blob: b6c456e69ca17465d20f9ad2e126713fc164901b [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/der/parse_values.h"
#include <stdint.h>
#include "base/macros.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace der {
namespace test {
namespace {
template <size_t N>
Input FromStringLiteral(const char(&data)[N]) {
// Strings are null-terminated. The null terminating byte shouldn't be
// included in the Input, so the size is N - 1 instead of N.
return Input(reinterpret_cast<const uint8_t*>(data), N - 1);
}
} // namespace
TEST(ParseValuesTest, ParseBool) {
uint8_t buf[] = {0xFF, 0x00};
Input value(buf, 1);
bool out;
EXPECT_TRUE(ParseBool(value, &out));
EXPECT_TRUE(out);
buf[0] = 0;
EXPECT_TRUE(ParseBool(value, &out));
EXPECT_FALSE(out);
buf[0] = 1;
EXPECT_FALSE(ParseBool(value, &out));
EXPECT_TRUE(ParseBoolRelaxed(value, &out));
EXPECT_TRUE(out);
buf[0] = 0xFF;
value = Input(buf, 2);
EXPECT_FALSE(ParseBool(value, &out));
value = Input(buf, 0);
EXPECT_FALSE(ParseBool(value, &out));
}
TEST(ParseValuesTest, ParseTimes) {
GeneralizedTime out;
EXPECT_TRUE(ParseUTCTime(FromStringLiteral("140218161200Z"), &out));
// DER-encoded UTCTime must end with 'Z'.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200X"), &out));
// Check that a negative number (-4 in this case) doesn't get parsed as
// a 2-digit number.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("-40218161200Z"), &out));
// Check that numbers with a leading 0 don't get parsed in octal by making
// the second digit an invalid octal digit (e.g. 09).
EXPECT_TRUE(ParseUTCTime(FromStringLiteral("090218161200Z"), &out));
// Check that the length is validated.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200"), &out));
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200Z0"), &out));
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("140218161200"), &out));
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("140218161200Z0"), &out));
// Check strictness of UTCTime parsers.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("1402181612Z"), &out));
EXPECT_TRUE(ParseUTCTimeRelaxed(FromStringLiteral("1402181612Z"), &out));
// Check that the time ends in Z.
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("1402181612Z0"), &out));
// Check that ParseUTCTimeRelaxed calls ValidateGeneralizedTime.
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("1402181662Z"), &out));
// Check format of GeneralizedTime.
// Years 0 and 9999 are allowed.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("00000101000000Z"), &out));
EXPECT_EQ(0, out.year);
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("99991231235960Z"), &out));
EXPECT_EQ(9999, out.year);
// Leap seconds are allowed.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20140218161260Z"), &out));
// But nothing larger than a leap second.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218161261Z"), &out));
// Minutes only go up to 59.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218166000Z"), &out));
// Hours only go up to 23.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218240000Z"), &out));
// The 0th day of a month is invalid.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140200161200Z"), &out));
// The 0th month is invalid.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140018161200Z"), &out));
// Months greater than 12 are invalid.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20141318161200Z"), &out));
// Some months have 31 days.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20140131000000Z"), &out));
// September has only 30 days.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140931000000Z"), &out));
// February has only 28 days...
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140229000000Z"), &out));
// ... unless it's a leap year.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20160229000000Z"), &out));
// There aren't any leap days in years divisible by 100...
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("21000229000000Z"), &out));
// ...unless it's also divisible by 400.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20000229000000Z"), &out));
// Check more perverse invalid inputs.
// Check that trailing null bytes are not ignored.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20001231010203Z\0"), &out));
// Check what happens when a null byte is in the middle of the input.
EXPECT_FALSE(ParseGeneralizedTime(FromStringLiteral(
"200\0"
"1231010203Z"),
&out));
// The year can't be in hex.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("0x201231000000Z"), &out));
// The last byte must be 'Z'.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20001231000000X"), &out));
// Check that the length is validated.
