blob: 4342992e2bb6d7820f3efe9fecd954427a0c68e9 [file] [log] [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#import <AVFoundation/AVFoundation.h>
#include <memory>
#include "base/test/scoped_feature_list.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/gtest_mac.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/accelerated_widget_mac/ca_renderer_layer_tree.h"
#include "ui/gfx/geometry/dip_util.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/mac/io_surface.h"
#include "ui/gl/ca_renderer_layer_params.h"
@interface CALayer (Private)
@property BOOL wantsExtendedDynamicRangeContent;
@end
namespace gpu {
namespace {
struct CALayerProperties {
CALayerProperties() = default;
~CALayerProperties() = default;
bool is_clipped = true;
gfx::Rect clip_rect;
gfx::RRectF rounded_corner_bounds;
int sorting_context_id = 0;
gfx::Transform transform;
gfx::RectF contents_rect = gfx::RectF(0.0f, 0.0f, 1.0f, 1.0f);
gfx::Rect rect = gfx::Rect(0, 0, 256, 256);
SkColor4f background_color = SkColors::kWhite;
unsigned edge_aa_mask = 0;
float opacity = 1.0f;
float scale_factor = 1.0f;
unsigned filter = GL_LINEAR;
gfx::ScopedIOSurface io_surface;
gfx::ColorSpace color_space;
base::apple::ScopedCFTypeRef<CVPixelBufferRef> cv_pixel_buffer;
bool allow_av_layers = true;
bool allow_solid_color_layers = true;
};
base::apple::ScopedCFTypeRef<CVPixelBufferRef> CreateCVPixelBuffer(
gfx::ScopedIOSurface io_surface) {
base::apple::ScopedCFTypeRef<CVPixelBufferRef> cv_pixel_buffer;
CVPixelBufferCreateWithIOSurface(nullptr, io_surface.get(), nullptr,
cv_pixel_buffer.InitializeInto());
return cv_pixel_buffer;
}
bool ScheduleCALayer(ui::CARendererLayerTree* tree,
CALayerProperties* properties) {
gfx::ScopedIOSurface io_surface;
gfx::ColorSpace io_surface_color_space;
if (properties->io_surface) {
io_surface = properties->io_surface;
io_surface_color_space = properties->color_space;
}
return tree->ScheduleCALayer(ui::CARendererLayerParams(
properties->is_clipped, properties->clip_rect,
properties->rounded_corner_bounds, properties->sorting_context_id,
properties->transform, io_surface, io_surface_color_space,
properties->contents_rect, properties->rect, properties->background_color,
properties->edge_aa_mask, properties->opacity, properties->filter,
gfx::HDRMetadata(), gfx::ProtectedVideoType::kClear, false));
}
void UpdateCALayerTree(std::unique_ptr<ui::CARendererLayerTree>& ca_layer_tree,
CALayerProperties* properties,
CALayer* superlayer) {
std::unique_ptr<ui::CARendererLayerTree> new_ca_layer_tree(
new ui::CARendererLayerTree(properties->allow_av_layers,
properties->allow_solid_color_layers));
bool result = ScheduleCALayer(new_ca_layer_tree.get(), properties);
EXPECT_TRUE(result);
new_ca_layer_tree->CommitScheduledCALayers(
superlayer, std::move(ca_layer_tree), properties->rect.size(),
properties->scale_factor);
std::swap(new_ca_layer_tree, ca_layer_tree);
}
} // namespace
class CALayerTreeTest : public testing::Test {
protected:
void SetUp() override { superlayer_ = [[CALayer alloc] init]; }
// Traverse the tree. Validate that there exists only one content layer, and
// return that layer.
CALayer* GetOnlyContentLayer() {
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
CALayer* root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
CALayer* clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
CALayer* rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
CALayer* transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
return [transform_layer sublayers][0];
}
CALayer* __strong superlayer_;
};
// Test updating each layer's properties.
class CALayerTreePropertyUpdatesTest : public CALayerTreeTest {
public:
void RunTest(bool allow_solid_color_layers) {
CALayerProperties properties;
properties.allow_solid_color_layers = allow_solid_color_layers;
properties.clip_rect = gfx::Rect(2, 4, 8, 16);
properties.rounded_corner_bounds = gfx::RRectF(2, 4, 8, 16, 13);
properties.transform.Translate(10, 20);
properties.contents_rect = gfx::RectF(0.0f, 0.25f, 0.5f, 0.75f);
properties.rect = gfx::Rect(16, 32, 64, 128);
properties.background_color = SkColors::kRed;
properties.edge_aa_mask = ui::CALayerEdge::kLayerEdgeLeft;
properties.opacity = 0.5f;
properties.io_surface =
gfx::CreateIOSurface(gfx::Size(256, 256), gfx::BufferFormat::BGRA_8888);
std::unique_ptr<ui::CARendererLayerTree> ca_layer_tree;
CALayer* root_layer = nil;
CALayer* clip_and_sorting_layer = nil;
CALayer* rounded_rect_layer = nil;
CALayer* transform_layer = nil;
CALayer* content_layer = nil;
// Validate the initial values.
