blob: 631931457f16a03a027a268dcdb80f2b03288033 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipc/ipc_mojo_bootstrap.h"
#include <inttypes.h>
#include <stdint.h>
#include <map>
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/callback.h"
#include "base/containers/queue.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/no_destructor.h"
#include "base/sequenced_task_runner.h"
#include "base/single_thread_task_runner.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/threading/thread_checker.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/memory_allocator_dump.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/trace_event/memory_dump_provider.h"
#include "ipc/ipc_channel.h"
#include "mojo/public/cpp/bindings/associated_group.h"
#include "mojo/public/cpp/bindings/associated_group_controller.h"
#include "mojo/public/cpp/bindings/connector.h"
#include "mojo/public/cpp/bindings/interface_endpoint_client.h"
#include "mojo/public/cpp/bindings/interface_endpoint_controller.h"
#include "mojo/public/cpp/bindings/interface_id.h"
#include "mojo/public/cpp/bindings/message.h"
#include "mojo/public/cpp/bindings/message_header_validator.h"
#include "mojo/public/cpp/bindings/pipe_control_message_handler.h"
#include "mojo/public/cpp/bindings/pipe_control_message_handler_delegate.h"
#include "mojo/public/cpp/bindings/pipe_control_message_proxy.h"
#include "mojo/public/cpp/bindings/sequence_local_sync_event_watcher.h"
namespace IPC {
namespace {
class ChannelAssociatedGroupController;
// Used to track some internal Channel state in pursuit of message leaks.
//
// TODO(https://crbug.com/813045): Remove this.
class ControllerMemoryDumpProvider
: public base::trace_event::MemoryDumpProvider {
public:
ControllerMemoryDumpProvider() {
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "IPCChannel", nullptr);
}
~ControllerMemoryDumpProvider() override {
base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
this);
}
void AddController(ChannelAssociatedGroupController* controller) {
base::AutoLock lock(lock_);
controllers_.insert(controller);
}
void RemoveController(ChannelAssociatedGroupController* controller) {
base::AutoLock lock(lock_);
controllers_.erase(controller);
}
// base::trace_event::MemoryDumpProvider:
bool OnMemoryDump(const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) override;
private:
base::Lock lock_;
std::set<ChannelAssociatedGroupController*> controllers_;
DISALLOW_COPY_AND_ASSIGN(ControllerMemoryDumpProvider);
};
ControllerMemoryDumpProvider& GetMemoryDumpProvider() {
static base::NoDestructor<ControllerMemoryDumpProvider> provider;
return *provider;
}
// Messages are grouped by this info when recording memory metrics.
struct MessageMemoryDumpInfo {
MessageMemoryDumpInfo(const mojo::Message& message)
: id(message.name()), profiler_tag(message.heap_profiler_tag()) {}
MessageMemoryDumpInfo() = default;
bool operator==(const MessageMemoryDumpInfo& other) const {
return other.id == id && other.profiler_tag == profiler_tag;
}
uint32_t id = 0;
const char* profiler_tag = nullptr;
};
struct MessageMemoryDumpInfoHash {
size_t operator()(const MessageMemoryDumpInfo& info) const {
return base::HashInts32(
info.id, info.profiler_tag ? base::Hash(info.profiler_tag) : 0);
}
};
class ChannelAssociatedGroupController
: public mojo::AssociatedGroupController,
public mojo::MessageReceiver,
public mojo::PipeControlMessageHandlerDelegate {
public:
ChannelAssociatedGroupController(
bool set_interface_id_namespace_bit,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& proxy_task_runner)
: task_runner_(ipc_task_runner),
proxy_task_runner_(proxy_task_runner),
set_interface_id_namespace_bit_(set_interface_id_namespace_bit),
filters_(this),
control_message_handler_(this),
control_message_proxy_thunk_(this),
control_message_proxy_(&control_message_proxy_thunk_) {
thread_checker_.DetachFromThread();
control_message_handler_.SetDescription(
"IPC::mojom::Bootstrap [master] PipeControlMessageHandler");
filters_.Append<mojo::MessageHeaderValidator>(
"IPC::mojom::Bootstrap [master] MessageHeaderValidator");
GetMemoryDumpProvider().AddController(this);
}
size_t GetQueuedMessageCount() {
