blob: 3738cf27d4459d4026e10f755c1b3ccc31d4cf6a [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_OZONE_PLATFORM_DRM_GPU_HARDWARE_DISPLAY_CONTROLLER_H_
#define UI_OZONE_PLATFORM_DRM_GPU_HARDWARE_DISPLAY_CONTROLLER_H_
#include <stddef.h>
#include <stdint.h>
#include <xf86drmMode.h>
#include <deque>
#include <map>
#include <memory>
#include <vector>
#include "base/callback.h"
#include "base/containers/scoped_ptr_hash_map.h"
#include "base/macros.h"
#include "base/memory/scoped_vector.h"
#include "ui/gfx/swap_result.h"
#include "ui/ozone/platform/drm/gpu/hardware_display_plane_manager.h"
#include "ui/ozone/platform/drm/gpu/overlay_plane.h"
namespace gfx {
class Point;
}
namespace ui {
class CrtcController;
class ScanoutBuffer;
class DrmDevice;
// The HDCOz will handle modesettings and scannout operations for hardware
// devices.
//
// In the DRM world there are 3 components that need to be paired up to be able
// to display an image to the monitor: CRTC (cathode ray tube controller),
// encoder and connector. The CRTC determines which framebuffer to read, when
// to scanout and where to scanout. Encoders converts the stream from the CRTC
// to the appropriate format for the connector. The connector is the physical
// connection that monitors connect to.
//
// There is no 1:1:1 pairing for these components. It is possible for an encoder
// to be compatible to multiple CRTCs and each connector can be used with
// multiple encoders. In addition, it is possible to use one CRTC with multiple
// connectors such that we can display the same image on multiple monitors.
//
// For example, the following configuration shows 2 different screens being
// initialized separately.
// ------------- -------------
// | Connector | | Connector |
// | HDMI | | VGA |
// ------------- -------------
// ^ ^
// | |
// ------------- -------------
// | Encoder1 | | Encoder2 |
// ------------- -------------
// ^ ^
// | |
// ------------- -------------
// | CRTC1 | | CRTC2 |
// ------------- -------------
//
// In the following configuration 2 different screens are associated with the
// same CRTC, so on scanout the same framebuffer will be displayed on both
// monitors.
// ------------- -------------
// | Connector | | Connector |
// | HDMI | | VGA |
// ------------- -------------
// ^ ^
// | |
// ------------- -------------
// | Encoder1 | | Encoder2 |
// ------------- -------------
// ^ ^
// | |
// ----------------------
// | CRTC1 |
// ----------------------
//
// Note that it is possible to have more connectors than CRTCs which means that
// only a subset of connectors can be active independently, showing different
// framebuffers. Though, in this case, it would be possible to have all
// connectors active if some use the same CRTC to mirror the display.
class HardwareDisplayController {
typedef base::Callback<void(gfx::SwapResult)> PageFlipCallback;
public:
HardwareDisplayController(std::unique_ptr<CrtcController> controller,
const gfx::Point& origin);
~HardwareDisplayController();
// Performs the initial CRTC configuration. If successful, it will display the
// framebuffer for |primary| with |mode|.
bool Modeset(const OverlayPlane& primary, drmModeModeInfo mode);
// Performs a CRTC configuration re-using the modes from the CRTCs.
bool Enable(const OverlayPlane& primary);
// Disables the CRTC.
void Disable();
// Schedules the |overlays|' framebuffers to be displayed on the next vsync
// event. The event will be posted on the graphics card file descriptor |fd_|
// and it can be read and processed by |drmHandleEvent|. That function can
// define the callback for the page flip event. A generic data argument will
// be presented to the callback. We use that argument to pass in the HDCO
// object the event belongs to.
//
// Between this call and the callback, the framebuffers used in this call
// should not be modified in any way as it would cause screen tearing if the
// hardware performed the flip. Note that the frontbuffer should also not
// be modified as it could still be displayed.
//
// Note that this function does not block. Also, this function should not be
// called again before the page flip occurrs.
void SchedulePageFlip(const OverlayPlaneList& plane_list,
const PageFlipCallback& callback);
// Returns true if the page flip with the |plane_list| would succeed. This
// doesn't change any state.
bool TestPageFlip(const OverlayPlaneList& plane_list);
bool IsFormatSupported(uint32_t fourcc_format, uint32_t z_order) const;
// Set the hardware cursor to show the contents of |surface|.
bool SetCursor(const scoped_refptr<ScanoutBuffer>& buffer);
bool UnsetCursor();
// Moves the hardware cursor to |location|.
bool MoveCursor(const gfx::Point& location);
void AddCrtc(std::unique_ptr<CrtcController> controller);
std::unique_ptr<CrtcController> RemoveCrtc(
const scoped_refptr<DrmDevice>& drm,
uint32_t crtc);
bool HasCrtc(const scoped_refptr<DrmDevice>& drm, uint32_t crtc) const;
bool IsMirrored() const;
bool IsDisabled() const;
gfx::Size GetModeSize() const;
gfx::Point origin() const { return origin_; }
void set_origin(const gfx::Point& origin) { origin_ = origin; }
uint64_t GetTimeOfLastFlip() const;
const std::vector<std::unique_ptr<CrtcController>>& crtc_controllers() const {
return crtc_controllers_;
}
scoped_refptr<DrmDevice> GetAllocationDrmDevice() const;
private:
bool ActualSchedulePageFlip(const OverlayPlaneList& plane_list,
bool test_only,
const PageFlipCallback& callback);
base::ScopedPtrHashMap<DrmDevice*, std::unique_ptr<HardwareDisplayPlaneList>>
owned_hardware_planes_;
// Stores the CRTC configuration. This is used to identify monitors and
// configure them.
std::vector<std::unique_ptr<CrtcController>> crtc_controllers_;
// Location of the controller on the screen.
gfx::Point origin_;
bool is_disabled_;
DISALLOW_COPY_AND_ASSIGN(HardwareDisplayController);
};
} // namespace ui
#endif // UI_OZONE_PLATFORM_DRM_GPU_HARDWARE_DISPLAY_CONTROLLER_H_