blob: bc5633e3e02b1104c17d592673b366138549d8cf [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COURGETTE_PATCH_GENERATOR_X86_32_H_
#define COURGETTE_PATCH_GENERATOR_X86_32_H_
#include "base/logging.h"
#include "courgette/courgette_flow.h"
#include "courgette/ensemble.h"
#include "courgette/patcher_x86_32.h"
namespace courgette {
// PatchGeneratorX86_32 is the universal patch generator for all executables,
// performing transformation and adjustment. The executable type is determined
// by the program detector.
class PatchGeneratorX86_32 : public TransformationPatchGenerator {
public:
PatchGeneratorX86_32(Element* old_element,
Element* new_element,
PatcherX86_32* patcher,
ExecutableType kind)
: TransformationPatchGenerator(old_element, new_element, patcher),
kind_(kind) {
}
PatchGeneratorX86_32(const PatchGeneratorX86_32&) = delete;
PatchGeneratorX86_32& operator=(const PatchGeneratorX86_32&) = delete;
virtual ExecutableType Kind() { return kind_; }
Status WriteInitialParameters(SinkStream* parameter_stream) {
if (!parameter_stream->WriteSizeVarint32(
old_element_->offset_in_ensemble()) ||
!parameter_stream->WriteSizeVarint32(old_element_->region().length())) {
return C_STREAM_ERROR;
}
return C_OK;
// TODO(sra): Initialize |patcher_| with these parameters.
}
Status PredictTransformParameters(SinkStreamSet* prediction) {
return TransformationPatchGenerator::PredictTransformParameters(prediction);
}
Status CorrectedTransformParameters(SinkStreamSet* parameters) {
// No code needed to write an 'empty' parameter set.
return C_OK;
}
// The format of a transformed_element is a serialized EncodedProgram. Steps:
// - Form Disassembler for the old and new Elements.
// - Extract AssemblyPrograms from old and new Disassemblers.
// - Adjust the new AssemblyProgram to make it as much like the old one as
// possible.
// - Serialize old and new Disassembler to EncodedProgram, using the old
// AssemblyProgram and the adjusted new AssemblyProgram.
// The steps are performed in an order to reduce peak memory.
Status Transform(SourceStreamSet* corrected_parameters,
SinkStreamSet* old_transformed_element,
SinkStreamSet* new_transformed_element) {
// Don't expect any corrected parameters.
if (!corrected_parameters->Empty())
return C_GENERAL_ERROR;
// Flow graph and process sequence (DA = Disassembler, AP = AssemblyProgram,
// EP = EncodedProgram, Adj = Adjusted):
// [1 Old DA] --> [2 Old AP] [6 New AP] <-- [5 New DA]
// | | | | |
// v | | v (move) v
// [3 Old EP] <-----+ +->[7 Adj New AP] --> [8 New EP]
// (4 Write) (9 Write)
CourgetteFlow flow;
RegionBuffer old_buffer(old_element_->region());
RegionBuffer new_buffer(new_element_->region());
flow.ReadDisassemblerFromBuffer(flow.OLD, old_buffer); // 1
flow.CreateAssemblyProgramFromDisassembler(flow.OLD, true); // 2
flow.CreateEncodedProgramFromDisassemblerAndAssemblyProgram(flow.OLD); // 3
flow.DestroyDisassembler(flow.OLD);
flow.WriteSinkStreamSetFromEncodedProgram(flow.OLD,
old_transformed_element); // 4
flow.DestroyEncodedProgram(flow.OLD);
flow.ReadDisassemblerFromBuffer(flow.NEW, new_buffer); // 5
flow.CreateAssemblyProgramFromDisassembler(flow.NEW, true); // 6
flow.AdjustNewAssemblyProgramToMatchOld(); // 7
flow.DestroyAssemblyProgram(flow.OLD);
flow.CreateEncodedProgramFromDisassemblerAndAssemblyProgram(flow.NEW); // 8
flow.DestroyAssemblyProgram(flow.NEW);
flow.DestroyDisassembler(flow.NEW);
flow.WriteSinkStreamSetFromEncodedProgram(flow.NEW,
new_transformed_element); // 9
if (flow.failed()) {
LOG(ERROR) << flow.message() << " (" << old_element_->Name() << " => "
<< new_element_->Name() << ")";
}
return flow.status();
}
Status Reform(SourceStreamSet* transformed_element,
SinkStream* reformed_element) {
return TransformationPatchGenerator::Reform(transformed_element,
reformed_element);
}
private:
virtual ~PatchGeneratorX86_32() { }
ExecutableType kind_;
};
} // namespace courgette
#endif // COURGETTE_PATCH_GENERATOR_X86_32_H_