blob: d5a91f6fa2ba8f2317844c3ffef63bd89704b09b [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/child/child_thread_impl.h"
#include <signal.h>
#include <string>
#include <utility>
#include "base/base_switches.h"
#include "base/command_line.h"
#include "base/debug/alias.h"
#include "base/debug/leak_annotations.h"
#include "base/debug/profiler.h"
#include "base/lazy_instance.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_loop.h"
#include "base/message_loop/timer_slack.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/histogram_macros.h"
#include "base/process/process.h"
#include "base/process/process_handle.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/threading/thread_local.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/timer/elapsed_timer.h"
#include "base/trace_event/memory_dump_manager.h"
#include "build/build_config.h"
#include "components/tracing/child/child_trace_message_filter.h"
#include "content/child/child_histogram_fetcher_impl.h"
#include "content/child/child_process.h"
#include "content/child/thread_safe_sender.h"
#include "content/common/child_process_messages.h"
#include "content/common/field_trial_recorder.mojom.h"
#include "content/common/in_process_child_thread_params.h"
#include "content/public/common/connection_filter.h"
#include "content/public/common/content_client.h"
#include "content/public/common/content_switches.h"
#include "content/public/common/mojo_channel_switches.h"
#include "content/public/common/service_manager_connection.h"
#include "content/public/common/service_names.mojom.h"
#include "content/public/common/simple_connection_filter.h"
#include "ipc/ipc_channel_mojo.h"
#include "ipc/ipc_logging.h"
#include "ipc/ipc_platform_file.h"
#include "ipc/ipc_sync_channel.h"
#include "ipc/ipc_sync_message_filter.h"
#include "mojo/edk/embedder/embedder.h"
#include "mojo/edk/embedder/incoming_broker_client_invitation.h"
#include "mojo/edk/embedder/named_platform_channel_pair.h"
#include "mojo/edk/embedder/platform_channel_pair.h"
#include "mojo/edk/embedder/scoped_ipc_support.h"
#include "mojo/public/cpp/system/buffer.h"
#include "mojo/public/cpp/system/platform_handle.h"
#include "services/device/public/cpp/power_monitor/power_monitor_broadcast_source.h"
#include "services/resource_coordinator/public/cpp/memory_instrumentation/client_process_impl.h"
#include "services/resource_coordinator/public/interfaces/memory_instrumentation/memory_instrumentation.mojom.h"
#include "services/resource_coordinator/public/interfaces/service_constants.mojom.h"
#include "services/service_manager/public/cpp/connector.h"
#include "services/service_manager/public/cpp/interface_provider.h"
#include "services/service_manager/runner/common/client_util.h"
#include "services/service_manager/sandbox/sandbox_type.h"
#if defined(OS_POSIX)
#include "base/posix/global_descriptors.h"
#include "content/public/common/content_descriptors.h"
#endif
#if defined(OS_MACOSX)
#include "base/allocator/allocator_interception_mac.h"
#endif
#if defined(OS_WIN)
#include "content/child/dwrite_font_proxy/dwrite_font_proxy_init_impl_win.h"
#endif
namespace content {
namespace {
// How long to wait for a connection to the browser process before giving up.
const int kConnectionTimeoutS = 15;
base::LazyInstance<base::ThreadLocalPointer<ChildThreadImpl>>::DestructorAtExit
g_lazy_tls = LAZY_INSTANCE_INITIALIZER;
// This isn't needed on Windows because there the sandbox's job object
// terminates child processes automatically. For unsandboxed processes (i.e.
// plugins), PluginThread has EnsureTerminateMessageFilter.
#if defined(OS_POSIX)
#if defined(ADDRESS_SANITIZER) || defined(LEAK_SANITIZER) || \
defined(MEMORY_SANITIZER) || defined(THREAD_SANITIZER) || \
defined(UNDEFINED_SANITIZER)
// A thread delegate that waits for |duration| and then exits the process with
// _exit(0).
class WaitAndExitDelegate : public base::PlatformThread::Delegate {
public:
explicit WaitAndExitDelegate(base::TimeDelta duration)
: duration_(duration) {}
void ThreadMain() override {
base::PlatformThread::Sleep(duration_);
_exit(0);
}
private:
const base::TimeDelta duration_;
DISALLOW_COPY_AND_ASSIGN(WaitAndExitDelegate);
};
bool CreateWaitAndExitThread(base::TimeDelta duration) {
std::unique_ptr<WaitAndExitDelegate> delegate(
new WaitAndExitDelegate(duration));
const bool thread_created =
base::PlatformThread::CreateNonJoinable(0, delegate.get());
if (!thread_created)
return false;
// A non joinable thread has been created. The thread will either terminate
// the process or will be terminated by the process. Therefore, keep the
// delegate object alive for the lifetime of the process.
