct_count = 0;
int eventually_bin_order_incorrect_count = 0;
while (!queue->IsEmpty()) {
PrioritizedTile new_tile = queue->Top();
queue->Pop();
unique_tiles.insert(new_tile.tile());
TilePriority last_priority = last_tile.priority();
TilePriority new_priority = new_tile.priority();
EXPECT_LE(last_priority.priority_bin, new_priority.priority_bin);
if (last_priority.priority_bin == new_priority.priority_bin) {
if (last_priority.priority_bin == TilePriority::EVENTUALLY) {
bool order_correct = last_priority.distance_to_visible <=
new_priority.distance_to_visible;
eventually_bin_order_correct_count += order_correct;
eventually_bin_order_incorrect_count += !order_correct;
} else if (!soon_rect.Intersects(new_tile.tile()->content_rect()) &&
!soon_rect.Intersects(last_tile.tile()->content_rect())) {
EXPECT_LE(last_priority.distance_to_visible,
new_priority.distance_to_visible);
EXPECT_EQ(TilePriority::NOW, new_priority.priority_bin);
} else if (new_priority.distance_to_visible > 0.f) {
EXPECT_EQ(TilePriority::SOON, new_priority.priority_bin);
}
}
have_tiles[new_priority.priority_bin] = true;
last_tile = new_tile;
// On the second iteration, mark everything as ready to draw (solid
// color).
if (i == 1) {
TileDrawInfo& draw_info = last_tile.tile()->draw_info();
draw_info.SetSolidColorForTesting(SK_ColorRED);
}
}
EXPECT_GT(eventually_bin_order_correct_count,
eventually_bin_order_incorrect_count);
// We should have now and eventually tiles, as well as soon tiles from
// the border region.
EXPECT_TRUE(have_tiles[TilePriority::NOW]);
EXPECT_TRUE(have_tiles[TilePriority::SOON]);
EXPECT_TRUE(have_tiles[TilePriority::EVENTUALLY]);
EXPECT_EQ(unique_tiles.size(), all_tiles.size());
}
}
TEST_F(TileManagerTilePriorityQueueTest,
RasterTilePriorityQueueMovingViewport) {
FakePictureLayerTilingClient client;
gfx::Rect viewport(50, 0, 100, 100);
gfx::Rect moved_viewport(50, 0, 100, 500);
gfx::Size layer_bounds(1000, 1000);
client.SetTileSize(gfx::Size(30, 30));
LayerTreeSettings settings;
scoped_ptr<PictureLayerTilingSet> tiling_set = PictureLayerTilingSet::Create(
ACTIVE_TREE, &client, settings.tiling_interest_area_viewport_multiplier,
settings.skewport_target_time_in_seconds,
settings.skewport_extrapolation_limit_in_content_pixels);
scoped_refptr<FakePicturePileImpl> pile =
FakePicturePileImpl::CreateFilledPileWithDefaultTileSize(layer_bounds);
PictureLayerTiling* tiling = tiling_set->AddTiling(1.0f, pile);
tiling->set_resolution(HIGH_RESOLUTION);
tiling_set->UpdateTilePriorities(viewport, 1.0f, 1.0, Occlusion(), true);
tiling_set->UpdateTilePriorities(moved_viewport, 1.0f, 2.0, Occlusion(),
true);
float inset =
PictureLayerTiling::CalculateSoonBorderDistance(moved_viewport, 1.0f);
gfx::Rect soon_rect = moved_viewport;
soon_rect.Inset(-inset, -inset);
// There are 3 bins in TilePriority.