base::AutoLock lock(outgoing_messages_lock_);
return outgoing_messages_.size();
}
void GetTopQueuedMessageMemoryDumpInfo(MessageMemoryDumpInfo* info,
size_t* count) {
std::unordered_map<MessageMemoryDumpInfo, size_t, MessageMemoryDumpInfoHash>
counts;
std::pair<MessageMemoryDumpInfo, size_t> top_message_info_and_count = {
MessageMemoryDumpInfo(), 0};
base::AutoLock lock(outgoing_messages_lock_);
for (const auto& message : outgoing_messages_) {
auto it_and_inserted = counts.emplace(MessageMemoryDumpInfo(message), 0);
it_and_inserted.first->second++;
if (it_and_inserted.first->second > top_message_info_and_count.second)
top_message_info_and_count = *it_and_inserted.first;
}
*info = top_message_info_and_count.first;
*count = top_message_info_and_count.second;
}
void Bind(mojo::ScopedMessagePipeHandle handle) {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(task_runner_->BelongsToCurrentThread());
connector_.reset(new mojo::Connector(
std::move(handle), mojo::Connector::SINGLE_THREADED_SEND,
task_runner_));
connector_->set_incoming_receiver(&filters_);
connector_->set_connection_error_handler(
base::Bind(&ChannelAssociatedGroupController::OnPipeError,
base::Unretained(this)));
connector_->set_enforce_errors_from_incoming_receiver(false);
connector_->SetWatcherHeapProfilerTag("IPC Channel");
// Don't let the Connector do any sort of queuing on our behalf. Individual
// messages bound for the IPC::ChannelProxy thread (i.e. that vast majority
// of messages received by this Connector) are already individually
// scheduled for dispatch by ChannelProxy, so Connector's normal mode of
// operation would only introduce a redundant scheduling step for most
// messages.
connector_->set_force_immediate_dispatch(true);
}
void Pause() {
DCHECK(!paused_);
paused_ = true;
}
void Unpause() {
DCHECK(paused_);
paused_ = false;
}
void FlushOutgoingMessages() {
std::vector<mojo::Message> outgoing_messages;
{
base::AutoLock lock(outgoing_messages_lock_);
std::swap(outgoing_messages, outgoing_messages_);
}
for (auto& message : outgoing_messages)
SendMessage(&message);
}
void CreateChannelEndpoints(mojom::ChannelAssociatedPtr* sender,
mojom::ChannelAssociatedRequest* receiver) {
mojo::InterfaceId sender_id, receiver_id;
if (set_interface_id_namespace_bit_) {
sender_id = 1 | mojo::kInterfaceIdNamespaceMask;
receiver_id = 1;
} else {
sender_id = 1;
receiver_id = 1 | mojo::kInterfaceIdNamespaceMask;
}
{
base::AutoLock locker(lock_);
Endpoint* sender_endpoint = new Endpoint(this, sender_id);
Endpoint* receiver_endpoint = new Endpoint(this, receiver_id);
endpoints_.insert({ sender_id, sender_endpoint });
endpoints_.insert({ receiver_id, receiver_endpoint });
sender_endpoint->set_handle_created();
receiver_endpoint->set_handle_created();
}
mojo::ScopedInterfaceEndpointHandle sender_handle =
CreateScopedInterfaceEndpointHandle(sender_id);
mojo::ScopedInterfaceEndpointHandle receiver_handle =
CreateScopedInterfaceEndpointHandle(receiver_id);
sender->Bind(mojom::ChannelAssociatedPtrInfo(std::move(sender_handle), 0));
*receiver = mojom::ChannelAssociatedRequest(std::move(receiver_handle));
}
void ShutDown() {
DCHECK(thread_checker_.CalledOnValidThread());
shut_down_ = true;
connector_->CloseMessagePipe();
OnPipeError();
connector_.reset();
base::AutoLock lock(outgoing_messages_lock_);
outgoing_messages_.clear();
}
// mojo::AssociatedGroupController:
mojo::InterfaceId AssociateInterface(
mojo::ScopedInterfaceEndpointHandle handle_to_send) override {
if (!handle_to_send.pending_association())
return mojo::kInvalidInterfaceId;
uint32_t id = 0;
{
base::AutoLock locker(lock_);
do {
if (next_interface_id_ >= mojo::kInterfaceIdNamespaceMask)
next_interface_id_ = 2;
id = next_interface_id_++;
if (set_interface_id_namespace_bit_)
id |= mojo::kInterfaceIdNamespaceMask;
} while (ContainsKey(endpoints_, id));
Endpoint* endpoint = new Endpoint(this, id);
if (encountered_error_)
endpoint->set_peer_closed();
endpoint->set_handle_created();
endpoints_.insert({id, endpoint});
}
if (!NotifyAssociation(&handle_to_send, id)) {
// The peer handle of |handle_to_send|, which is supposed to join this
// associated group, has been closed.