WaitAndExitDelegate* leaking_delegate = delegate.release();
ANNOTATE_LEAKING_OBJECT_PTR(leaking_delegate);
ignore_result(leaking_delegate);
return true;
}
#endif
class SuicideOnChannelErrorFilter : public IPC::MessageFilter {
public:
// IPC::MessageFilter
void OnChannelError() override {
// For renderer/worker processes:
// On POSIX, at least, one can install an unload handler which loops
// forever and leave behind a renderer process which eats 100% CPU forever.
//
// This is because the terminate signals (FrameMsg_BeforeUnload and the
// error from the IPC sender) are routed to the main message loop but never
// processed (because that message loop is stuck in V8).
//
// One could make the browser SIGKILL the renderers, but that leaves open a
// large window where a browser failure (or a user, manually terminating
// the browser because "it's stuck") will leave behind a process eating all
// the CPU.
//
// So, we install a filter on the sender so that we can process this event
// here and kill the process.
base::debug::StopProfiling();
#if defined(ADDRESS_SANITIZER) || defined(LEAK_SANITIZER) || \
defined(MEMORY_SANITIZER) || defined(THREAD_SANITIZER) || \
defined(UNDEFINED_SANITIZER)
// Some sanitizer tools rely on exit handlers (e.g. to run leak detection,
// or dump code coverage data to disk). Instead of exiting the process
// immediately, we give it 60 seconds to run exit handlers.
CHECK(CreateWaitAndExitThread(base::TimeDelta::FromSeconds(60)));
#if defined(LEAK_SANITIZER)
// Invoke LeakSanitizer early to avoid detecting shutdown-only leaks. If
// leaks are found, the process will exit here.
__lsan_do_leak_check();
#endif
#else
_exit(0);
#endif
}
protected:
~SuicideOnChannelErrorFilter() override {}
};
#endif // OS(POSIX)
#if defined(OS_ANDROID)
// A class that allows for triggering a clean shutdown from another
// thread through draining the main thread's msg loop.
class QuitClosure {
public:
QuitClosure();
~QuitClosure();
void BindToMainThread();
void PostQuitFromNonMainThread();
private:
static void PostClosure(
const scoped_refptr<base::SingleThreadTaskRunner>& task_runner,
base::Closure closure);
base::Lock lock_;
base::ConditionVariable cond_var_;
base::Closure closure_;
};
QuitClosure::QuitClosure() : cond_var_(&lock_) {
}
QuitClosure::~QuitClosure() {
}
void QuitClosure::PostClosure(
const scoped_refptr<base::SingleThreadTaskRunner>& task_runner,
base::Closure closure) {
task_runner->PostTask(FROM_HERE, closure);
}
void QuitClosure::BindToMainThread() {
base::AutoLock lock(lock_);
scoped_refptr<base::SingleThreadTaskRunner> task_runner(
base::ThreadTaskRunnerHandle::Get());
base::Closure quit_closure =
base::MessageLoop::current()->QuitWhenIdleClosure();
closure_ = base::Bind(&QuitClosure::PostClosure, task_runner, quit_closure);
cond_var_.Signal();
}
void QuitClosure::PostQuitFromNonMainThread() {
base::AutoLock lock(lock_);
while (closure_.is_null())
cond_var_.Wait();
closure_.Run();
}
base::LazyInstance<QuitClosure>::DestructorAtExit g_quit_closure =
LAZY_INSTANCE_INITIALIZER;
#endif
std::unique_ptr<mojo::edk::IncomingBrokerClientInvitation>
InitializeMojoIPCChannel() {
mojo::edk::ScopedPlatformHandle platform_channel;
#if defined(OS_WIN)
if (base::CommandLine::ForCurrentProcess()->HasSwitch(
mojo::edk::PlatformChannelPair::kMojoPlatformChannelHandleSwitch)) {
platform_channel =
mojo::edk::PlatformChannelPair::PassClientHandleFromParentProcess(
*base::CommandLine::ForCurrentProcess());
} else {
// If this process is elevated, it will have a pipe path passed on the
// command line.
