blob: e65f6487b958997e6b5085533dfe2f57d144c295 [file] [log] [blame]
// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/src/sandbox_policy_base.h"
#include "base/basictypes.h"
#include "base/callback.h"
#include "base/logging.h"
#include "sandbox/src/filesystem_dispatcher.h"
#include "sandbox/src/filesystem_policy.h"
#include "sandbox/src/job.h"
#include "sandbox/src/interception.h"
#include "sandbox/src/named_pipe_dispatcher.h"
#include "sandbox/src/named_pipe_policy.h"
#include "sandbox/src/policy_broker.h"
#include "sandbox/src/policy_engine_processor.h"
#include "sandbox/src/policy_low_level.h"
#include "sandbox/src/process_thread_dispatcher.h"
#include "sandbox/src/process_thread_policy.h"
#include "sandbox/src/registry_dispatcher.h"
#include "sandbox/src/registry_policy.h"
#include "sandbox/src/restricted_token_utils.h"
#include "sandbox/src/sandbox_policy.h"
#include "sandbox/src/sync_dispatcher.h"
#include "sandbox/src/sync_policy.h"
#include "sandbox/src/target_process.h"
#include "sandbox/src/window.h"
namespace {
// The standard windows size for one memory page.
const size_t kOneMemPage = 4096;
// The IPC and Policy shared memory sizes.
const size_t kIPCMemSize = kOneMemPage * 2;
const size_t kPolMemSize = kOneMemPage * 14;
// Helper function to allocate space (on the heap) for policy.
sandbox::PolicyGlobal* MakeBrokerPolicyMemory() {
const size_t kTotalPolicySz = kPolMemSize;
char* mem = new char[kTotalPolicySz];
DCHECK(mem);
memset(mem, 0, kTotalPolicySz);
sandbox::PolicyGlobal* policy = reinterpret_cast<sandbox::PolicyGlobal*>(mem);
policy->data_size = kTotalPolicySz - sizeof(sandbox::PolicyGlobal);
return policy;
}
}
namespace sandbox {
SANDBOX_INTERCEPT IntegrityLevel g_shared_delayed_integrity_level;
// Initializes static members.
HWINSTA PolicyBase::alternate_winstation_handle_ = NULL;
HDESK PolicyBase::alternate_desktop_handle_ = NULL;
PolicyBase::PolicyBase()
: ref_count(1),
lockdown_level_(USER_LOCKDOWN),
initial_level_(USER_LOCKDOWN),
job_level_(JOB_LOCKDOWN),
integrity_level_(INTEGRITY_LEVEL_LAST),
delayed_integrity_level_(INTEGRITY_LEVEL_LAST),
policy_(NULL),
policy_maker_(NULL),
file_system_init_(false),
relaxed_interceptions_(true),
use_alternate_desktop_(false),
use_alternate_winstation_(false) {
::InitializeCriticalSection(&lock_);
// Initialize the IPC dispatcher array.
memset(&ipc_targets_, NULL, sizeof(ipc_targets_));
Dispatcher* dispatcher = NULL;
dispatcher = new FilesystemDispatcher(this);
ipc_targets_[IPC_NTCREATEFILE_TAG] = dispatcher;
ipc_targets_[IPC_NTOPENFILE_TAG] = dispatcher;
ipc_targets_[IPC_NTSETINFO_RENAME_TAG] = dispatcher;
ipc_targets_[IPC_NTQUERYATTRIBUTESFILE_TAG] = dispatcher;
ipc_targets_[IPC_NTQUERYFULLATTRIBUTESFILE_TAG] = dispatcher;
dispatcher = new NamedPipeDispatcher(this);
ipc_targets_[IPC_CREATENAMEDPIPEW_TAG] = dispatcher;
dispatcher = new ThreadProcessDispatcher(this);
ipc_targets_[IPC_NTOPENTHREAD_TAG] = dispatcher;
ipc_targets_[IPC_NTOPENPROCESS_TAG] = dispatcher;
ipc_targets_[IPC_CREATEPROCESSW_TAG] = dispatcher;
ipc_targets_[IPC_NTOPENPROCESSTOKEN_TAG] = dispatcher;
ipc_targets_[IPC_NTOPENPROCESSTOKENEX_TAG] = dispatcher;
dispatcher = new SyncDispatcher(this);
ipc_targets_[IPC_CREATEEVENT_TAG] = dispatcher;
ipc_targets_[IPC_OPENEVENT_TAG] = dispatcher;
dispatcher = new RegistryDispatcher(this);
ipc_targets_[IPC_NTCREATEKEY_TAG] = dispatcher;
ipc_targets_[IPC_NTOPENKEY_TAG] = dispatcher;
}
PolicyBase::~PolicyBase() {
TargetSet::iterator it;
for (it = targets_.begin(); it != targets_.end(); ++it) {
TargetProcess* target = (*it);
delete target;
}
delete ipc_targets_[IPC_NTCREATEFILE_TAG];
delete ipc_targets_[IPC_CREATENAMEDPIPEW_TAG];
delete ipc_targets_[IPC_NTOPENTHREAD_TAG];
delete ipc_targets_[IPC_CREATEEVENT_TAG];
delete ipc_targets_[IPC_NTCREATEKEY_TAG];
delete policy_maker_;
delete policy_;
::DeleteCriticalSection(&lock_);
}
DWORD PolicyBase::MakeJobObject(HANDLE* job) {
// Create the windows job object.