{
base::AutoLock locker(lock_);
Endpoint* endpoint = FindEndpoint(id);
if (endpoint)
MarkClosedAndMaybeRemove(endpoint);
}
control_message_proxy_.NotifyPeerEndpointClosed(
id, handle_to_send.disconnect_reason());
}
return id;
}
mojo::ScopedInterfaceEndpointHandle CreateLocalEndpointHandle(
mojo::InterfaceId id) override {
if (!mojo::IsValidInterfaceId(id))
return mojo::ScopedInterfaceEndpointHandle();
// Unless it is the master ID, |id| is from the remote side and therefore
// its namespace bit is supposed to be different than the value that this
// router would use.
if (!mojo::IsMasterInterfaceId(id) &&
set_interface_id_namespace_bit_ ==
mojo::HasInterfaceIdNamespaceBitSet(id)) {
return mojo::ScopedInterfaceEndpointHandle();
}
base::AutoLock locker(lock_);
bool inserted = false;
Endpoint* endpoint = FindOrInsertEndpoint(id, &inserted);
if (inserted) {
DCHECK(!endpoint->handle_created());
if (encountered_error_)
endpoint->set_peer_closed();
} else {
if (endpoint->handle_created())
return mojo::ScopedInterfaceEndpointHandle();
}
endpoint->set_handle_created();
return CreateScopedInterfaceEndpointHandle(id);
}
void CloseEndpointHandle(
mojo::InterfaceId id,
const base::Optional<mojo::DisconnectReason>& reason) override {
if (!mojo::IsValidInterfaceId(id))
return;
{
base::AutoLock locker(lock_);
DCHECK(ContainsKey(endpoints_, id));
Endpoint* endpoint = endpoints_[id].get();
DCHECK(!endpoint->client());
DCHECK(!endpoint->closed());
MarkClosedAndMaybeRemove(endpoint);
}
if (!mojo::IsMasterInterfaceId(id) || reason)
control_message_proxy_.NotifyPeerEndpointClosed(id, reason);
}
mojo::InterfaceEndpointController* AttachEndpointClient(
const mojo::ScopedInterfaceEndpointHandle& handle,
mojo::InterfaceEndpointClient* client,
scoped_refptr<base::SequencedTaskRunner> runner) override {
const mojo::InterfaceId id = handle.id();
DCHECK(mojo::IsValidInterfaceId(id));
DCHECK(client);
base::AutoLock locker(lock_);
DCHECK(ContainsKey(endpoints_, id));
Endpoint* endpoint = endpoints_[id].get();
endpoint->AttachClient(client, std::move(runner));
if (endpoint->peer_closed())
NotifyEndpointOfError(endpoint, true /* force_async */);
return endpoint;
}
void DetachEndpointClient(
const mojo::ScopedInterfaceEndpointHandle& handle) override {
const mojo::InterfaceId id = handle.id();
DCHECK(mojo::IsValidInterfaceId(id));
base::AutoLock locker(lock_);
DCHECK(ContainsKey(endpoints_, id));
Endpoint* endpoint = endpoints_[id].get();
endpoint->DetachClient();
}
void RaiseError() override {
// We ignore errors on channel endpoints, leaving the pipe open. There are
// good reasons for this:
//
// * We should never close a channel endpoint in either process as long as
// the child process is still alive. The child's endpoint should only be
// closed implicitly by process death, and the browser's endpoint should
// only be closed after the child process is confirmed to be dead. Crash
// reporting logic in Chrome relies on this behavior in order to do the
// right thing.
//
// * There are two interesting conditions under which RaiseError() can be
// implicitly reached: an incoming message fails validation, or the
// local endpoint drops a response callback without calling it.
//
// * In the validation case, we also report the message as bad, and this
// will imminently trigger the common bad-IPC path in the browser,
// causing the browser to kill the offending renderer.
//
// * In the dropped response callback case, the net result of ignoring the
// issue is generally innocuous. While indicative of programmer error,
// it's not a severe failure and is already covered by separate DCHECKs.