platform_channel =
mojo::edk::NamedPlatformChannelPair::PassClientHandleFromParentProcess(
*base::CommandLine::ForCurrentProcess());
}
#elif defined(OS_FUCHSIA)
platform_channel =
mojo::edk::PlatformChannelPair::PassClientHandleFromParentProcess(
*base::CommandLine::ForCurrentProcess());
#elif defined(OS_POSIX)
platform_channel.reset(mojo::edk::PlatformHandle(
base::GlobalDescriptors::GetInstance()->Get(kMojoIPCChannel)));
#endif
// Mojo isn't supported on all child process types.
// TODO(crbug.com/604282): Support Mojo in the remaining processes.
if (!platform_channel.is_valid())
return nullptr;
return mojo::edk::IncomingBrokerClientInvitation::Accept(
mojo::edk::ConnectionParams(mojo::edk::TransportProtocol::kLegacy,
std::move(platform_channel)));
}
class ChannelBootstrapFilter : public ConnectionFilter {
public:
explicit ChannelBootstrapFilter(IPC::mojom::ChannelBootstrapPtrInfo bootstrap)
: bootstrap_(std::move(bootstrap)) {}
private:
// ConnectionFilter:
void OnBindInterface(const service_manager::BindSourceInfo& source_info,
const std::string& interface_name,
mojo::ScopedMessagePipeHandle* interface_pipe,
service_manager::Connector* connector) override {
if (source_info.identity.name() != mojom::kBrowserServiceName)
return;
if (interface_name == IPC::mojom::ChannelBootstrap::Name_) {
DCHECK(bootstrap_.is_valid());
mojo::FuseInterface(
IPC::mojom::ChannelBootstrapRequest(std::move(*interface_pipe)),
std::move(bootstrap_));
}
}
IPC::mojom::ChannelBootstrapPtrInfo bootstrap_;
DISALLOW_COPY_AND_ASSIGN(ChannelBootstrapFilter);
};
} // namespace
ChildThread* ChildThread::Get() {
return ChildThreadImpl::current();
}
ChildThreadImpl::Options::Options()
: auto_start_service_manager_connection(true), connect_to_browser(false) {}
ChildThreadImpl::Options::Options(const Options& other) = default;
ChildThreadImpl::Options::~Options() {
}
ChildThreadImpl::Options::Builder::Builder() {
}
ChildThreadImpl::Options::Builder&
ChildThreadImpl::Options::Builder::InBrowserProcess(
const InProcessChildThreadParams& params) {
options_.browser_process_io_runner = params.io_runner();
options_.in_process_service_request_token = params.service_request_token();
options_.broker_client_invitation = params.broker_client_invitation();
return *this;
}
ChildThreadImpl::Options::Builder&
ChildThreadImpl::Options::Builder::AutoStartServiceManagerConnection(
bool auto_start) {
options_.auto_start_service_manager_connection = auto_start;
return *this;
}
ChildThreadImpl::Options::Builder&
ChildThreadImpl::Options::Builder::ConnectToBrowser(bool connect_to_browser) {
options_.connect_to_browser = connect_to_browser;
return *this;
}
ChildThreadImpl::Options::Builder&
ChildThreadImpl::Options::Builder::AddStartupFilter(
IPC::MessageFilter* filter) {
options_.startup_filters.push_back(filter);
return *this;
}
ChildThreadImpl::Options ChildThreadImpl::Options::Builder::Build() {
return options_;
}
ChildThreadImpl::ChildThreadMessageRouter::ChildThreadMessageRouter(
IPC::Sender* sender)
: sender_(sender) {}
bool ChildThreadImpl::ChildThreadMessageRouter::Send(IPC::Message* msg) {
return sender_->Send(msg);
}
bool ChildThreadImpl::ChildThreadMessageRouter::RouteMessage(
const IPC::Message& msg) {
bool handled = IPC::MessageRouter::RouteMessage(msg);
#if defined(OS_ANDROID)
if (!handled && msg.is_sync()) {
IPC::Message* reply = IPC::SyncMessage::GenerateReply(&msg);
reply->set_reply_error();
Send(reply);
}
#endif
return handled;
}
ChildThreadImpl::ChildThreadImpl()
: route_provider_binding_(this),
router_(this),
channel_connected_factory_(
new base::WeakPtrFactory<ChildThreadImpl>(this)),
weak_factory_(this) {
Init(Options::Builder().Build());
}
ChildThreadImpl::ChildThreadImpl(const Options& options)
: route_provider_binding_(this),
router_(this),