Job job_obj;
DWORD result = job_obj.Init(job_level_, NULL, ui_exceptions_);
if (ERROR_SUCCESS != result) {
return result;
}
*job = job_obj.Detach();
return ERROR_SUCCESS;
}
DWORD PolicyBase::MakeTokens(HANDLE* initial, HANDLE* lockdown) {
// Create the 'naked' token. This will be the permanent token associated
// with the process and therefore with any thread that is not impersonating.
DWORD result = CreateRestrictedToken(lockdown, lockdown_level_,
integrity_level_, PRIMARY);
if (ERROR_SUCCESS != result) {
return result;
}
// Create the 'better' token. We use this token as the one that the main
// thread uses when booting up the process. It should contain most of
// what we need (before reaching main( ))
result = CreateRestrictedToken(initial, initial_level_,
integrity_level_, IMPERSONATION);
if (ERROR_SUCCESS != result) {
::CloseHandle(*lockdown);
return result;
}
return SBOX_ALL_OK;
}
std::wstring PolicyBase::GetAlternateDesktop() const {
// No alternate desktop or winstation. Return an empty string.
if (!use_alternate_desktop_ && !use_alternate_winstation_) {
return std::wstring();
}
// The desktop and winstation should have been created by now.
// If we hit this scenario, it means that the user ignored the failure
// during SetAlternateDesktop, so we ignore it here too.
if (use_alternate_desktop_ && !alternate_desktop_handle_) {
return std::wstring();
}
if (use_alternate_winstation_ && (!alternate_desktop_handle_ ||
!alternate_winstation_handle_)) {
return std::wstring();
}
return GetFullDesktopName(alternate_winstation_handle_,
alternate_desktop_handle_);
}
ResultCode PolicyBase::CreateAlternateDesktop(bool alternate_winstation) {
if (alternate_winstation) {
// Previously called with alternate_winstation = false?
if (!alternate_winstation_handle_ && alternate_desktop_handle_)
return SBOX_ERROR_UNSUPPORTED;
// Check if it's already created.
if (alternate_winstation_handle_ && alternate_desktop_handle_)
return SBOX_ALL_OK;
DCHECK(!alternate_winstation_handle_);
// Create the window station.
ResultCode result = CreateAltWindowStation(&alternate_winstation_handle_);
if (SBOX_ALL_OK != result)
return result;
// Verify that everything is fine.
if (!alternate_winstation_handle_ ||
GetWindowObjectName(alternate_winstation_handle_).empty())
return SBOX_ERROR_CANNOT_CREATE_DESKTOP;
// Create the destkop.
result = CreateAltDesktop(alternate_winstation_handle_,
&alternate_desktop_handle_);
if (SBOX_ALL_OK != result)
return result;
// Verify that everything is fine.
if (!alternate_desktop_handle_ ||
GetWindowObjectName(alternate_desktop_handle_).empty())
return SBOX_ERROR_CANNOT_CREATE_DESKTOP;
} else {
// Previously called with alternate_winstation = true?
if (alternate_winstation_handle_)
return SBOX_ERROR_UNSUPPORTED;
// Check if it already exists.
if (alternate_desktop_handle_)
return SBOX_ALL_OK;
// Create the destkop.