//
// See https://crbug.com/861607 for additional discussion.
}
bool PrefersSerializedMessages() override { return true; }
private:
class Endpoint;
class ControlMessageProxyThunk;
friend class Endpoint;
friend class ControlMessageProxyThunk;
// MessageWrapper objects are always destroyed under the controller's lock. On
// destruction, if the message it wrappers contains
// ScopedInterfaceEndpointHandles (which cannot be destructed under the
// controller's lock), the wrapper unlocks to clean them up.
class MessageWrapper {
public:
MessageWrapper() = default;
MessageWrapper(ChannelAssociatedGroupController* controller,
mojo::Message message)
: controller_(controller), value_(std::move(message)) {}
MessageWrapper(MessageWrapper&& other)
: controller_(other.controller_), value_(std::move(other.value_)) {}
~MessageWrapper() {
if (value_.associated_endpoint_handles()->empty())
return;
controller_->lock_.AssertAcquired();
{
base::AutoUnlock unlocker(controller_->lock_);
value_.mutable_associated_endpoint_handles()->clear();
}
}
MessageWrapper& operator=(MessageWrapper&& other) {
controller_ = other.controller_;
value_ = std::move(other.value_);
return *this;
}
mojo::Message& value() { return value_; }
private:
ChannelAssociatedGroupController* controller_ = nullptr;
mojo::Message value_;
DISALLOW_COPY_AND_ASSIGN(MessageWrapper);
};
class Endpoint : public base::RefCountedThreadSafe<Endpoint>,
public mojo::InterfaceEndpointController {
public:
Endpoint(ChannelAssociatedGroupController* controller, mojo::InterfaceId id)
: controller_(controller), id_(id) {}
mojo::InterfaceId id() const { return id_; }
bool closed() const {
controller_->lock_.AssertAcquired();
return closed_;
}
void set_closed() {
controller_->lock_.AssertAcquired();
closed_ = true;
}
bool peer_closed() const {
controller_->lock_.AssertAcquired();
return peer_closed_;
}
void set_peer_closed() {
controller_->lock_.AssertAcquired();
peer_closed_ = true;
}
bool handle_created() const {
controller_->lock_.AssertAcquired();
return handle_created_;
}
void set_handle_created() {
controller_->lock_.AssertAcquired();
handle_created_ = true;
}
const base::Optional<mojo::DisconnectReason>& disconnect_reason() const {
return disconnect_reason_;
}
void set_disconnect_reason(
const base::Optional<mojo::DisconnectReason>& disconnect_reason) {
disconnect_reason_ = disconnect_reason;
}
base::SequencedTaskRunner* task_runner() const {
return task_runner_.get();
}
mojo::InterfaceEndpointClient* client() const {
controller_->lock_.AssertAcquired();
return client_;
}
void AttachClient(mojo::InterfaceEndpointClient* client,
scoped_refptr<base::SequencedTaskRunner> runner) {
controller_->lock_.AssertAcquired();
DCHECK(!client_);
DCHECK(!closed_);
DCHECK(runner->RunsTasksInCurrentSequence());
task_runner_ = std::move(runner);
client_ = client;
}
void DetachClient() {
controller_->lock_.AssertAcquired();
DCHECK(client_);
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK(!closed_);
task_runner_ = nullptr;
client_ = nullptr;
sync_watcher_.reset();
}
uint32_t EnqueueSyncMessage(MessageWrapper message) {
controller_->lock_.AssertAcquired();
uint32_t id = GenerateSyncMessageId();
sync_messages_.emplace(id, std::move(message));
SignalSyncMessageEvent();
return id;
}
void SignalSyncMessageEvent() {
controller_->lock_.AssertAcquired();
if (sync_watcher_)
sync_watcher_->SignalEvent();
}
MessageWrapper PopSyncMessage(uint32_t id) {
controller_->lock_.AssertAcquired();
if (sync_messages_.empty() || sync_messages_.front().first != id)
return MessageWrapper();
MessageWrapper message = std::move(sync_messages_.front().second);
sync_messages_.pop();
return message;
}
// mojo::InterfaceEndpointController:
bool SendMessage(mojo::Message* message) override {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
message->set_interface_id(id_);
return controller_->SendMessage(message);
}
void AllowWokenUpBySyncWatchOnSameThread() override {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
EnsureSyncWatcherExists();
sync_watcher_->AllowWokenUpBySyncWatchOnSameSequence();
}
bool SyncWatch(const bool* should_stop) override {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
// It's not legal to make sync calls from the master endpoint's thread,
// and in fact they must only happen from the proxy task runner.
