blob: d764fd3598729f7c665a5ab648ebca14f2ba2f10 [file] [log] [blame]
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "modules/webaudio/ConvolverNode.h"
#include "bindings/core/v8/ExceptionState.h"
#include "core/dom/ExceptionCode.h"
#include "modules/webaudio/AudioBuffer.h"
#include "modules/webaudio/AudioNodeInput.h"
#include "modules/webaudio/AudioNodeOutput.h"
#include "platform/audio/Reverb.h"
#include "wtf/MainThread.h"
// Note about empirical tuning:
// The maximum FFT size affects reverb performance and accuracy.
// If the reverb is single-threaded and processes entirely in the real-time audio thread,
// it's important not to make this too high. In this case 8192 is a good value.
// But, the Reverb object is multi-threaded, so we want this as high as possible without losing too much accuracy.
// Very large FFTs will have worse phase errors. Given these constraints 32768 is a good compromise.
const size_t MaxFFTSize = 32768;
namespace blink {
ConvolverHandler::ConvolverHandler(AudioNode& node, float sampleRate)
: AudioHandler(NodeTypeConvolver, node, sampleRate)
, m_normalize(true)
{
addInput();
addOutput(2);
// Node-specific default mixing rules.
m_channelCount = 2;
m_channelCountMode = ClampedMax;
m_channelInterpretation = AudioBus::Speakers;
initialize();
}
PassRefPtr<ConvolverHandler> ConvolverHandler::create(AudioNode& node, float sampleRate)
{
return adoptRef(new ConvolverHandler(node, sampleRate));
}
ConvolverHandler::~ConvolverHandler()
{
uninitialize();
}
void ConvolverHandler::process(size_t framesToProcess)
{
AudioBus* outputBus = output(0).bus();
ASSERT(outputBus);
// Synchronize with possible dynamic changes to the impulse response.
MutexTryLocker tryLocker(m_processLock);
if (tryLocker.locked()) {
if (!isInitialized() || !m_reverb) {
outputBus->zero();
} else {
// Process using the convolution engine.
// Note that we can handle the case where nothing is connected to the input, in which case we'll just feed silence into the convolver.
// FIXME: If we wanted to get fancy we could try to factor in the 'tail time' and stop processing once the tail dies down if
// we keep getting fed silence.
m_reverb->process(input(0).bus(), outputBus, framesToProcess);
}
} else {
// Too bad - the tryLock() failed. We must be in the middle of setting a new impulse response.
outputBus->zero();
}
}
void ConvolverHandler::setBuffer(AudioBuffer* buffer, ExceptionState& exceptionState)
{
ASSERT(isMainThread());
if (!buffer)
return;
if (buffer->sampleRate() != context()->sampleRate()) {
exceptionState.throwDOMException(
NotSupportedError,
"The buffer sample rate of " + String::number(buffer->sampleRate())
+ " does not match the context rate of " + String::number(context()->sampleRate())
+ " Hz.");
return;
}
unsigned numberOfChannels = buffer->numberOfChannels();
size_t bufferLength = buffer->length();
// The current implementation supports only 1-, 2-, or 4-channel impulse responses, with the
// 4-channel response being interpreted as true-stereo (see Reverb class).
bool isChannelCountGood = numberOfChannels == 1 || numberOfChannels == 2 || numberOfChannels == 4;
if (!isChannelCountGood) {
exceptionState.throwDOMException(
NotSupportedError,
"The buffer must have 1, 2, or 4 channels, not " + String::number(numberOfChannels));
return;
}
// Wrap the AudioBuffer by an AudioBus. It's an efficient pointer set and not a memcpy().
// This memory is simply used in the Reverb constructor and no reference to it is kept for later use in that class.
RefPtr<AudioBus> bufferBus = AudioBus::create(numberOfChannels, bufferLength, false);
for (unsigned i = 0; i < numberOfChannels; ++i)
bufferBus->setChannelMemory(i, buffer->getChannelData(i)->data(), bufferLength);
bufferBus->setSampleRate(buffer->sampleRate());
// Create the reverb with the given impulse response.
OwnPtr<Reverb> reverb = adoptPtr(new Reverb(bufferBus.get(), ProcessingSizeInFrames, MaxFFTSize, 2, context() && context()->hasRealtimeConstraint(), m_normalize));
{
// Synchronize with process().
MutexLocker locker(m_processLock);
m_reverb = reverb.release();
m_buffer = buffer;
}
}
AudioBuffer* ConvolverHandler::buffer()
{
ASSERT(isMainThread());
return m_buffer.get();
}
double ConvolverHandler::tailTime() const
{
MutexTryLocker tryLocker(m_processLock);
if (tryLocker.locked())
return m_reverb ? m_reverb->impulseResponseLength() / static_cast<double>(sampleRate()) : 0;
// Since we don't want to block the Audio Device thread, we return a large value
// instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
double ConvolverHandler::latencyTime() const
{
MutexTryLocker tryLocker(m_processLock);
if (tryLocker.locked())
return m_reverb ? m_reverb->latencyFrames() / static_cast<double>(sampleRate()) : 0;
// Since we don't want to block the Audio Device thread, we return a large value
// instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
// ----------------------------------------------------------------
ConvolverNode::ConvolverNode(AbstractAudioContext& context, float sampleRate)
: AudioNode(context)
{
setHandler(ConvolverHandler::create(*this, sampleRate));
}
ConvolverNode* ConvolverNode::create(AbstractAudioContext& context, float sampleRate)
{
return new ConvolverNode(context, sampleRate);
}
ConvolverHandler& ConvolverNode::convolverHandler() const
{
return static_cast<ConvolverHandler&>(handler());
}
AudioBuffer* ConvolverNode::buffer() const
{
return convolverHandler().buffer();
}
void ConvolverNode::setBuffer(AudioBuffer* newBuffer, ExceptionState& exceptionState)
{
convolverHandler().setBuffer(newBuffer, exceptionState);
}
bool ConvolverNode::normalize() const
{
return convolverHandler().normalize();
}
void ConvolverNode::setNormalize(bool normalize)
{
convolverHandler().setNormalize(normalize);
}
} // namespace blink