blob: cf32e6feddc42db15d98b27b1cad5466816c8e79 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/gamepad/xbox_data_fetcher_mac.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOCFPlugIn.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/usb/IOUSBLib.h>
#include <IOKit/usb/USB.h>
#include "base/logging.h"
#include "base/mac/foundation_util.h"
namespace {
const int kVendorMicrosoft = 0x045e;
const int kProduct360Controller = 0x028e;
const int kReadEndpoint = 1;
const int kControlEndpoint = 2;
enum {
STATUS_MESSAGE_BUTTONS = 0,
STATUS_MESSAGE_LED = 1,
// Apparently this message tells you if the rumble pack is disabled in the
// controller. If the rumble pack is disabled, vibration control messages
// have no effect.
STATUS_MESSAGE_RUMBLE = 3,
};
enum {
CONTROL_MESSAGE_SET_RUMBLE = 0,
CONTROL_MESSAGE_SET_LED = 1,
};
#pragma pack(push, 1)
struct ButtonData {
bool dpad_up : 1;
bool dpad_down : 1;
bool dpad_left : 1;
bool dpad_right : 1;
bool start : 1;
bool back : 1;
bool stick_left_click : 1;
bool stick_right_click : 1;
bool bumper_left : 1;
bool bumper_right : 1;
bool guide : 1;
bool dummy1 : 1; // Always 0.
bool a : 1;
bool b : 1;
bool x : 1;
bool y : 1;
uint8 trigger_left;
uint8 trigger_right;
int16 stick_left_x;
int16 stick_left_y;
int16 stick_right_x;
int16 stick_right_y;
// Always 0.
uint32 dummy2;
uint16 dummy3;
};
#pragma pack(pop)
COMPILE_ASSERT(sizeof(ButtonData) == 0x12, xbox_button_data_wrong_size);
// From MSDN:
// http://msdn.microsoft.com/en-us/library/windows/desktop/ee417001(v=vs.85).aspx#dead_zone
const int16 kLeftThumbDeadzone = 7849;
const int16 kRightThumbDeadzone = 8689;
const uint8 kTriggerDeadzone = 30;
void NormalizeAxis(int16 x,
int16 y,
int16 deadzone,
float* x_out,
float* y_out) {
float x_val = x;
float y_val = y;
// Determine how far the stick is pushed.
float real_magnitude = std::sqrt(x_val * x_val + y_val * y_val);
// Check if the controller is outside a circular dead zone.
if (real_magnitude > deadzone) {
// Clip the magnitude at its expected maximum value.
float magnitude = std::min(32767.0f, real_magnitude);
// Adjust magnitude relative to the end of the dead zone.
magnitude -= deadzone;
// Normalize the magnitude with respect to its expected range giving a
// magnitude value of 0.0 to 1.0
float ratio = (magnitude / (32767 - deadzone)) / real_magnitude;
// Y is negated because xbox controllers have an opposite sign from
// the 'standard controller' recommendations.
*x_out = x_val * ratio;
*y_out = -y_val * ratio;
} else {
// If the controller is in the deadzone zero out the magnitude.