{
std::unique_ptr<ui::CARendererLayerTree> new_ca_layer_tree(
new ui::CARendererLayerTree(true, allow_solid_color_layers));
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
CALayer* superlayer_for_transform = clip_and_sorting_layer;
if (!properties.rounded_corner_bounds.IsEmpty()) {
rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
superlayer_for_transform = rounded_rect_layer;
}
transform_layer = [superlayer_for_transform sublayers][0];
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
content_layer = [transform_layer sublayers][0];
// Validate the clip and sorting context layer.
EXPECT_TRUE([clip_and_sorting_layer masksToBounds]);
EXPECT_EQ(gfx::Rect(properties.clip_rect.size()),
gfx::Rect([clip_and_sorting_layer bounds]));
EXPECT_EQ(properties.rounded_corner_bounds.GetSimpleRadius(),
[rounded_rect_layer cornerRadius]);
EXPECT_EQ(properties.clip_rect.origin(),
gfx::Point([clip_and_sorting_layer position]));
EXPECT_EQ(-properties.clip_rect.origin().x(),
[clip_and_sorting_layer sublayerTransform].m41);
EXPECT_EQ(-properties.clip_rect.origin().y(),
[clip_and_sorting_layer sublayerTransform].m42);
// Validate the transform layer.
EXPECT_EQ(properties.transform.rc(3, 0),
[transform_layer sublayerTransform].m41);
EXPECT_EQ(properties.transform.rc(3, 1),
[transform_layer sublayerTransform].m42);
// Validate the content layer.
EXPECT_EQ((__bridge id)properties.io_surface.get(),
[content_layer contents]);
EXPECT_EQ(properties.contents_rect,
gfx::RectF([content_layer contentsRect]));
EXPECT_EQ(properties.rect.origin(), gfx::Point([content_layer position]));
EXPECT_EQ(gfx::Rect(properties.rect.size()),
gfx::Rect([content_layer bounds]));
EXPECT_EQ(kCALayerLeftEdge, [content_layer edgeAntialiasingMask]);
EXPECT_EQ(properties.opacity, [content_layer opacity]);
EXPECT_NSEQ(kCAFilterNearest, [content_layer minificationFilter]);
EXPECT_NSEQ(kCAFilterNearest, [content_layer magnificationFilter]);
EXPECT_EQ(properties.scale_factor, [content_layer contentsScale]);
}
// Update just the clip rect and re-commit.
{
properties.clip_rect = gfx::Rect(4, 8, 16, 32);
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
// Validate the clip and sorting context layer.
EXPECT_TRUE([clip_and_sorting_layer masksToBounds]);
EXPECT_EQ(gfx::Rect(properties.clip_rect.size()),
gfx::Rect([clip_and_sorting_layer bounds]));
EXPECT_EQ(properties.clip_rect.origin(),
gfx::Point([clip_and_sorting_layer position]));
EXPECT_EQ(-properties.clip_rect.origin().x(),
[clip_and_sorting_layer sublayerTransform].m41);
EXPECT_EQ(-properties.clip_rect.origin().y(),
[clip_and_sorting_layer sublayerTransform].m42);
}
// Disable clipping and re-commit.
{
properties.is_clipped = false;
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
// Validate the clip and sorting context layer.
EXPECT_FALSE([clip_and_sorting_layer masksToBounds]);
EXPECT_EQ(gfx::Rect(), gfx::Rect([clip_and_sorting_layer bounds]));
EXPECT_EQ(gfx::Point(), gfx::Point([clip_and_sorting_layer position]));
EXPECT_EQ(0.0, [clip_and_sorting_layer sublayerTransform].m41);
EXPECT_EQ(0.0, [clip_and_sorting_layer sublayerTransform].m42);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
}
// Change the transform and re-commit.
{
properties.transform.Translate(5, 5);
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
// Validate the transform layer.
EXPECT_EQ(properties.transform.rc(3, 0),
[transform_layer sublayerTransform].m41);
EXPECT_EQ(properties.transform.rc(3, 1),
[transform_layer sublayerTransform].m42);
}
// Change the edge antialiasing mask and commit.
{
properties.edge_aa_mask = ui::CALayerEdge::kLayerEdgeTop;
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
// Validate the content layer. Note that top and bottom edges flip.
EXPECT_EQ(kCALayerBottomEdge, [content_layer edgeAntialiasingMask]);
}
// Change the contents and commit.
{
properties.io_surface = gfx::ScopedIOSurface();
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
// Validate the content layer. Note that edge anti-aliasing does not flip
// for solid colors.
if (allow_solid_color_layers) {
EXPECT_EQ(nil, [content_layer contents]);
EXPECT_EQ(kCALayerTopEdge, [content_layer edgeAntialiasingMask]);
} else {
EXPECT_EQ(ca_layer_tree->ContentsForSolidColorForTesting(
properties.background_color),
[content_layer contents]);
EXPECT_EQ(kCALayerBottomEdge, [content_layer edgeAntialiasingMask]);
}
}
// Change the rect size.