ResultCode result = CreateAltDesktop(NULL, &alternate_desktop_handle_);
if (SBOX_ALL_OK != result)
return result;
// Verify that everything is fine.
if (!alternate_desktop_handle_ ||
GetWindowObjectName(alternate_desktop_handle_).empty())
return SBOX_ERROR_CANNOT_CREATE_DESKTOP;
}
return SBOX_ALL_OK;
}
bool PolicyBase::AddTarget(TargetProcess* target) {
if (NULL != policy_)
policy_maker_->Done();
if (!SetupAllInterceptions(target))
return false;
if (!SetupHandleCloser(target))
return false;
// Initialize the sandbox infrastructure for the target.
if (ERROR_SUCCESS != target->Init(this, policy_, kIPCMemSize, kPolMemSize))
return false;
g_shared_delayed_integrity_level = delayed_integrity_level_;
ResultCode ret = target->TransferVariable(
"g_shared_delayed_integrity_level",
&g_shared_delayed_integrity_level,
sizeof(g_shared_delayed_integrity_level));
g_shared_delayed_integrity_level = INTEGRITY_LEVEL_LAST;
if (SBOX_ALL_OK != ret)
return false;
AutoLock lock(&lock_);
targets_.push_back(target);
return true;
}
bool PolicyBase::OnJobEmpty(HANDLE job) {
AutoLock lock(&lock_);
TargetSet::iterator it;
for (it = targets_.begin(); it != targets_.end(); ++it) {
if ((*it)->Job() == job)
break;
}
if (it == targets_.end()) {
return false;
}
TargetProcess* target = *it;
targets_.erase(it);
delete target;
return true;
}
ResultCode PolicyBase::AddRule(SubSystem subsystem, Semantics semantics,
const wchar_t* pattern) {
if (NULL == policy_) {
policy_ = MakeBrokerPolicyMemory();
DCHECK(policy_);
policy_maker_ = new LowLevelPolicy(policy_);
DCHECK(policy_maker_);
}
switch (subsystem) {
case SUBSYS_FILES: {
if (!file_system_init_) {
if (!FileSystemPolicy::SetInitialRules(policy_maker_))
return SBOX_ERROR_BAD_PARAMS;
file_system_init_ = true;
}
if (!FileSystemPolicy::GenerateRules(pattern, semantics, policy_maker_)) {
NOTREACHED();
return SBOX_ERROR_BAD_PARAMS;
}
break;
}
case SUBSYS_SYNC: {
if (!SyncPolicy::GenerateRules(pattern, semantics, policy_maker_)) {
NOTREACHED();
return SBOX_ERROR_BAD_PARAMS;
}
break;
}
case SUBSYS_PROCESS: {
if (lockdown_level_ < USER_INTERACTIVE &&
TargetPolicy::PROCESS_ALL_EXEC == semantics) {
// This is unsupported. This is a huge security risk to give full access
// to a process handle.
return SBOX_ERROR_UNSUPPORTED;
}
if (!ProcessPolicy::GenerateRules(pattern, semantics, policy_maker_)) {
NOTREACHED();
return SBOX_ERROR_BAD_PARAMS;
}
break;
}
case SUBSYS_NAMED_PIPES: {
if (!NamedPipePolicy::GenerateRules(pattern, semantics, policy_maker_)) {
NOTREACHED();
return SBOX_ERROR_BAD_PARAMS;
}
break;
}
case SUBSYS_REGISTRY: {
if (!RegistryPolicy::GenerateRules(pattern, semantics, policy_maker_)) {
NOTREACHED();
return SBOX_ERROR_BAD_PARAMS;
}
break;
}
default: {
return SBOX_ERROR_UNSUPPORTED;
}
}
return SBOX_ALL_OK;
}
EvalResult PolicyBase::EvalPolicy(int service,
CountedParameterSetBase* params) {
if (NULL != policy_) {
if (NULL == policy_->entry[service]) {
// There is no policy for this particular service. This is not a big
// deal.