DCHECK(!controller_->task_runner_->BelongsToCurrentThread());
DCHECK(controller_->proxy_task_runner_->BelongsToCurrentThread());
EnsureSyncWatcherExists();
return sync_watcher_->SyncWatch(should_stop);
}
private:
friend class base::RefCountedThreadSafe<Endpoint>;
~Endpoint() override {
controller_->lock_.AssertAcquired();
DCHECK(!client_);
DCHECK(closed_);
DCHECK(peer_closed_);
DCHECK(!sync_watcher_);
}
void OnSyncMessageEventReady() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
scoped_refptr<Endpoint> keepalive(this);
scoped_refptr<AssociatedGroupController> controller_keepalive(
controller_);
base::AutoLock locker(controller_->lock_);
bool more_to_process = false;
if (!sync_messages_.empty()) {
MessageWrapper message_wrapper =
std::move(sync_messages_.front().second);
sync_messages_.pop();
bool dispatch_succeeded;
mojo::InterfaceEndpointClient* client = client_;
{
base::AutoUnlock unlocker(controller_->lock_);
dispatch_succeeded =
client->HandleIncomingMessage(&message_wrapper.value());
}
if (!sync_messages_.empty())
more_to_process = true;
if (!dispatch_succeeded)
controller_->RaiseError();
}
if (!more_to_process)
sync_watcher_->ResetEvent();
// If there are no queued sync messages and the peer has closed, there
// there won't be incoming sync messages in the future. If any
// SyncWatch() calls are on the stack for this endpoint, resetting the
// watcher will allow them to exit as the stack undwinds.
if (!more_to_process && peer_closed_)
sync_watcher_.reset();
}
void EnsureSyncWatcherExists() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
if (sync_watcher_)
return;
base::AutoLock locker(controller_->lock_);
sync_watcher_ = std::make_unique<mojo::SequenceLocalSyncEventWatcher>(
base::BindRepeating(&Endpoint::OnSyncMessageEventReady,
base::Unretained(this)));
if (peer_closed_ || !sync_messages_.empty())
SignalSyncMessageEvent();
}
uint32_t GenerateSyncMessageId() {
// Overflow is fine.
uint32_t id = next_sync_message_id_++;
DCHECK(sync_messages_.empty() || sync_messages_.front().first != id);
return id;
}
ChannelAssociatedGroupController* const controller_;
const mojo::InterfaceId id_;
bool closed_ = false;
bool peer_closed_ = false;
bool handle_created_ = false;
base::Optional<mojo::DisconnectReason> disconnect_reason_;
mojo::InterfaceEndpointClient* client_ = nullptr;
scoped_refptr<base::SequencedTaskRunner> task_runner_;
std::unique_ptr<mojo::SequenceLocalSyncEventWatcher> sync_watcher_;
base::queue<std::pair<uint32_t, MessageWrapper>> sync_messages_;
uint32_t next_sync_message_id_ = 0;
DISALLOW_COPY_AND_ASSIGN(Endpoint);
};
class ControlMessageProxyThunk : public MessageReceiver {
public:
explicit ControlMessageProxyThunk(
ChannelAssociatedGroupController* controller)
: controller_(controller) {}
private:
// MessageReceiver:
bool Accept(mojo::Message* message) override {
return controller_->SendMessage(message);
}
ChannelAssociatedGroupController* controller_;
DISALLOW_COPY_AND_ASSIGN(ControlMessageProxyThunk);
};
~ChannelAssociatedGroupController() override {
DCHECK(!connector_);
base::AutoLock locker(lock_);
for (auto iter = endpoints_.begin(); iter != endpoints_.end();) {
Endpoint* endpoint = iter->second.get();
++iter;
if (!endpoint->closed()) {
// This happens when a NotifyPeerEndpointClosed message been received,
// but the interface ID hasn't been used to create local endpoint
// handle.