{
properties.rect = gfx::Rect(properties.rect.origin(), gfx::Size(32, 16));
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
// Validate the content layer.
EXPECT_EQ(properties.rect.origin(), gfx::Point([content_layer position]));
EXPECT_EQ(gfx::Rect(properties.rect.size()),
gfx::Rect([content_layer bounds]));
}
// Change the rect position.
{
properties.rect = gfx::Rect(gfx::Point(16, 4), properties.rect.size());
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
// Validate the content layer.
EXPECT_EQ(properties.rect.origin(), gfx::Point([content_layer position]));
EXPECT_EQ(gfx::Rect(properties.rect.size()),
gfx::Rect([content_layer bounds]));
}
// Change the opacity.
{
properties.opacity = 1.0f;
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
// Validate the content layer.
EXPECT_EQ(properties.opacity, [content_layer opacity]);
}
// Change the filter.
{
properties.filter = GL_NEAREST;
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
// Validate the content layer.
EXPECT_NSEQ(kCAFilterNearest, [content_layer minificationFilter]);
EXPECT_NSEQ(kCAFilterNearest, [content_layer magnificationFilter]);
}
// Add the clipping and IOSurface contents back.
{
properties.is_clipped = true;
properties.io_surface = gfx::CreateIOSurface(
gfx::Size(256, 256), gfx::BufferFormat::BGRA_8888);
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
// Validate the content layer.
EXPECT_EQ((__bridge id)properties.io_surface.get(),
[content_layer contents]);
EXPECT_EQ(kCALayerBottomEdge, [content_layer edgeAntialiasingMask]);
}
// Change the scale factor. This should result in a new tree being created.
{
properties.scale_factor = 2.0f;
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_NE(root_layer, [superlayer_ sublayers][0]);
root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_NE(clip_and_sorting_layer, [root_layer sublayers][0]);
clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_NE(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
// Under a 2.0 scale factor, the corner-radius should be halved.
EXPECT_EQ(properties.rounded_corner_bounds.GetSimpleRadius() / 2.0f,
[rounded_rect_layer cornerRadius]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_NE(transform_layer, [clip_and_sorting_layer sublayers][0]);
transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
EXPECT_NE(content_layer, [transform_layer sublayers][0]);
content_layer = [transform_layer sublayers][0];
// Validate the clip and sorting context layer.
EXPECT_TRUE([clip_and_sorting_layer masksToBounds]);
EXPECT_EQ(
gfx::ToFlooredRectDeprecated(gfx::ConvertRectToDips(
gfx::Rect(properties.clip_rect.size()), properties.scale_factor)),
gfx::Rect([clip_and_sorting_layer bounds]));
EXPECT_EQ(gfx::ToFlooredPoint(gfx::ConvertPointToDips(
properties.clip_rect.origin(), properties.scale_factor)),
gfx::Point([clip_and_sorting_layer position]));
EXPECT_EQ(-properties.clip_rect.origin().x() / properties.scale_factor,
[clip_and_sorting_layer sublayerTransform].m41);
EXPECT_EQ(-properties.clip_rect.origin().y() / properties.scale_factor,
[clip_and_sorting_layer sublayerTransform].m42);
// Validate the transform layer.
EXPECT_EQ(properties.transform.rc(3, 0) / properties.scale_factor,
[transform_layer sublayerTransform].m41);
EXPECT_EQ(properties.transform.rc(3, 1) / properties.scale_factor,
[transform_layer sublayerTransform].m42);
// Validate the content layer.
EXPECT_EQ((__bridge id)properties.io_surface.get(),
[content_layer contents]);
EXPECT_EQ(properties.contents_rect,
gfx::RectF([content_layer contentsRect]));
EXPECT_EQ(gfx::ToFlooredPoint(gfx::ConvertPointToDips(
properties.rect.origin(), properties.scale_factor)),
gfx::Point([content_layer position]));
EXPECT_EQ(
gfx::ToFlooredRectDeprecated(gfx::ConvertRectToDips(
gfx::Rect(properties.rect.size()), properties.scale_factor)),
gfx::Rect([content_layer bounds]));
EXPECT_EQ(kCALayerBottomEdge, [content_layer edgeAntialiasingMask]);
EXPECT_EQ(properties.opacity, [content_layer opacity]);
EXPECT_EQ(properties.scale_factor, [content_layer contentsScale]);
}
// Remove the rounded corners. This should result in the rounded corners
// being removed on that layer.
{
properties.rounded_corner_bounds = gfx::RRectF();
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(0, [rounded_rect_layer cornerRadius]);
EXPECT_FALSE([rounded_rect_layer masksToBounds]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
}
{
// A no-op update should not invalidate any of the layers.