return DENY_ACCESS;
}
for (int i = 0; i < params->count; i++) {
if (!params->parameters[i].IsValid()) {
NOTREACHED();
return SIGNAL_ALARM;
}
}
PolicyProcessor pol_evaluator(policy_->entry[service]);
PolicyResult result = pol_evaluator.Evaluate(kShortEval,
params->parameters,
params->count);
if (POLICY_MATCH == result) {
return pol_evaluator.GetAction();
}
DCHECK(POLICY_ERROR != result);
}
return DENY_ACCESS;
}
// When an IPC is ready in any of the targets we get called. We manage an array
// of IPC dispatchers which are keyed on the IPC tag so we normally delegate
// to the appropriate dispatcher unless we can handle the IPC call ourselves.
Dispatcher* PolicyBase::OnMessageReady(IPCParams* ipc,
CallbackGeneric* callback) {
DCHECK(callback);
static const IPCParams ping1 = {IPC_PING1_TAG, ULONG_TYPE};
static const IPCParams ping2 = {IPC_PING2_TAG, INOUTPTR_TYPE};
if (ping1.Matches(ipc) || ping2.Matches(ipc)) {
*callback = reinterpret_cast<CallbackGeneric>(
static_cast<Callback1>(&PolicyBase::Ping));
return this;
}
Dispatcher* dispatch = GetDispatcher(ipc->ipc_tag);
if (!dispatch) {
NOTREACHED();
return NULL;
}
return dispatch->OnMessageReady(ipc, callback);
}
// Delegate to the appropriate dispatcher.
bool PolicyBase::SetupService(InterceptionManager* manager, int service) {
if (IPC_PING1_TAG == service || IPC_PING2_TAG == service)
return true;
Dispatcher* dispatch = GetDispatcher(service);
if (!dispatch) {
NOTREACHED();
return false;
}
return dispatch->SetupService(manager, service);
}
// We service IPC_PING_TAG message which is a way to test a round trip of the
// IPC subsystem. We receive a integer cookie and we are expected to return the
// cookie times two (or three) and the current tick count.
bool PolicyBase::Ping(IPCInfo* ipc, void* arg1) {
switch (ipc->ipc_tag) {
case IPC_PING1_TAG: {
IPCInt ipc_int(arg1);
uint32 cookie = ipc_int.As32Bit();
ipc->return_info.extended_count = 2;
ipc->return_info.extended[0].unsigned_int = ::GetTickCount();
ipc->return_info.extended[1].unsigned_int = 2 * cookie;
return true;
}
case IPC_PING2_TAG: {
CountedBuffer* io_buffer = reinterpret_cast<CountedBuffer*>(arg1);
if (sizeof(uint32) != io_buffer->Size())
return false;
uint32* cookie = reinterpret_cast<uint32*>(io_buffer->Buffer());
*cookie = (*cookie) * 3;
return true;
}
default: return false;
}
}
Dispatcher* PolicyBase::GetDispatcher(int ipc_tag) {
if (ipc_tag >= IPC_LAST_TAG || ipc_tag <= IPC_UNUSED_TAG)
return NULL;
return ipc_targets_[ipc_tag];
}
bool PolicyBase::SetupAllInterceptions(TargetProcess* target) {
InterceptionManager manager(target, relaxed_interceptions_);
if (policy_) {
for (int i = 0; i < IPC_LAST_TAG; i++) {
if (policy_->entry[i] && !ipc_targets_[i]->SetupService(&manager, i))
return false;
}
}
if (!blacklisted_dlls_.empty()) {
std::vector<std::wstring>::iterator it = blacklisted_dlls_.begin();
for (; it != blacklisted_dlls_.end(); ++it) {
manager.AddToUnloadModules(it->c_str());
}
}
if (!handle_closer_.SetupHandleInterceptions(&manager))
return false;
if (!SetupBasicInterceptions(&manager))
return false;
if (!manager.InitializeInterceptions())
return false;
// Finally, setup imports on the target so the interceptions can work.
return SetupNtdllImports(target);
}
bool PolicyBase::SetupHandleCloser(TargetProcess* target) {
return handle_closer_.InitializeTargetHandles(target);
}
} // namespace sandbox