browser_process_io_runner_(options.browser_process_io_runner),
channel_connected_factory_(
new base::WeakPtrFactory<ChildThreadImpl>(this)),
weak_factory_(this) {
Init(options);
}
scoped_refptr<base::SingleThreadTaskRunner> ChildThreadImpl::GetIOTaskRunner() {
if (IsInBrowserProcess())
return browser_process_io_runner_;
return ChildProcess::current()->io_task_runner();
}
void ChildThreadImpl::SetFieldTrialGroup(const std::string& trial_name,
const std::string& group_name) {
if (field_trial_syncer_)
field_trial_syncer_->OnSetFieldTrialGroup(trial_name, group_name);
}
void ChildThreadImpl::OnFieldTrialGroupFinalized(
const std::string& trial_name,
const std::string& group_name) {
mojom::FieldTrialRecorderPtr field_trial_recorder;
GetConnector()->BindInterface(mojom::kBrowserServiceName,
&field_trial_recorder);
field_trial_recorder->FieldTrialActivated(trial_name);
}
void ChildThreadImpl::ConnectChannel(
mojo::edk::IncomingBrokerClientInvitation* invitation) {
DCHECK(service_manager_connection_);
IPC::mojom::ChannelBootstrapPtr bootstrap;
mojo::ScopedMessagePipeHandle handle =
mojo::MakeRequest(&bootstrap).PassMessagePipe();
service_manager_connection_->AddConnectionFilter(
std::make_unique<ChannelBootstrapFilter>(bootstrap.PassInterface()));
channel_->Init(
IPC::ChannelMojo::CreateClientFactory(
std::move(handle), ChildProcess::current()->io_task_runner()),
true /* create_pipe_now */);
}
void ChildThreadImpl::Init(const Options& options) {
g_lazy_tls.Pointer()->Set(this);
on_channel_error_called_ = false;
message_loop_ = base::MessageLoop::current();
#if BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
// We must make sure to instantiate the IPC Logger *before* we create the
// channel, otherwise we can get a callback on the IO thread which creates
// the logger, and the logger does not like being created on the IO thread.
IPC::Logging::GetInstance();
#endif
channel_ =
IPC::SyncChannel::Create(this, ChildProcess::current()->io_task_runner(),
ChildProcess::current()->GetShutDownEvent());
#if BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
if (!IsInBrowserProcess())
IPC::Logging::GetInstance()->SetIPCSender(this);
#endif
std::unique_ptr<mojo::edk::IncomingBrokerClientInvitation> invitation;
mojo::ScopedMessagePipeHandle service_request_pipe;
if (!IsInBrowserProcess()) {
mojo_ipc_support_.reset(new mojo::edk::ScopedIPCSupport(
GetIOTaskRunner(), mojo::edk::ScopedIPCSupport::ShutdownPolicy::FAST));
invitation = InitializeMojoIPCChannel();
std::string service_request_token =
base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
switches::kServiceRequestChannelToken);
if (!service_request_token.empty() && invitation) {
service_request_pipe =
invitation->ExtractMessagePipe(service_request_token);
}
} else {
service_request_pipe =
options.broker_client_invitation->ExtractInProcessMessagePipe(
options.in_process_service_request_token);
}
if (service_request_pipe.is_valid()) {
service_manager_connection_ = ServiceManagerConnection::Create(
service_manager::mojom::ServiceRequest(std::move(service_request_pipe)),
GetIOTaskRunner());
}
sync_message_filter_ = channel_->CreateSyncMessageFilter();
thread_safe_sender_ = new ThreadSafeSender(
message_loop_->task_runner(), sync_message_filter_.get());
auto registry = std::make_unique<service_manager::BinderRegistry>();
registry->AddInterface(base::Bind(&ChildHistogramFetcherFactoryImpl::Create),
GetIOTaskRunner());
registry->AddInterface(base::Bind(&ChildThreadImpl::OnChildControlRequest,
base::Unretained(this)),
base::ThreadTaskRunnerHandle::Get());
GetServiceManagerConnection()->AddConnectionFilter(
std::make_unique<SimpleConnectionFilter>(std::move(registry)));
InitTracing();
// In single process mode, browser-side tracing and memory will cover the
// whole process including renderers.