*x_out = *y_out = 0.0f;
}
}
float NormalizeTrigger(uint8 value) {
return value < kTriggerDeadzone ? 0 :
static_cast<float>(value - kTriggerDeadzone) /
(std::numeric_limits<uint8>::max() - kTriggerDeadzone);
}
void NormalizeButtonData(const ButtonData& data,
XboxController::Data* normalized_data) {
normalized_data->buttons[0] = data.a;
normalized_data->buttons[1] = data.b;
normalized_data->buttons[2] = data.x;
normalized_data->buttons[3] = data.y;
normalized_data->buttons[4] = data.bumper_left;
normalized_data->buttons[5] = data.bumper_right;
normalized_data->buttons[6] = data.back;
normalized_data->buttons[7] = data.start;
normalized_data->buttons[8] = data.stick_left_click;
normalized_data->buttons[9] = data.stick_right_click;
normalized_data->buttons[10] = data.dpad_up;
normalized_data->buttons[11] = data.dpad_down;
normalized_data->buttons[12] = data.dpad_left;
normalized_data->buttons[13] = data.dpad_right;
normalized_data->buttons[14] = data.guide;
normalized_data->triggers[0] = NormalizeTrigger(data.trigger_left);
normalized_data->triggers[1] = NormalizeTrigger(data.trigger_right);
NormalizeAxis(data.stick_left_x,
data.stick_left_y,
kLeftThumbDeadzone,
&normalized_data->axes[0],
&normalized_data->axes[1]);
NormalizeAxis(data.stick_right_x,
data.stick_right_y,
kRightThumbDeadzone,
&normalized_data->axes[2],
&normalized_data->axes[3]);
}
} // namespace
XboxController::XboxController(Delegate* delegate)
: device_(NULL),
interface_(NULL),
device_is_open_(false),
interface_is_open_(false),
read_buffer_size_(0),
led_pattern_(LED_NUM_PATTERNS),
location_id_(0),
delegate_(delegate) {
}
XboxController::~XboxController() {
if (source_)
CFRunLoopSourceInvalidate(source_);
if (interface_ && interface_is_open_)
(*interface_)->USBInterfaceClose(interface_);
if (device_ && device_is_open_)
(*device_)->USBDeviceClose(device_);
}
bool XboxController::OpenDevice(io_service_t service) {
IOCFPlugInInterface **plugin;
SInt32 score; // Unused, but required for IOCreatePlugInInterfaceForService.
kern_return_t kr =
IOCreatePlugInInterfaceForService(service,
kIOUSBDeviceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugin,
&score);
if (kr != KERN_SUCCESS)
return false;
base::mac::ScopedIOPluginInterface<IOCFPlugInInterface> plugin_ref(plugin);
HRESULT res =
(*plugin)->QueryInterface(plugin,
CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID320),
(LPVOID *)&device_);
if (!SUCCEEDED(res) || !device_)
return false;
UInt16 vendor_id;
kr = (*device_)->GetDeviceVendor(device_, &vendor_id);
if (kr != KERN_SUCCESS)
return false;
UInt16 product_id;
kr = (*device_)->GetDeviceProduct(device_, &product_id);
if (kr != KERN_SUCCESS)
return false;
if (vendor_id != kVendorMicrosoft || product_id != kProduct360Controller)
return false;
// Open the device and configure it.
kr = (*device_)->USBDeviceOpen(device_);
if (kr != KERN_SUCCESS)
return false;
device_is_open_ = true;
// Xbox controllers have one configuration option which has configuration
// value 1. Try to set it and fail if it couldn't be configured.
IOUSBConfigurationDescriptorPtr config_desc;
kr = (*device_)->GetConfigurationDescriptorPtr(device_, 0, &config_desc);
if (kr != KERN_SUCCESS)
return false;
kr = (*device_)->SetConfiguration(device_, config_desc->bConfigurationValue);
if (kr != KERN_SUCCESS)
return false;
// The device has 4 interfaces. They are as follows:
// Protocol 1:
// - Endpoint 1 (in) : Controller events, including button presses.
// - Endpoint 2 (out): Rumble pack and LED control
// Protocol 2 has a single endpoint to read from a connected ChatPad device.
// Protocol 3 is used by a connected headset device.
// The device also has an interface on subclass 253, protocol 10 with no
// endpoints. It is unused.
//
// We don't currently support the ChatPad or headset, so protocol 1 is the
// only protocol we care about.
//
// For more detail, see
// https://github.com/Grumbel/xboxdrv/blob/master/PROTOCOL
IOUSBFindInterfaceRequest request;
request.bInterfaceClass = 255;
request.bInterfaceSubClass = 93;
request.bInterfaceProtocol = 1;
request.bAlternateSetting = kIOUSBFindInterfaceDontCare;
io_iterator_t iter;
kr = (*device_)->CreateInterfaceIterator(device_, &request, &iter);
if (kr != KERN_SUCCESS)
return false;
base::mac::ScopedIOObject<io_iterator_t> iter_ref(iter);
// There should be exactly one USB interface which matches the requested
// settings.
io_service_t usb_interface = IOIteratorNext(iter);
if (!usb_interface)
return false;
// We need to make an InterfaceInterface to communicate with the device
// endpoint. This is the same process as earlier: first make a
// PluginInterface from the io_service then make the InterfaceInterface from
// that.