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
}
// Re-add rounded corners.
{
properties.rounded_corner_bounds = gfx::RRectF(1, 2, 3, 4, 5);
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
EXPECT_EQ(root_layer, [superlayer_ sublayers][0]);
EXPECT_EQ(1u, [[root_layer sublayers] count]);
EXPECT_EQ(clip_and_sorting_layer, [root_layer sublayers][0]);
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
EXPECT_EQ(rounded_rect_layer, [clip_and_sorting_layer sublayers][0]);
// Under a 2.0 scale factor, the corer-radius should be halved.
EXPECT_EQ(properties.rounded_corner_bounds.GetSimpleRadius() / 2.0f,
[rounded_rect_layer cornerRadius]);
EXPECT_TRUE([rounded_rect_layer masksToBounds]);
EXPECT_EQ(transform_layer, [rounded_rect_layer sublayers][0]);
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
EXPECT_EQ(content_layer, [transform_layer sublayers][0]);
}
}
};
TEST_F(CALayerTreePropertyUpdatesTest, AllowSolidColors) {
RunTest(true);
}
TEST_F(CALayerTreePropertyUpdatesTest, DisallowSolidColors) {
RunTest(false);
}
// Verify that sorting context zero is split at non-flat transforms.
TEST_F(CALayerTreeTest, SplitSortingContextZero) {
CALayerProperties properties;
properties.is_clipped = false;
properties.clip_rect = gfx::Rect();
properties.rect = gfx::Rect(0, 0, 256, 256);
// We'll use the IOSurface contents to identify the content layers.
gfx::ScopedIOSurface io_surfaces[5];
for (size_t i = 0; i < 5; ++i) {
io_surfaces[i] =
gfx::CreateIOSurface(gfx::Size(256, 256), gfx::BufferFormat::BGRA_8888);
}
// Have 5 transforms:
// * 2 flat but different (1 sorting context layer, 2 transform layers)
// * 1 non-flat (new sorting context layer)
// * 2 flat and the same (new sorting context layer, 1 transform layer)
gfx::Transform transforms[5];
transforms[0].Translate(10, 10);
transforms[1].RotateAboutZAxis(45.0f);
transforms[2].RotateAboutYAxis(45.0f);
transforms[3].Translate(10, 10);
transforms[4].Translate(10, 10);
// Schedule and commit the layers.
std::unique_ptr<ui::CARendererLayerTree> ca_layer_tree(
new ui::CARendererLayerTree(true, true));
for (size_t i = 0; i < 5; ++i) {
properties.io_surface = io_surfaces[i];
properties.transform = transforms[i];
bool result = ScheduleCALayer(ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
}
ca_layer_tree->CommitScheduledCALayers(
superlayer_, nullptr, properties.rect.size(), properties.scale_factor);
// Validate the root layer.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
CALayer* root_layer = [superlayer_ sublayers][0];
// Validate that we have 3 sorting context layers.
EXPECT_EQ(3u, [[root_layer sublayers] count]);
CALayer* clip_and_sorting_layer_0 = [root_layer sublayers][0];
CALayer* clip_and_sorting_layer_1 = [root_layer sublayers][1];
CALayer* clip_and_sorting_layer_2 = [root_layer sublayers][2];
CALayer* rounded_rect_layer_0 = [clip_and_sorting_layer_0 sublayers][0];
CALayer* rounded_rect_layer_1 = [clip_and_sorting_layer_1 sublayers][0];
CALayer* rounded_rect_layer_2 = [clip_and_sorting_layer_2 sublayers][0];
// Validate that the first sorting context has 2 transform layers each with
// one content layer.
EXPECT_EQ(2u, [[rounded_rect_layer_0 sublayers] count]);
CALayer* transform_layer_0_0 = [rounded_rect_layer_0 sublayers][0];
CALayer* transform_layer_0_1 = [rounded_rect_layer_0 sublayers][1];
EXPECT_EQ(1u, [[transform_layer_0_0 sublayers] count]);
CALayer* content_layer_0 = [transform_layer_0_0 sublayers][0];
EXPECT_EQ(1u, [[transform_layer_0_1 sublayers] count]);
CALayer* content_layer_1 = [transform_layer_0_1 sublayers][0];
// Validate that the second sorting context has 1 transform layer with one
// content layer.
EXPECT_EQ(1u, [[rounded_rect_layer_1 sublayers] count]);
CALayer* transform_layer_1_0 = [rounded_rect_layer_1 sublayers][0];
EXPECT_EQ(1u, [[transform_layer_1_0 sublayers] count]);
CALayer* content_layer_2 = [transform_layer_1_0 sublayers][0];
// Validate that the third sorting context has 1 transform layer with two
// content layers.
EXPECT_EQ(1u, [[rounded_rect_layer_2 sublayers] count]);
CALayer* transform_layer_2_0 = [rounded_rect_layer_2 sublayers][0];
EXPECT_EQ(2u, [[transform_layer_2_0 sublayers] count]);
CALayer* content_layer_3 = [transform_layer_2_0 sublayers][0];
CALayer* content_layer_4 = [transform_layer_2_0 sublayers][1];
// Validate that the layers come out in order.