bool have_tiles[3] = {};
PrioritizedTile last_tile;
int eventually_bin_order_correct_count = 0;
int eventually_bin_order_incorrect_count = 0;
scoped_ptr<TilingSetRasterQueueAll> queue(
new TilingSetRasterQueueAll(tiling_set.get(), false));
for (; !queue->IsEmpty(); queue->Pop()) {
if (!last_tile.tile())
last_tile = queue->Top();
const PrioritizedTile& new_tile = queue->Top();
TilePriority last_priority = last_tile.priority();
TilePriority new_priority = new_tile.priority();
have_tiles[new_priority.priority_bin] = true;
EXPECT_LE(last_priority.priority_bin, new_priority.priority_bin);
if (last_priority.priority_bin == new_priority.priority_bin) {
if (last_priority.priority_bin == TilePriority::EVENTUALLY) {
bool order_correct = last_priority.distance_to_visible <=
new_priority.distance_to_visible;
eventually_bin_order_correct_count += order_correct;
eventually_bin_order_incorrect_count += !order_correct;
} else if (!soon_rect.Intersects(new_tile.tile()->content_rect()) &&
!soon_rect.Intersects(last_tile.tile()->content_rect())) {
EXPECT_LE(last_priority.distance_to_visible,
new_priority.distance_to_visible);
} else if (new_priority.distance_to_visible > 0.f) {
EXPECT_EQ(TilePriority::SOON, new_priority.priority_bin);
}
}
last_tile = new_tile;
}
EXPECT_GT(eventually_bin_order_correct_count,
eventually_bin_order_incorrect_count);
EXPECT_TRUE(have_tiles[TilePriority::NOW]);
EXPECT_TRUE(have_tiles[TilePriority::SOON]);
EXPECT_TRUE(have_tiles[TilePriority::EVENTUALLY]);
}
TEST_F(TileManagerTilePriorityQueueTest, SetIsLikelyToRequireADraw) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
SetupDefaultTrees(layer_bounds);
// Verify that the queue has a required for draw tile at Top.
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(queue->IsEmpty());
EXPECT_TRUE(queue->Top().tile()->required_for_draw());
EXPECT_FALSE(host_impl_.is_likely_to_require_a_draw());
host_impl_.tile_manager()->PrepareTiles(host_impl_.global_tile_state());
EXPECT_TRUE(host_impl_.is_likely_to_require_a_draw());
}
TEST_F(TileManagerTilePriorityQueueTest,
SetIsLikelyToRequireADrawOnZeroMemoryBudget) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
SetupDefaultTrees(layer_bounds);
// Verify that the queue has a required for draw tile at Top.
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(queue->IsEmpty());
EXPECT_TRUE(queue->Top().tile()->required_for_draw());
ManagedMemoryPolicy policy = host_impl_.ActualManagedMemoryPolicy();
policy.bytes_limit_when_visible = 0;
host_impl_.SetMemoryPolicy(policy);
EXPECT_FALSE(host_impl_.is_likely_to_require_a_draw());
host_impl_.tile_manager()->PrepareTiles(host_impl_.global_tile_state());
EXPECT_FALSE(host_impl_.is_likely_to_require_a_draw());
}
TEST_F(TileManagerTilePriorityQueueTest,
SetIsLikelyToRequireADrawOnLimitedMemoryBudget) {
const gfx::Size layer_bounds(1000, 1000);
host_impl_.SetViewportSize(layer_bounds);
SetupDefaultTrees(layer_bounds);
// Verify that the queue has a required for draw tile at Top.
scoped_ptr<RasterTilePriorityQueue> queue(host_impl_.BuildRasterQueue(
SAME_PRIORITY_FOR_BOTH_TREES, RasterTilePriorityQueue::Type::ALL));
EXPECT_FALSE(queue->IsEmpty());
EXPECT_TRUE(queue->Top().tile()->required_for_draw());
EXPECT_EQ(gfx::Size(256, 256), queue->Top().tile()->desired_texture_size());
EXPECT_EQ(RGBA_8888, host_impl_.resource_provider()->best_texture_format());
ManagedMemoryPolicy policy = host_impl_.ActualManagedMemoryPolicy();
policy.bytes_limit_when_visible =
Resource::MemorySizeBytes(gfx::Size(256, 256), RGBA_8888);
host_impl_.SetMemoryPolicy(policy);
EXPECT_FALSE(host_impl_.is_likely_to_require_a_draw());
host_impl_.tile_manager()->PrepareTiles(host_impl_.global_tile_state());
EXPECT_TRUE(host_impl_.is_likely_to_require_a_draw());
scoped_ptr<ScopedResource> resource =
host_impl_.resource_pool()->AcquireResource(gfx::Size(256, 256),
RGBA_8888);
host_impl_.tile_manager()->CheckIfMoreTilesNeedToBePreparedForTesting();
EXPECT_FALSE(host_impl_.is_likely_to_require_a_draw());
host_impl_.resource_pool()->ReleaseResource(resource.Pass(), 0);
}
} // namespace
} // namespace cc