if (!IsInBrowserProcess()) {
if (service_manager_connection_) {
std::string process_type_str =
base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
switches::kProcessType);
auto process_type = memory_instrumentation::mojom::ProcessType::OTHER;
if (process_type_str == switches::kRendererProcess)
process_type = memory_instrumentation::mojom::ProcessType::RENDERER;
else if (process_type_str == switches::kGpuProcess)
process_type = memory_instrumentation::mojom::ProcessType::GPU;
else if (process_type_str == switches::kUtilityProcess)
process_type = memory_instrumentation::mojom::ProcessType::UTILITY;
else if (process_type_str == switches::kPpapiPluginProcess)
process_type = memory_instrumentation::mojom::ProcessType::PLUGIN;
memory_instrumentation::ClientProcessImpl::Config config(
GetConnector(), resource_coordinator::mojom::kServiceName,
process_type);
memory_instrumentation::ClientProcessImpl::CreateInstance(config);
}
}
// In single process mode we may already have a power monitor,
// also for some edge cases where there is no ServiceManagerConnection, we do
// not create the power monitor.
if (!base::PowerMonitor::Get() && service_manager_connection_) {
auto power_monitor_source =
std::make_unique<device::PowerMonitorBroadcastSource>(
GetConnector(), GetIOTaskRunner());
power_monitor_.reset(
new base::PowerMonitor(std::move(power_monitor_source)));
}
#if defined(OS_POSIX)
// Check that --process-type is specified so we don't do this in unit tests
// and single-process mode.
if (base::CommandLine::ForCurrentProcess()->HasSwitch(switches::kProcessType))
channel_->AddFilter(new SuicideOnChannelErrorFilter());
#endif
// Add filters passed here via options.
for (auto* startup_filter : options.startup_filters) {
channel_->AddFilter(startup_filter);
}
ConnectChannel(invitation.get());
// This must always be done after ConnectChannel, because ConnectChannel() may
// add a ConnectionFilter to the connection.
if (options.auto_start_service_manager_connection &&
service_manager_connection_) {
StartServiceManagerConnection();
}
int connection_timeout = kConnectionTimeoutS;
std::string connection_override =
base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
switches::kIPCConnectionTimeout);
if (!connection_override.empty()) {
int temp;
if (base::StringToInt(connection_override, &temp))
connection_timeout = temp;
}
#if defined(OS_MACOSX)
if (base::CommandLine::InitializedForCurrentProcess() &&
base::CommandLine::ForCurrentProcess()->HasSwitch(
switches::kEnableHeapProfiling)) {
base::allocator::PeriodicallyShimNewMallocZones();
}
#endif
message_loop_->task_runner()->PostDelayedTask(
FROM_HERE,
base::BindOnce(&ChildThreadImpl::EnsureConnected,
channel_connected_factory_->GetWeakPtr()),
base::TimeDelta::FromSeconds(connection_timeout));
#if defined(OS_ANDROID)
g_quit_closure.Get().BindToMainThread();
#endif
// In single-process mode, there is no need to synchronize trials to the
// browser process (because it's the same process).
if (!IsInBrowserProcess()) {
field_trial_syncer_.reset(
new variations::ChildProcessFieldTrialSyncer(this));
field_trial_syncer_->InitFieldTrialObserving(
*base::CommandLine::ForCurrentProcess());
}
#if defined(OS_WIN)
UpdateDWriteFontProxySender(thread_safe_sender());
#endif
}
void ChildThreadImpl::InitTracing() {
// In single process mode, browser-side tracing and memory will cover the
// whole process including renderers.