EXPECT_EQ((__bridge id)io_surfaces[0].get(), [content_layer_0 contents]);
EXPECT_EQ((__bridge id)io_surfaces[1].get(), [content_layer_1 contents]);
EXPECT_EQ((__bridge id)io_surfaces[2].get(), [content_layer_2 contents]);
EXPECT_EQ((__bridge id)io_surfaces[3].get(), [content_layer_3 contents]);
EXPECT_EQ((__bridge id)io_surfaces[4].get(), [content_layer_4 contents]);
}
// Verify that sorting contexts are allocated appropriately.
TEST_F(CALayerTreeTest, SortingContexts) {
CALayerProperties properties;
properties.is_clipped = false;
properties.clip_rect = gfx::Rect();
properties.rect = gfx::Rect(0, 0, 256, 256);
// We'll use the IOSurface contents to identify the content layers.
gfx::ScopedIOSurface io_surfaces[3];
for (size_t i = 0; i < 3; ++i) {
io_surfaces[i] =
gfx::CreateIOSurface(gfx::Size(256, 256), gfx::BufferFormat::BGRA_8888);
}
int sorting_context_ids[3] = {3, -1, 0};
// Schedule and commit the layers.
std::unique_ptr<ui::CARendererLayerTree> ca_layer_tree(
new ui::CARendererLayerTree(true, true));
for (size_t i = 0; i < 3; ++i) {
properties.sorting_context_id = sorting_context_ids[i];
properties.io_surface = io_surfaces[i];
bool result = ScheduleCALayer(ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
}
ca_layer_tree->CommitScheduledCALayers(
superlayer_, nullptr, properties.rect.size(), properties.scale_factor);
// Validate the root layer.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
CALayer* root_layer = [superlayer_ sublayers][0];
// Validate that we have 3 sorting context layers.
EXPECT_EQ(3u, [[root_layer sublayers] count]);
CALayer* clip_and_sorting_layer_0 = [root_layer sublayers][0];
CALayer* clip_and_sorting_layer_1 = [root_layer sublayers][1];
CALayer* clip_and_sorting_layer_2 = [root_layer sublayers][2];
CALayer* rounded_rect_layer_0 = [clip_and_sorting_layer_0 sublayers][0];
CALayer* rounded_rect_layer_1 = [clip_and_sorting_layer_1 sublayers][0];
CALayer* rounded_rect_layer_2 = [clip_and_sorting_layer_2 sublayers][0];
// Validate that each sorting context has 1 transform layer.
EXPECT_EQ(1u, [[rounded_rect_layer_0 sublayers] count]);
CALayer* transform_layer_0 = [rounded_rect_layer_0 sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer_1 sublayers] count]);
CALayer* transform_layer_1 = [rounded_rect_layer_1 sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer_2 sublayers] count]);
CALayer* transform_layer_2 = [rounded_rect_layer_2 sublayers][0];
// Validate that each transform has 1 content layer.
EXPECT_EQ(1u, [[transform_layer_0 sublayers] count]);
CALayer* content_layer_0 = [transform_layer_0 sublayers][0];
EXPECT_EQ(1u, [[transform_layer_1 sublayers] count]);
CALayer* content_layer_1 = [transform_layer_1 sublayers][0];
EXPECT_EQ(1u, [[transform_layer_2 sublayers] count]);
CALayer* content_layer_2 = [transform_layer_2 sublayers][0];
// Validate that the layers come out in order.
EXPECT_EQ((__bridge id)io_surfaces[0].get(), [content_layer_0 contents]);
EXPECT_EQ((__bridge id)io_surfaces[1].get(), [content_layer_1 contents]);
EXPECT_EQ((__bridge id)io_surfaces[2].get(), [content_layer_2 contents]);
}
// Verify that sorting contexts must all have the same clipping properties.
TEST_F(CALayerTreeTest, SortingContextMustHaveConsistentClip) {
CALayerProperties properties;
// Vary the clipping parameters within sorting contexts.
bool is_clippeds[3] = { true, true, false};
gfx::Rect clip_rects[3] = {
gfx::Rect(0, 0, 16, 16),
gfx::Rect(4, 8, 16, 32),
gfx::Rect(0, 0, 16, 16)
};
std::unique_ptr<ui::CARendererLayerTree> ca_layer_tree(
new ui::CARendererLayerTree(true, true));
// First send the various clip parameters to sorting context zero. This is
// legitimate.
for (size_t i = 0; i < 3; ++i) {
properties.is_clipped = is_clippeds[i];
properties.clip_rect = clip_rects[i];
bool result = ScheduleCALayer(ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
}
// Next send the various clip parameters to a non-zero sorting context. This
// will fail when we try to change the clip within the sorting context.
for (size_t i = 0; i < 3; ++i) {
properties.sorting_context_id = 3;
properties.is_clipped = is_clippeds[i];
properties.clip_rect = clip_rects[i];
bool result = ScheduleCALayer(ca_layer_tree.get(), &properties);
if (i == 0)
EXPECT_TRUE(result);
else
EXPECT_FALSE(result);
}
// Try once more with the original clip and verify it works.