IOCFPlugInInterface **plugin_interface;
kr = IOCreatePlugInInterfaceForService(usb_interface,
kIOUSBInterfaceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugin_interface,
&score);
if (kr != KERN_SUCCESS || !plugin_interface)
return false;
base::mac::ScopedIOPluginInterface<IOCFPlugInInterface> interface_ref(
plugin_interface);
// Release the USB interface, and any subsequent interfaces returned by the
// iterator. (There shouldn't be any, but in case a future device does
// contain more interfaces, this will serve to avoid memory leaks.)
do {
IOObjectRelease(usb_interface);
} while ((usb_interface = IOIteratorNext(iter)));
// Actually create the interface.
res = (*plugin_interface)->QueryInterface(
plugin_interface,
CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID300),
(LPVOID *)&interface_);
if (!SUCCEEDED(res) || !interface_)
return false;
// Actually open the interface.
kr = (*interface_)->USBInterfaceOpen(interface_);
if (kr != KERN_SUCCESS)
return false;
interface_is_open_ = true;
CFRunLoopSourceRef source_ref;
kr = (*interface_)->CreateInterfaceAsyncEventSource(interface_, &source_ref);
if (kr != KERN_SUCCESS || !source_ref)
return false;
source_.reset(source_ref);
CFRunLoopAddSource(CFRunLoopGetCurrent(), source_, kCFRunLoopDefaultMode);
// The interface should have two pipes. Pipe 1 with direction kUSBIn and pipe
// 2 with direction kUSBOut. Both pipes should have type kUSBInterrupt.
uint8 num_endpoints;
kr = (*interface_)->GetNumEndpoints(interface_, &num_endpoints);
if (kr != KERN_SUCCESS || num_endpoints < 2)
return false;
for (int i = 1; i <= 2; i++) {
uint8 direction;
uint8 number;
uint8 transfer_type;
uint16 max_packet_size;
uint8 interval;
kr = (*interface_)->GetPipeProperties(interface_,
i,
&direction,
&number,
&transfer_type,
&max_packet_size,
&interval);
if (kr != KERN_SUCCESS || transfer_type != kUSBInterrupt)
return false;
if (i == kReadEndpoint) {
if (direction != kUSBIn)
return false;
if (max_packet_size > 32)
return false;
read_buffer_.reset(new uint8[max_packet_size]);
read_buffer_size_ = max_packet_size;
QueueRead();
} else if (i == kControlEndpoint) {
if (direction != kUSBOut)
return false;
}
}
// The location ID is unique per controller, and can be used to track
// controllers through reconnections (though if a controller is detached from
// one USB hub and attached to another, the location ID will change).
kr = (*device_)->GetLocationID(device_, &location_id_);
if (kr != KERN_SUCCESS)
return false;
return true;
}
void XboxController::SetLEDPattern(LEDPattern pattern) {
led_pattern_ = pattern;
const UInt8 length = 3;
// This buffer will be released in WriteComplete when WritePipeAsync
// finishes.