DCHECK(!endpoint->client());
DCHECK(endpoint->peer_closed());
MarkClosedAndMaybeRemove(endpoint);
} else {
MarkPeerClosedAndMaybeRemove(endpoint);
}
}
DCHECK(endpoints_.empty());
GetMemoryDumpProvider().RemoveController(this);
}
bool SendMessage(mojo::Message* message) {
DCHECK(message->heap_profiler_tag());
if (task_runner_->BelongsToCurrentThread()) {
DCHECK(thread_checker_.CalledOnValidThread());
if (!connector_ || paused_) {
if (!shut_down_) {
base::AutoLock lock(outgoing_messages_lock_);
outgoing_messages_.emplace_back(std::move(*message));
}
return true;
}
return connector_->Accept(message);
} else {
// Do a message size check here so we don't lose valuable stack
// information to the task scheduler.
CHECK_LE(message->data_num_bytes(), Channel::kMaximumMessageSize);
// We always post tasks to the master endpoint thread when called from
// other threads in order to simulate IPC::ChannelProxy::Send behavior.
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&ChannelAssociatedGroupController::SendMessageOnMasterThread,
this, base::Passed(message)));
return true;
}
}
void SendMessageOnMasterThread(mojo::Message message) {
DCHECK(thread_checker_.CalledOnValidThread());
if (!SendMessage(&message))
RaiseError();
}
void OnPipeError() {
DCHECK(thread_checker_.CalledOnValidThread());
// We keep |this| alive here because it's possible for the notifications
// below to release all other references.
scoped_refptr<ChannelAssociatedGroupController> keepalive(this);
base::AutoLock locker(lock_);
encountered_error_ = true;
std::vector<scoped_refptr<Endpoint>> endpoints_to_notify;
for (auto iter = endpoints_.begin(); iter != endpoints_.end();) {
Endpoint* endpoint = iter->second.get();
++iter;
if (endpoint->client())
endpoints_to_notify.push_back(endpoint);
MarkPeerClosedAndMaybeRemove(endpoint);
}
for (auto& endpoint : endpoints_to_notify) {
// Because a notification may in turn detach any endpoint, we have to
// check each client again here.
if (endpoint->client())
NotifyEndpointOfError(endpoint.get(), false /* force_async */);
}
}
void NotifyEndpointOfError(Endpoint* endpoint, bool force_async) {
lock_.AssertAcquired();
DCHECK(endpoint->task_runner() && endpoint->client());
if (endpoint->task_runner()->RunsTasksInCurrentSequence() && !force_async) {
mojo::InterfaceEndpointClient* client = endpoint->client();
base::Optional<mojo::DisconnectReason> reason(
endpoint->disconnect_reason());
base::AutoUnlock unlocker(lock_);
client->NotifyError(reason);
} else {
endpoint->task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&ChannelAssociatedGroupController::
NotifyEndpointOfErrorOnEndpointThread,
this, endpoint->id(), base::Unretained(endpoint)));
}
}
void NotifyEndpointOfErrorOnEndpointThread(mojo::InterfaceId id,
Endpoint* endpoint) {
base::AutoLock locker(lock_);
auto iter = endpoints_.find(id);
if (iter == endpoints_.end() || iter->second.get() != endpoint)
return;
if (!endpoint->client())
return;
DCHECK(endpoint->task_runner()->RunsTasksInCurrentSequence());
NotifyEndpointOfError(endpoint, false /* force_async */);
}
void MarkClosedAndMaybeRemove(Endpoint* endpoint) {
lock_.AssertAcquired();
endpoint->set_closed();
if (endpoint->closed() && endpoint->peer_closed())
endpoints_.erase(endpoint->id());
}
void MarkPeerClosedAndMaybeRemove(Endpoint* endpoint) {
lock_.AssertAcquired();
endpoint->set_peer_closed();
endpoint->SignalSyncMessageEvent();
if (endpoint->closed() && endpoint->peer_closed())
endpoints_.erase(endpoint->id());
}
Endpoint* FindOrInsertEndpoint(mojo::InterfaceId id, bool* inserted) {
lock_.AssertAcquired();
DCHECK(!inserted || !*inserted);
Endpoint* endpoint = FindEndpoint(id);
if (!endpoint) {
endpoint = new Endpoint(this, id);
endpoints_.insert({id, endpoint});
if (inserted)
*inserted = true;
}
return endpoint;
}
Endpoint* FindEndpoint(mojo::InterfaceId id) {
lock_.AssertAcquired();
auto iter = endpoints_.find(id);
return iter != endpoints_.end() ? iter->second.get() : nullptr;
}
// mojo::MessageReceiver:
bool Accept(mojo::Message* message) override {
DCHECK(thread_checker_.CalledOnValidThread());
if (!message->DeserializeAssociatedEndpointHandles(this))
return false;
if (mojo::PipeControlMessageHandler::IsPipeControlMessage(message))
return control_message_handler_.Accept(message);
mojo::InterfaceId id = message->interface_id();
DCHECK(mojo::IsValidInterfaceId(id));
base::AutoLock locker(lock_);
Endpoint* endpoint = FindEndpoint(id);
if (!endpoint)
return true;
mojo::InterfaceEndpointClient* client = endpoint->client();
if (!client || !endpoint->task_runner()->RunsTasksInCurrentSequence()) {
// No client has been bound yet or the client runs tasks on another
// thread. We assume the other thread must always be the one on which
// |proxy_task_runner_| runs tasks, since that's the only valid scenario.