EXPECT_FALSE(ParseGeneralizedTime(FromStringLiteral("20140218161200"), &out));
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218161200Z0"), &out));
}
TEST(ParseValuesTest, TimesCompare) {
GeneralizedTime time1;
GeneralizedTime time2;
GeneralizedTime time3;
GeneralizedTime time4;
ASSERT_TRUE(
ParseGeneralizedTime(FromStringLiteral("20140218161200Z"), &time1));
// Test that ParseUTCTime correctly normalizes the year.
ASSERT_TRUE(ParseUTCTime(FromStringLiteral("150218161200Z"), &time2));
ASSERT_TRUE(ParseUTCTimeRelaxed(FromStringLiteral("1503070000Z"), &time3));
ASSERT_TRUE(
ParseGeneralizedTime(FromStringLiteral("20160218161200Z"), &time4));
EXPECT_TRUE(time1 < time2);
EXPECT_TRUE(time2 < time3);
EXPECT_TRUE(time3 < time4);
EXPECT_TRUE(time2 > time1);
EXPECT_TRUE(time2 >= time1);
EXPECT_TRUE(time3 <= time4);
EXPECT_TRUE(time1 <= time1);
EXPECT_TRUE(time1 >= time1);
}
TEST(ParseValuesTest, UTCTimeRange) {
GeneralizedTime time;
ASSERT_TRUE(
ParseGeneralizedTime(FromStringLiteral("20140218161200Z"), &time));
EXPECT_TRUE(time.InUTCTimeRange());
time.year = 1950;
EXPECT_TRUE(time.InUTCTimeRange());
time.year = 1949;
EXPECT_FALSE(time.InUTCTimeRange());
time.year = 2049;
EXPECT_TRUE(time.InUTCTimeRange());
time.year = 2050;
EXPECT_FALSE(time.InUTCTimeRange());
}
struct Uint64TestData {
bool should_pass;
const uint8_t input[9];
size_t length;
uint64_t expected_value;
};
const Uint64TestData kUint64TestData[] = {
{true, {0x00}, 1, 0},
// This number fails because it is not a minimal representation.
{false, {0x00, 0x00}, 2},
{true, {0x01}, 1, 1},
{false, {0xFF}, 1},
{true, {0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, 8, INT64_MAX},
{true,
{0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
9,
UINT64_MAX},
// This number fails because it is negative.
{false, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, 8},
{false, {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8},
{false, {0x00, 0x01}, 2},
{false, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09}, 9},
{false, {0}, 0},
};
TEST(ParseValuesTest, ParseUint64) {
for (size_t i = 0; i < arraysize(kUint64TestData); i++) {
const Uint64TestData& test_case = kUint64TestData[i];
SCOPED_TRACE(i);
uint64_t result;
EXPECT_EQ(test_case.should_pass,
ParseUint64(Input(test_case.input, test_case.length), &result));
if (test_case.should_pass)
EXPECT_EQ(test_case.expected_value, result);
}
}
struct Uint8TestData {
bool should_pass;
const uint8_t input[9];
size_t length;
uint8_t expected_value;
};
const Uint8TestData kUint8TestData[] = {
{true, {0x00}, 1, 0},
// This number fails because it is not a minimal representation.
{false, {0x00, 0x00}, 2},
{true, {0x01}, 1, 1},
{false, {0x01, 0xFF}, 2},
{false, {0x03, 0x83}, 2},
{true, {0x7F}, 1, 0x7F},
{true, {0x00, 0xFF}, 2, 0xFF},
// This number fails because it is negative.
{false, {0xFF}, 1},
{false, {0x80}, 1},
{false, {0x00, 0x01}, 2},
{false, {0}, 0},
};
TEST(ParseValuesTest, ParseUint8) {
for (size_t i = 0; i < arraysize(kUint8TestData); i++) {
const Uint8TestData& test_case = kUint8TestData[i];
SCOPED_TRACE(i);
uint8_t result;
EXPECT_EQ(test_case.should_pass,
ParseUint8(Input(test_case.input, test_case.length), &result));
if (test_case.should_pass)
EXPECT_EQ(test_case.expected_value, result);
}
}
struct IsValidIntegerTestData {
bool should_pass;
const uint8_t input[2];
size_t length;
bool negative;
};
const IsValidIntegerTestData kIsValidIntegerTestData[] = {
// Empty input (invalid DER).