UInt8* buffer = new UInt8[length];
buffer[0] = static_cast<UInt8>(CONTROL_MESSAGE_SET_LED);
buffer[1] = length;
buffer[2] = static_cast<UInt8>(pattern);
kern_return_t kr = (*interface_)->WritePipeAsync(interface_,
kControlEndpoint,
buffer,
(UInt32)length,
WriteComplete,
buffer);
if (kr != KERN_SUCCESS) {
delete[] buffer;
IOError();
return;
}
}
int XboxController::GetVendorId() const {
return kVendorMicrosoft;
}
int XboxController::GetProductId() const {
return kProduct360Controller;
}
void XboxController::WriteComplete(void* context, IOReturn result, void* arg0) {
UInt8* buffer = static_cast<UInt8*>(context);
delete[] buffer;
// Ignoring any errors sending data, because they will usually only occur
// when the device is disconnected, in which case it really doesn't matter if
// the data got to the controller or not.
if (result != kIOReturnSuccess)
return;
}
void XboxController::GotData(void* context, IOReturn result, void* arg0) {
uint32 bytesRead = reinterpret_cast<uint32>(arg0);
XboxController* controller = static_cast<XboxController*>(context);
if (result != kIOReturnSuccess) {
// This will happen if the device was disconnected. The gamepad has
// probably been destroyed by a meteorite.
controller->IOError();
return;
}
controller->ProcessPacket(bytesRead);
// Queue up another read.
controller->QueueRead();
}
void XboxController::ProcessPacket(uint32 length) {
if (length < 2) return;
DCHECK(length <= read_buffer_size_);
if (length > read_buffer_size_) {
IOError();
return;
}
uint8* buffer = read_buffer_.get();
if (buffer[1] != length)
// Length in packet doesn't match length reported by USB.
return;
uint8 type = buffer[0];
buffer += 2;
length -= 2;
switch (type) {
case STATUS_MESSAGE_BUTTONS: {
if (length != sizeof(ButtonData))
return;
ButtonData* data = reinterpret_cast<ButtonData*>(buffer);
Data normalized_data;
NormalizeButtonData(*data, &normalized_data);
delegate_->XboxControllerGotData(this, normalized_data);
break;
}
case STATUS_MESSAGE_LED:
if (length != 3)
return;
// The controller sends one of these messages every time the LED pattern
// is set, as well as once when it is plugged in.
if (led_pattern_ == LED_NUM_PATTERNS && buffer[0] < LED_NUM_PATTERNS)
led_pattern_ = static_cast<LEDPattern>(buffer[0]);
break;
default:
// Unknown packet: ignore!
break;
}
}
void XboxController::QueueRead() {
kern_return_t kr = (*interface_)->ReadPipeAsync(interface_,
kReadEndpoint,
read_buffer_.get(),
read_buffer_size_,
GotData,
this);
if (kr != KERN_SUCCESS)
IOError();
}
void XboxController::IOError() {
delegate_->XboxControllerError(this);
}
//-----------------------------------------------------------------------------
XboxDataFetcher::XboxDataFetcher(Delegate* delegate)
: delegate_(delegate),
listening_(false),
source_(NULL),
port_(NULL) {
}
XboxDataFetcher::~XboxDataFetcher() {
while (!controllers_.empty()) {
RemoveController(*controllers_.begin());
}
UnregisterFromNotifications();
}
void XboxDataFetcher::DeviceAdded(void* context, io_iterator_t iterator) {
DCHECK(context);
XboxDataFetcher* fetcher = static_cast<XboxDataFetcher*>(context);
io_service_t ref;
while ((ref = IOIteratorNext(iterator))) {
base::mac::ScopedIOObject<io_service_t> scoped_ref(ref);
XboxController* controller = new XboxController(fetcher);
if (controller->OpenDevice(ref)) {
fetcher->AddController(controller);
} else {
delete controller;
}
}
}
void XboxDataFetcher::DeviceRemoved(void* context, io_iterator_t iterator) {
DCHECK(context);
XboxDataFetcher* fetcher = static_cast<XboxDataFetcher*>(context);
io_service_t ref;
while ((ref = IOIteratorNext(iterator))) {
base::mac::ScopedIOObject<io_service_t> scoped_ref(ref);
base::mac::ScopedCFTypeRef<CFNumberRef> number(