{
properties.is_clipped = is_clippeds[0];
properties.clip_rect = clip_rects[0];
bool result = ScheduleCALayer(ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
}
}
// Test updating each layer's properties.
TEST_F(CALayerTreeTest, AVLayer) {
base::test::ScopedFeatureList features;
features.InitWithFeatures({ui::kFullscreenLowPowerBackdropMac}, {});
CALayerProperties properties;
properties.io_surface =
gfx::CreateIOSurface(gfx::Size(256, 256), gfx::BufferFormat::BGRA_8888);
std::unique_ptr<ui::CARendererLayerTree> ca_layer_tree;
CALayer* content_layer_old = nil;
CALayer* content_layer_new = nil;
// Validate the initial values.
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
content_layer_new = GetOnlyContentLayer();
EXPECT_FALSE([content_layer_new
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
}
content_layer_old = content_layer_new;
// Pass a YUV 420 frame. This will become an AVSampleBufferDisplayLayer
// because it is in fullscreen low power mode.
properties.io_surface = gfx::CreateIOSurface(
gfx::Size(256, 256), gfx::BufferFormat::YUV_420_BIPLANAR);
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
content_layer_new = GetOnlyContentLayer();
EXPECT_TRUE([content_layer_new
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
EXPECT_NE(content_layer_new, content_layer_old);
}
content_layer_old = content_layer_new;
// Pass a similar frame. Nothing should change.
properties.io_surface = gfx::CreateIOSurface(
gfx::Size(256, 128), gfx::BufferFormat::YUV_420_BIPLANAR);
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
content_layer_new = GetOnlyContentLayer();
EXPECT_TRUE([content_layer_new
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
EXPECT_EQ(content_layer_new, content_layer_old);
}
content_layer_old = content_layer_new;
// Break fullscreen low power mode by changing opacity. This should cause
// us to drop out of using AVSampleBufferDisplayLayer.
properties.opacity = 0.9;
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
content_layer_new = GetOnlyContentLayer();
EXPECT_FALSE([content_layer_new
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
EXPECT_NE(content_layer_new, content_layer_old);
}
content_layer_old = content_layer_new;
// Now try a P010 frame. Because this may be HDR, we should jump back to
// having an AVSampleBufferDisplayLayer.
properties.io_surface =
gfx::CreateIOSurface(gfx::Size(128, 256), gfx::BufferFormat::P010);
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
content_layer_new = GetOnlyContentLayer();
EXPECT_TRUE([content_layer_new
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
EXPECT_NE(content_layer_new, content_layer_old);
}
content_layer_old = content_layer_new;
// Go back to testing AVSampleBufferLayer and fullscreen low power.
properties.opacity = 1.0;
// Pass a frame with a CVPixelBuffer which, when scaled down, will have a
// fractional dimension.
properties.io_surface = gfx::CreateIOSurface(
gfx::Size(513, 512), gfx::BufferFormat::YUV_420_BIPLANAR);
properties.cv_pixel_buffer = CreateCVPixelBuffer(properties.io_surface);
properties.color_space = gfx::ColorSpace::CreateREC709();
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
content_layer_new = GetOnlyContentLayer();
// Validate that the layer's size is adjusted to include the fractional
// width, which works around a macOS bug (https://crbug.com/792632).
CGSize layer_size = content_layer_new.bounds.size;
EXPECT_EQ(256.5, layer_size.width);
EXPECT_EQ(256, layer_size.height);
}
content_layer_old = content_layer_new;
// Pass a frame that is clipped.
properties.contents_rect = gfx::RectF(0, 0, 1, 0.9);
properties.io_surface = gfx::CreateIOSurface(
gfx::Size(256, 256), gfx::BufferFormat::YUV_420_BIPLANAR);
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
content_layer_new = GetOnlyContentLayer();
EXPECT_FALSE([content_layer_new
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
EXPECT_NE(content_layer_new, content_layer_old);
}
content_layer_old = content_layer_new;
}
// Ensure that blocklisting AVSampleBufferDisplayLayer works.
TEST_F(CALayerTreeTest, AVLayerBlocklist) {
base::test::ScopedFeatureList features;
features.InitWithFeatures({ui::kFullscreenLowPowerBackdropMac}, {});
CALayerProperties properties;
properties.io_surface = gfx::CreateIOSurface(
gfx::Size(256, 256), gfx::BufferFormat::YUV_420_BIPLANAR);
std::unique_ptr<ui::CARendererLayerTree> ca_layer_tree;
CALayer* root_layer = nil;
CALayer* clip_and_sorting_layer = nil;
CALayer* rounded_rect_layer = nil;
CALayer* transform_layer = nil;
CALayer* content_layer1 = nil;
CALayer* content_layer2 = nil;
{
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
content_layer1 = [transform_layer sublayers][0];
// Validate the content layer.