{false, {0x00}, 0},
// The correct encoding for zero.
{true, {0x00}, 1, false},
// Invalid representation of zero (not minimal)
{false, {0x00, 0x00}, 2},
// Valid single byte negative numbers.
{true, {0x80}, 1, true},
{true, {0xFF}, 1, true},
// Non-minimal negative number.
{false, {0xFF, 0x80}, 2},
// Positive number with a legitimate leading zero.
{true, {0x00, 0x80}, 2, false},
// A legitimate negative number that starts with FF (MSB of second byte is
// 0 so OK).
{true, {0xFF, 0x7F}, 2, true},
};
TEST(ParseValuesTest, IsValidInteger) {
for (size_t i = 0; i < arraysize(kIsValidIntegerTestData); i++) {
const auto& test_case = kIsValidIntegerTestData[i];
SCOPED_TRACE(i);
bool negative;
EXPECT_EQ(
test_case.should_pass,
IsValidInteger(Input(test_case.input, test_case.length), &negative));
if (test_case.should_pass)
EXPECT_EQ(test_case.negative, negative);
}
}
// Tests parsing an empty BIT STRING.
TEST(ParseValuesTest, ParseBitStringEmptyNoUnusedBits) {
const uint8_t kData[] = {0x00};
BitString bit_string;
ASSERT_TRUE(ParseBitString(Input(kData), &bit_string));
EXPECT_EQ(0u, bit_string.unused_bits());
EXPECT_EQ(0u, bit_string.bytes().Length());
EXPECT_FALSE(bit_string.AssertsBit(0));
EXPECT_FALSE(bit_string.AssertsBit(1));
EXPECT_FALSE(bit_string.AssertsBit(3));
}
// Tests parsing an empty BIT STRING that incorrectly claims one unused bit.
TEST(ParseValuesTest, ParseBitStringEmptyOneUnusedBit) {
const uint8_t kData[] = {0x01};
BitString bit_string;
EXPECT_FALSE(ParseBitString(Input(kData), &bit_string));
}
// Tests parsing an empty BIT STRING that is not minmally encoded (the entire
// last byte is comprised of unused bits).
TEST(ParseValuesTest, ParseBitStringNonEmptyTooManyUnusedBits) {
const uint8_t kData[] = {0x08, 0x00};
BitString bit_string;
EXPECT_FALSE(ParseBitString(Input(kData), &bit_string));
}
// Tests parsing a BIT STRING of 7 bits each of which are 1.
TEST(ParseValuesTest, ParseBitStringSevenOneBits) {
const uint8_t kData[] = {0x01, 0xFE};
BitString bit_string;
ASSERT_TRUE(ParseBitString(Input(kData), &bit_string));
EXPECT_EQ(1u, bit_string.unused_bits());
EXPECT_EQ(1u, bit_string.bytes().Length());
EXPECT_EQ(0xFE, bit_string.bytes().UnsafeData()[0]);
EXPECT_TRUE(bit_string.AssertsBit(0));
EXPECT_TRUE(bit_string.AssertsBit(1));
EXPECT_TRUE(bit_string.AssertsBit(2));
EXPECT_TRUE(bit_string.AssertsBit(3));
EXPECT_TRUE(bit_string.AssertsBit(4));
EXPECT_TRUE(bit_string.AssertsBit(5));
EXPECT_TRUE(bit_string.AssertsBit(6));
EXPECT_FALSE(bit_string.AssertsBit(7));
EXPECT_FALSE(bit_string.AssertsBit(8));
}
// Tests parsing a BIT STRING of 7 bits each of which are 1. The unused bit
// however is set to 1, which is an invalid encoding.
TEST(ParseValuesTest, ParseBitStringSevenOneBitsUnusedBitIsOne) {
const uint8_t kData[] = {0x01, 0xFF};
BitString bit_string;
EXPECT_FALSE(ParseBitString(Input(kData), &bit_string));
}
} // namespace test
} // namespace der
} // namespace net