base::mac::CFCastStrict<CFNumberRef>(IORegistryEntryCreateCFProperty(
ref,
CFSTR(kUSBDevicePropertyLocationID),
kCFAllocatorDefault,
kNilOptions)));
UInt32 location_id = 0;
CFNumberGetValue(number, kCFNumberSInt32Type, &location_id);
fetcher->RemoveControllerByLocationID(location_id);
}
}
bool XboxDataFetcher::RegisterForNotifications() {
if (listening_)
return true;
base::mac::ScopedCFTypeRef<CFNumberRef> vendor_cf(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type,
&kVendorMicrosoft));
base::mac::ScopedCFTypeRef<CFNumberRef> product_cf(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type,
&kProduct360Controller));
base::mac::ScopedCFTypeRef<CFMutableDictionaryRef> matching_dict(
IOServiceMatching(kIOUSBDeviceClassName));
if (!matching_dict)
return false;
CFDictionarySetValue(matching_dict, CFSTR(kUSBVendorID), vendor_cf);
CFDictionarySetValue(matching_dict, CFSTR(kUSBProductID), product_cf);
port_ = IONotificationPortCreate(kIOMasterPortDefault);
if (!port_)
return false;
source_ = IONotificationPortGetRunLoopSource(port_);
if (!source_)
return false;
CFRunLoopAddSource(CFRunLoopGetCurrent(), source_, kCFRunLoopDefaultMode);
listening_ = true;
// IOServiceAddMatchingNotification() releases the dictionary when it's done.
// Retain it before each call to IOServiceAddMatchingNotification to keep
// things balanced.
CFRetain(matching_dict);
io_iterator_t device_added_iter;
IOReturn ret;
ret = IOServiceAddMatchingNotification(port_,
kIOFirstMatchNotification,
matching_dict,
DeviceAdded,
this,
&device_added_iter);
device_added_iter_.reset(device_added_iter);
if (ret != kIOReturnSuccess) {
LOG(ERROR) << "Error listening for Xbox controller add events: " << ret;
return false;
}
DeviceAdded(this, device_added_iter_.get());
CFRetain(matching_dict);
io_iterator_t device_removed_iter;
ret = IOServiceAddMatchingNotification(port_,
kIOTerminatedNotification,
matching_dict,
DeviceRemoved,
this,
&device_removed_iter);
device_removed_iter_.reset(device_removed_iter);
if (ret != kIOReturnSuccess) {
LOG(ERROR) << "Error listening for Xbox controller remove events: " << ret;
return false;
}
DeviceRemoved(this, device_removed_iter_.get());
return true;
}
void XboxDataFetcher::UnregisterFromNotifications() {
if (!listening_)
return;
listening_ = false;
if (source_)
CFRunLoopSourceInvalidate(source_);
if (port_)
IONotificationPortDestroy(port_);
port_ = NULL;
}
XboxController* XboxDataFetcher::ControllerForLocation(UInt32 location_id) {
for (std::set<XboxController*>::iterator i = controllers_.begin();
i != controllers_.end();
++i) {
if ((*i)->location_id() == location_id)
return *i;
}
return NULL;
}
void XboxDataFetcher::AddController(XboxController* controller) {
DCHECK(!ControllerForLocation(controller->location_id()))
<< "Controller with location ID " << controller->location_id()
<< " already exists in the set of controllers.";
controllers_.insert(controller);
delegate_->XboxDeviceAdd(controller);
}
void XboxDataFetcher::RemoveController(XboxController* controller) {
delegate_->XboxDeviceRemove(controller);
controllers_.erase(controller);
delete controller;
}
void XboxDataFetcher::RemoveControllerByLocationID(uint32 location_id) {
XboxController* controller = NULL;
for (std::set<XboxController*>::iterator i = controllers_.begin();
i != controllers_.end();
++i) {
if ((*i)->location_id() == location_id) {
controller = *i;
break;
}
}
if (controller)
RemoveController(controller);
}
void XboxDataFetcher::XboxControllerGotData(XboxController* controller,
const XboxController::Data& data) {
delegate_->XboxValueChanged(controller, data);
}
void XboxDataFetcher::XboxControllerError(XboxController* controller) {
RemoveController(controller);
}