EXPECT_TRUE([content_layer1
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
}
{
properties.allow_av_layers = false;
UpdateCALayerTree(ca_layer_tree, &properties, superlayer_);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
content_layer2 = [transform_layer sublayers][0];
// Validate the content layer.
EXPECT_FALSE([content_layer2
isKindOfClass:NSClassFromString(@"AVSampleBufferDisplayLayer")]);
EXPECT_NE(content_layer1, content_layer2);
}
}
// Test fullscreen low power detection.
TEST_F(CALayerTreeTest, FullscreenLowPower) {
base::test::ScopedFeatureList features;
features.InitWithFeatures({ui::kFullscreenLowPowerBackdropMac}, {});
CALayerProperties properties;
properties.io_surface = gfx::CreateIOSurface(
gfx::Size(256, 256), gfx::BufferFormat::YUV_420_BIPLANAR);
properties.cv_pixel_buffer = CreateCVPixelBuffer(properties.io_surface);
properties.color_space = gfx::ColorSpace::CreateREC709();
properties.is_clipped = false;
CALayerProperties properties_black;
properties_black.is_clipped = false;
properties_black.background_color = SkColors::kBlack;
CALayerProperties properties_white;
properties_white.is_clipped = false;
properties_white.background_color = SkColors::kWhite;
std::unique_ptr<ui::CARendererLayerTree> ca_layer_tree;
// Test a configuration with no background.
{
std::unique_ptr<ui::CARendererLayerTree> new_ca_layer_tree(
new ui::CARendererLayerTree(true, true));
bool result = ScheduleCALayer(new_ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
new_ca_layer_tree->CommitScheduledCALayers(
superlayer_, std::move(ca_layer_tree), properties.rect.size(),
properties.scale_factor);
std::swap(new_ca_layer_tree, ca_layer_tree);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
CALayer* root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
CALayer* clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
CALayer* rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
CALayer* transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(1u, [[transform_layer sublayers] count]);
// Validate the content layer and fullscreen low power mode.
EXPECT_FALSE(CGRectEqualToRect([root_layer frame], CGRectZero));
EXPECT_NE([root_layer backgroundColor], nil);
}
// Test a configuration with a black background.
{
std::unique_ptr<ui::CARendererLayerTree> new_ca_layer_tree(
new ui::CARendererLayerTree(true, true));
bool result = ScheduleCALayer(new_ca_layer_tree.get(), &properties_black);
EXPECT_TRUE(result);
result = ScheduleCALayer(new_ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
new_ca_layer_tree->CommitScheduledCALayers(
superlayer_, std::move(ca_layer_tree), properties.rect.size(),
properties.scale_factor);
std::swap(new_ca_layer_tree, ca_layer_tree);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
CALayer* root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
CALayer* clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
CALayer* rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
CALayer* transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(2u, [[transform_layer sublayers] count]);
// Validate the content layer and fullscreen low power mode.
EXPECT_FALSE(CGRectEqualToRect([root_layer frame], CGRectZero));
EXPECT_NE([root_layer backgroundColor], nil);
}
// Test a configuration with a white background. It will fail.
{
std::unique_ptr<ui::CARendererLayerTree> new_ca_layer_tree(
new ui::CARendererLayerTree(true, true));
bool result = ScheduleCALayer(new_ca_layer_tree.get(), &properties_white);
EXPECT_TRUE(result);
result = ScheduleCALayer(new_ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
new_ca_layer_tree->CommitScheduledCALayers(
superlayer_, std::move(ca_layer_tree), properties.rect.size(),
properties.scale_factor);
std::swap(new_ca_layer_tree, ca_layer_tree);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
CALayer* root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
CALayer* clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
CALayer* rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
CALayer* transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(2u, [[transform_layer sublayers] count]);
// Validate the content layer and fullscreen low power mode.
EXPECT_TRUE(CGRectEqualToRect([root_layer frame], CGRectZero));
EXPECT_EQ([root_layer backgroundColor], nil);
}
// Test a configuration with a black foreground. It too will fail.
{
std::unique_ptr<ui::CARendererLayerTree> new_ca_layer_tree(
new ui::CARendererLayerTree(true, true));
bool result = ScheduleCALayer(new_ca_layer_tree.get(), &properties);
EXPECT_TRUE(result);
result = ScheduleCALayer(new_ca_layer_tree.get(), &properties_black);
EXPECT_TRUE(result);
new_ca_layer_tree->CommitScheduledCALayers(
superlayer_, std::move(ca_layer_tree), properties.rect.size(),
properties.scale_factor);
std::swap(new_ca_layer_tree, ca_layer_tree);
// Validate the tree structure.