//
// If the client is not yet bound, it must be bound by the time this task
// runs or else it's programmer error.
DCHECK(proxy_task_runner_);
if (message->has_flag(mojo::Message::kFlagIsSync)) {
MessageWrapper message_wrapper(this, std::move(*message));
// Sync messages may need to be handled by the endpoint if it's blocking
// on a sync reply. We pass ownership of the message to the endpoint's
// sync message queue. If the endpoint was blocking, it will dequeue the
// message and dispatch it. Otherwise the posted |AcceptSyncMessage()|
// call will dequeue the message and dispatch it.
uint32_t message_id =
endpoint->EnqueueSyncMessage(std::move(message_wrapper));
proxy_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&ChannelAssociatedGroupController::AcceptSyncMessage,
this, id, message_id));
return true;
}
proxy_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&ChannelAssociatedGroupController::AcceptOnProxyThread,
this, base::Passed(message)));
return true;
}
// We do not expect to receive sync responses on the master endpoint thread.
// If it's happening, it's a bug.
DCHECK(!message->has_flag(mojo::Message::kFlagIsSync) ||
!message->has_flag(mojo::Message::kFlagIsResponse));
base::AutoUnlock unlocker(lock_);
return client->HandleIncomingMessage(message);
}
void AcceptOnProxyThread(mojo::Message message) {
DCHECK(proxy_task_runner_->BelongsToCurrentThread());
mojo::InterfaceId id = message.interface_id();
DCHECK(mojo::IsValidInterfaceId(id) && !mojo::IsMasterInterfaceId(id));
base::AutoLock locker(lock_);
Endpoint* endpoint = FindEndpoint(id);
if (!endpoint)
return;
mojo::InterfaceEndpointClient* client = endpoint->client();
if (!client)
return;
DCHECK(endpoint->task_runner()->RunsTasksInCurrentSequence());
// Sync messages should never make their way to this method.
DCHECK(!message.has_flag(mojo::Message::kFlagIsSync));
bool result = false;
{
base::AutoUnlock unlocker(lock_);
result = client->HandleIncomingMessage(&message);
}
if (!result)
RaiseError();
}
void AcceptSyncMessage(mojo::InterfaceId interface_id, uint32_t message_id) {
DCHECK(proxy_task_runner_->BelongsToCurrentThread());
base::AutoLock locker(lock_);
Endpoint* endpoint = FindEndpoint(interface_id);
if (!endpoint)
return;
// Careful, if the endpoint is detached its members are cleared. Check for
// that before dereferencing.
mojo::InterfaceEndpointClient* client = endpoint->client();
if (!client)
return;
DCHECK(endpoint->task_runner()->RunsTasksInCurrentSequence());
MessageWrapper message_wrapper = endpoint->PopSyncMessage(message_id);
// The message must have already been dequeued by the endpoint waking up
// from a sync wait. Nothing to do.
if (message_wrapper.value().IsNull())
return;
bool result = false;
{
base::AutoUnlock unlocker(lock_);
result = client->HandleIncomingMessage(&message_wrapper.value());
}
if (!result)
RaiseError();
}
// mojo::PipeControlMessageHandlerDelegate:
bool OnPeerAssociatedEndpointClosed(
mojo::InterfaceId id,
const base::Optional<mojo::DisconnectReason>& reason) override {
DCHECK(thread_checker_.CalledOnValidThread());
scoped_refptr<ChannelAssociatedGroupController> keepalive(this);
base::AutoLock locker(lock_);
scoped_refptr<Endpoint> endpoint = FindOrInsertEndpoint(id, nullptr);
if (reason)
endpoint->set_disconnect_reason(reason);
if (!endpoint->peer_closed()) {
if (endpoint->client())
NotifyEndpointOfError(endpoint.get(), false /* force_async */);
MarkPeerClosedAndMaybeRemove(endpoint.get());
}
return true;
}
// Checked in places which must be run on the master endpoint's thread.