if (IsInBrowserProcess())
return;
// Tracing adds too much overhead to the profiling service. The only
// way to determine if this is the profiling service is by checking the
// sandbox type.
service_manager::SandboxType sandbox_type =
service_manager::SandboxTypeFromCommandLine(
*base::CommandLine::ForCurrentProcess());
if (sandbox_type == service_manager::SANDBOX_TYPE_PROFILING)
return;
channel_->AddFilter(new tracing::ChildTraceMessageFilter(
ChildProcess::current()->io_task_runner()));
chrome_trace_event_agent_ =
std::make_unique<tracing::ChromeTraceEventAgent>(GetConnector());
}
ChildThreadImpl::~ChildThreadImpl() {
#if BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
IPC::Logging::GetInstance()->SetIPCSender(NULL);
#endif
channel_->RemoveFilter(sync_message_filter_.get());
// The ChannelProxy object caches a pointer to the IPC thread, so need to
// reset it as it's not guaranteed to outlive this object.
// NOTE: this also has the side-effect of not closing the main IPC channel to
// the browser process. This is needed because this is the signal that the
// browser uses to know that this process has died, so we need it to be alive
// until this process is shut down, and the OS closes the handle
// automatically. We used to watch the object handle on Windows to do this,
// but it wasn't possible to do so on POSIX.
channel_->ClearIPCTaskRunner();
g_lazy_tls.Pointer()->Set(nullptr);
}
void ChildThreadImpl::Shutdown() {
// Delete objects that hold references to blink so derived classes can
// safely shutdown blink in their Shutdown implementation.
}
bool ChildThreadImpl::ShouldBeDestroyed() {
return true;
}
void ChildThreadImpl::OnChannelConnected(int32_t peer_pid) {
channel_connected_factory_.reset();
}
void ChildThreadImpl::OnChannelError() {
on_channel_error_called_ = true;
// If this thread runs in the browser process, only Thread::Stop should
// stop its message loop. Otherwise, QuitWhenIdle could race Thread::Stop.
if (!IsInBrowserProcess())
base::RunLoop::QuitCurrentWhenIdleDeprecated();
}
bool ChildThreadImpl::Send(IPC::Message* msg) {
DCHECK(message_loop_->task_runner()->BelongsToCurrentThread());
if (!channel_) {
delete msg;
return false;
}
return channel_->Send(msg);
}
#if defined(OS_WIN)
void ChildThreadImpl::PreCacheFont(const LOGFONT& log_font) {
Send(new ChildProcessHostMsg_PreCacheFont(log_font));
}
void ChildThreadImpl::ReleaseCachedFonts() {
Send(new ChildProcessHostMsg_ReleaseCachedFonts());
}
#endif
void ChildThreadImpl::RecordAction(const base::UserMetricsAction& action) {
NOTREACHED();
}
void ChildThreadImpl::RecordComputedAction(const std::string& action) {
NOTREACHED();
}
ServiceManagerConnection* ChildThreadImpl::GetServiceManagerConnection() {
return service_manager_connection_.get();
}
service_manager::Connector* ChildThreadImpl::GetConnector() {
return service_manager_connection_->GetConnector();
}
IPC::MessageRouter* ChildThreadImpl::GetRouter() {
DCHECK(message_loop_->task_runner()->BelongsToCurrentThread());
return &router_;
}
mojom::RouteProvider* ChildThreadImpl::GetRemoteRouteProvider() {
if (!remote_route_provider_) {
DCHECK(channel_);
channel_->GetRemoteAssociatedInterface(&remote_route_provider_);
}
return remote_route_provider_.get();
}
// static
std::unique_ptr<base::SharedMemory> ChildThreadImpl::AllocateSharedMemory(
size_t buf_size) {
mojo::ScopedSharedBufferHandle mojo_buf =
mojo::SharedBufferHandle::Create(buf_size);
if (!mojo_buf->is_valid()) {
LOG(WARNING) << "Browser failed to allocate shared memory";
return nullptr;
}
base::SharedMemoryHandle shared_buf;