EXPECT_EQ(1u, [[superlayer_ sublayers] count]);
CALayer* root_layer = [superlayer_ sublayers][0];
EXPECT_EQ(1u, [[root_layer sublayers] count]);
CALayer* clip_and_sorting_layer = [root_layer sublayers][0];
EXPECT_EQ(1u, [[clip_and_sorting_layer sublayers] count]);
CALayer* rounded_rect_layer = [clip_and_sorting_layer sublayers][0];
EXPECT_EQ(1u, [[rounded_rect_layer sublayers] count]);
CALayer* transform_layer = [rounded_rect_layer sublayers][0];
EXPECT_EQ(2u, [[transform_layer sublayers] count]);
// Validate the content layer and fullscreen low power mode.
EXPECT_TRUE(CGRectEqualToRect([root_layer frame], CGRectZero));
EXPECT_EQ([root_layer backgroundColor], nil);
}
}
// Verify that HDR is triggered appropriately.
TEST_F(CALayerTreeTest, HDRTrigger) {
std::unique_ptr<ui::CARendererLayerTree> ca_layer_trees[4]{
std::make_unique<ui::CARendererLayerTree>(true, true),
std::make_unique<ui::CARendererLayerTree>(true, true),
std::make_unique<ui::CARendererLayerTree>(true, true),
std::make_unique<ui::CARendererLayerTree>(true, true),
};
CALayerProperties properties;
properties.is_clipped = false;
properties.clip_rect = gfx::Rect();
properties.rect = gfx::Rect(0, 0, 256, 256);
bool result = false;
// We only copy images that have both high-bit-depth and an HDR color space.
auto sdr_image =
gfx::CreateIOSurface(gfx::Size(256, 256), gfx::BufferFormat::BGRA_8888);
auto tricky_sdr_image =
gfx::CreateIOSurface(gfx::Size(256, 256), gfx::BufferFormat::BGRA_8888);
auto hdr_image =
gfx::CreateIOSurface(gfx::Size(256, 256), gfx::BufferFormat::RGBA_F16);
// Schedule and commit the HDR layer.
properties.io_surface = hdr_image;
properties.color_space = gfx::ColorSpace::CreateExtendedSRGB();
result = ScheduleCALayer(ca_layer_trees[0].get(), &properties);
EXPECT_TRUE(result);
ca_layer_trees[0]->CommitScheduledCALayers(
superlayer_, nullptr, properties.rect.size(), properties.scale_factor);
// Validate that the root layer has is triggering HDR.
CALayer* content_layer = GetOnlyContentLayer();
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunguarded-availability-new"
EXPECT_TRUE([content_layer wantsExtendedDynamicRangeContent]);
#pragma clang diagnostic pop
// Commit the SDR layer.
properties.io_surface = sdr_image;
properties.color_space = gfx::ColorSpace::CreateSRGB();
result = ScheduleCALayer(ca_layer_trees[1].get(), &properties);
EXPECT_TRUE(result);
ca_layer_trees[1]->CommitScheduledCALayers(
superlayer_, std::move(ca_layer_trees[0]), properties.rect.size(),
properties.scale_factor);
// Validate that HDR is off. The previous content layer should have been
// un-parented.
EXPECT_EQ([content_layer superlayer], nil);
content_layer = GetOnlyContentLayer();
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunguarded-availability-new"
EXPECT_FALSE([content_layer wantsExtendedDynamicRangeContent]);
#pragma clang diagnostic pop
// Commit the tricky SDR layer.
properties.io_surface = tricky_sdr_image;
properties.color_space = gfx::ColorSpace::CreateExtendedSRGB();
result = ScheduleCALayer(ca_layer_trees[2].get(), &properties);
EXPECT_TRUE(result);
ca_layer_trees[2]->CommitScheduledCALayers(
superlayer_, std::move(ca_layer_trees[1]), properties.rect.size(),
properties.scale_factor);
// Validate that HDR is still off, and that the content layer hasn't changed.
EXPECT_EQ(content_layer, GetOnlyContentLayer());
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunguarded-availability-new"
EXPECT_FALSE([content_layer wantsExtendedDynamicRangeContent]);
#pragma clang diagnostic pop
// Commit the HDR layer.
properties.io_surface = hdr_image;
properties.color_space = gfx::ColorSpace::CreateExtendedSRGB();
result = ScheduleCALayer(ca_layer_trees[3].get(), &properties);
EXPECT_TRUE(result);
ca_layer_trees[3]->CommitScheduledCALayers(
superlayer_, std::move(ca_layer_trees[2]), properties.rect.size(),
properties.scale_factor);
// Validate that HDR is back on. The previous content layer should have
// been un-parented.
EXPECT_EQ([content_layer superlayer], nil);
content_layer = GetOnlyContentLayer();
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunguarded-availability-new"
EXPECT_TRUE([content_layer wantsExtendedDynamicRangeContent]);
#pragma clang diagnostic pop
}
} // namespace gpu