base::ThreadChecker thread_checker_;
scoped_refptr<base::SingleThreadTaskRunner> task_runner_;
scoped_refptr<base::SingleThreadTaskRunner> proxy_task_runner_;
const bool set_interface_id_namespace_bit_;
bool paused_ = false;
std::unique_ptr<mojo::Connector> connector_;
mojo::FilterChain filters_;
mojo::PipeControlMessageHandler control_message_handler_;
ControlMessageProxyThunk control_message_proxy_thunk_;
// NOTE: It is unsafe to call into this object while holding |lock_|.
mojo::PipeControlMessageProxy control_message_proxy_;
// Guards access to |outgoing_messages_| only. Used to support memory dumps
// which may be triggered from any thread.
base::Lock outgoing_messages_lock_;
// Outgoing messages that were sent before this controller was bound to a
// real message pipe.
std::vector<mojo::Message> outgoing_messages_;
// Guards the fields below for thread-safe access.
base::Lock lock_;
bool encountered_error_ = false;
bool shut_down_ = false;
// ID #1 is reserved for the mojom::Channel interface.
uint32_t next_interface_id_ = 2;
std::map<uint32_t, scoped_refptr<Endpoint>> endpoints_;
DISALLOW_COPY_AND_ASSIGN(ChannelAssociatedGroupController);
};
bool ControllerMemoryDumpProvider::OnMemoryDump(
const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
base::AutoLock lock(lock_);
for (auto* controller : controllers_) {
base::trace_event::MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(
base::StringPrintf("mojo/queued_ipc_channel_message/0x%" PRIxPTR,
reinterpret_cast<uintptr_t>(controller)));
dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameObjectCount,
base::trace_event::MemoryAllocatorDump::kUnitsObjects,
controller->GetQueuedMessageCount());
MessageMemoryDumpInfo info;
size_t count = 0;
controller->GetTopQueuedMessageMemoryDumpInfo(&info, &count);
dump->AddScalar("top_message_name", "id", info.id);
dump->AddScalar("top_message_count",
base::trace_event::MemoryAllocatorDump::kUnitsObjects,
count);
if (info.profiler_tag) {
// TODO(ssid): Memory dumps currently do not support adding string
// arguments in background dumps. So, add this value as a trace event for
// now.
TRACE_EVENT1(base::trace_event::MemoryDumpManager::kTraceCategory,
"ControllerMemoryDumpProvider::OnMemoryDump",
"top_queued_message_tag", info.profiler_tag);
}
}
return true;
}
class MojoBootstrapImpl : public MojoBootstrap {
public:
MojoBootstrapImpl(
mojo::ScopedMessagePipeHandle handle,
const scoped_refptr<ChannelAssociatedGroupController> controller)
: controller_(controller),
associated_group_(controller),
handle_(std::move(handle)) {}
~MojoBootstrapImpl() override {
controller_->ShutDown();
}
private:
void Connect(mojom::ChannelAssociatedPtr* sender,
mojom::ChannelAssociatedRequest* receiver) override {
controller_->Bind(std::move(handle_));
controller_->CreateChannelEndpoints(sender, receiver);
}
void Pause() override {
controller_->Pause();
}
void Unpause() override {
controller_->Unpause();
}
void Flush() override {
controller_->FlushOutgoingMessages();
}
mojo::AssociatedGroup* GetAssociatedGroup() override {
return &associated_group_;
}
scoped_refptr<ChannelAssociatedGroupController> controller_;
mojo::AssociatedGroup associated_group_;
mojo::ScopedMessagePipeHandle handle_;
DISALLOW_COPY_AND_ASSIGN(MojoBootstrapImpl);
};
} // namespace
// static
std::unique_ptr<MojoBootstrap> MojoBootstrap::Create(
mojo::ScopedMessagePipeHandle handle,
Channel::Mode mode,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& proxy_task_runner) {
return std::make_unique<MojoBootstrapImpl>(
std::move(handle),
new ChannelAssociatedGroupController(mode == Channel::MODE_SERVER,
ipc_task_runner, proxy_task_runner));
}
} // namespace IPC