if (mojo::UnwrapSharedMemoryHandle(std::move(mojo_buf), &shared_buf,
nullptr, nullptr) != MOJO_RESULT_OK) {
LOG(WARNING) << "Browser failed to allocate shared memory";
return nullptr;
}
return std::make_unique<base::SharedMemory>(shared_buf, false);
}
#if defined(OS_LINUX)
void ChildThreadImpl::SetThreadPriority(base::PlatformThreadId id,
base::ThreadPriority priority) {
Send(new ChildProcessHostMsg_SetThreadPriority(id, priority));
}
#endif
bool ChildThreadImpl::OnMessageReceived(const IPC::Message& msg) {
if (msg.routing_id() == MSG_ROUTING_CONTROL)
return OnControlMessageReceived(msg);
return router_.OnMessageReceived(msg);
}
void ChildThreadImpl::OnAssociatedInterfaceRequest(
const std::string& interface_name,
mojo::ScopedInterfaceEndpointHandle handle) {
if (interface_name == mojom::RouteProvider::Name_) {
DCHECK(!route_provider_binding_.is_bound());
route_provider_binding_.Bind(
mojom::RouteProviderAssociatedRequest(std::move(handle)));
} else {
LOG(ERROR) << "Request for unknown Channel-associated interface: "
<< interface_name;
}
}
void ChildThreadImpl::StartServiceManagerConnection() {
DCHECK(service_manager_connection_);
service_manager_connection_->Start();
GetContentClient()->OnServiceManagerConnected(
service_manager_connection_.get());
}
bool ChildThreadImpl::OnControlMessageReceived(const IPC::Message& msg) {
return false;
}
void ChildThreadImpl::ProcessShutdown() {
base::RunLoop::QuitCurrentWhenIdleDeprecated();
}
void ChildThreadImpl::SetIPCLoggingEnabled(bool enable) {
#if BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
if (enable)
IPC::Logging::GetInstance()->Enable();
else
IPC::Logging::GetInstance()->Disable();
#endif // IPC_MESSAGE_LOG_ENABLED
}
void ChildThreadImpl::OnChildControlRequest(
mojom::ChildControlRequest request) {
child_control_bindings_.AddBinding(this, std::move(request));
}
ChildThreadImpl* ChildThreadImpl::current() {
return g_lazy_tls.Pointer()->Get();
}
#if defined(OS_ANDROID)
// The method must NOT be called on the child thread itself.
// It may block the child thread if so.
void ChildThreadImpl::ShutdownThread() {
DCHECK(!ChildThreadImpl::current()) <<
"this method should NOT be called from child thread itself";
g_quit_closure.Get().PostQuitFromNonMainThread();
}
#endif
void ChildThreadImpl::OnProcessFinalRelease() {
if (on_channel_error_called_)
return;
// The child process shutdown sequence is a request response based mechanism,
// where we send out an initial feeler request to the child process host
// instance in the browser to verify if it's ok to shutdown the child process.
// The browser then sends back a response if it's ok to shutdown. This avoids
// race conditions if the process refcount is 0 but there's an IPC message
// inflight that would addref it.
Send(new ChildProcessHostMsg_ShutdownRequest);
}
void ChildThreadImpl::EnsureConnected() {
VLOG(0) << "ChildThreadImpl::EnsureConnected()";
base::Process::Current().Terminate(0, false);
}
void ChildThreadImpl::GetRoute(
int32_t routing_id,
mojom::AssociatedInterfaceProviderAssociatedRequest request) {
associated_interface_provider_bindings_.AddBinding(
this, std::move(request), routing_id);
}
void ChildThreadImpl::GetAssociatedInterface(
const std::string& name,
mojom::AssociatedInterfaceAssociatedRequest request) {
int32_t routing_id =
associated_interface_provider_bindings_.dispatch_context();
Listener* route = router_.GetRoute(routing_id);
if (route)
route->OnAssociatedInterfaceRequest(name, request.PassHandle());
}
bool ChildThreadImpl::IsInBrowserProcess() const {
return static_cast<bool>(browser_process_io_runner_);
}
} // namespace content