blob: bfcf9a088f05117a1a8c5700f4603d43c47b6362 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <string>
#include "base/strings/stringprintf.h"
#include "media/blink/interval_map.h"
#include "media/blink/test_random.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
// Our tests only modifiy the interval map entries in [0..kTestSize).
// We need this to be big enough to hit tricky corner cases, but small
// enough that we get lots of entry duplication to clean up.
// Also, SimpleIntervalMap uses a vector of size kTestSize to emulate
// a intervalmap, so making this too big will the test down a lot.
const int kTestSize = 16;
class SimpleIntervalMap {
public:
SimpleIntervalMap() : data_(kTestSize) {}
void IncrementInterval(int32_t from, int32_t to, int32_t how_much) {
for (int32_t i = from; i < to; i++) {
data_[i] += how_much;
}
}
void SetInterval(int32_t from, int32_t to, int32_t how_much) {
for (int32_t i = from; i < to; i++) {
data_[i] = how_much;
}
}
int32_t operator[](int32_t index) const { return data_[index]; }
private:
std::vector<int32_t> data_;
};
class IntervalMapTest : public testing::Test {
public:
IntervalMapTest() : rnd_(42) {}
void IncrementInterval(int32_t from, int32_t to, int32_t how_much) {
truth_.IncrementInterval(from, to, how_much);
testee_.IncrementInterval(from, to, how_much);
std::string message =
base::StringPrintf("After [%d - %d) += %d", from, to, how_much);
Compare(message);
}
void SetInterval(int32_t from, int32_t to, int32_t how_much) {
truth_.SetInterval(from, to, how_much);
testee_.SetInterval(from, to, how_much);
std::string message =
base::StringPrintf("After [%d - %d) += %d", from, to, how_much);
Compare(message);
}
// Will exercise operator[] and IntervalMap::const_iterator.
void Compare(const std::string& message) {
bool had_fail = HasFailure();
for (int i = 0; i < kTestSize; i++) {
EXPECT_EQ(truth_[i], testee_[i]) << " i = " << i << " " << message;
}
EXPECT_EQ(testee_[-1], 0) << message;
EXPECT_EQ(testee_[kTestSize], 0) << message;
int32_t prev_ = 0;
int32_t end_of_last_interval = 0;
int32_t num_intervals = 0;
for (const auto& r : testee_) {
num_intervals++;
EXPECT_LT(r.first.begin, r.first.end);
if (r.first.begin == std::numeric_limits<int32_t>::min()) {
EXPECT_EQ(0, r.second);
} else {
EXPECT_EQ(end_of_last_interval, r.first.begin);
EXPECT_GE(r.first.begin, 0) << message;
EXPECT_LE(r.first.begin, kTestSize) << message;
EXPECT_NE(r.second, prev_) << message;
}
end_of_last_interval = r.first.end;
prev_ = r.second;
}
EXPECT_EQ(prev_, 0) << message;
if (HasFailure() && !had_fail) {
for (int i = 0; i < kTestSize; i++) {
LOG(ERROR) << i << ": Truth =" << truth_[i]
<< " Testee = " << testee_[i];
}
for (const auto& r : testee_) {
LOG(ERROR) << "Interval: " << r.first.begin << " - " << r.first.end
<< " = " << r.second;
}
}
}
void Clear() {
for (int j = 0; j < kTestSize; j++) {
IncrementInterval(j, j + 1, -truth_[j]);
}
}
protected:
media::TestRandom rnd_;
SimpleIntervalMap truth_;
media::IntervalMap<int32_t, int32_t> testee_;
};
}
TEST_F(IntervalMapTest, SimpleTest) {
IncrementInterval(3, 7, 4);
EXPECT_EQ(0, testee_[0]);
EXPECT_EQ(0, testee_[2]);
EXPECT_EQ(4, testee_[3]);
EXPECT_EQ(4, testee_[5]);
EXPECT_EQ(4, testee_[6]);
EXPECT_EQ(0, testee_[7]);
IncrementInterval(3, 7, -4);
EXPECT_TRUE(testee_.empty());
}
TEST_F(IntervalMapTest, SimpleIncrementTest) {
IncrementInterval(3, 7, 1);
IncrementInterval(6, 10, 2);
EXPECT_EQ(0, testee_[2]);
EXPECT_EQ(1, testee_[3]);
EXPECT_EQ(1, testee_[5]);
EXPECT_EQ(3, testee_[6]);
EXPECT_EQ(2, testee_[7]);
EXPECT_EQ(2, testee_[9]);
EXPECT_EQ(0, testee_[10]);
SetInterval(3, 12, 0);
EXPECT_TRUE(testee_.empty());
}
TEST_F(IntervalMapTest, IncrementJoinIntervalsTest) {
IncrementInterval(3, 5, 1);
IncrementInterval(7, 8, 1);
IncrementInterval(9, 11, 1);
IncrementInterval(5, 7, 1);
IncrementInterval(8, 9, 1);
auto i = testee_.find(5);
EXPECT_EQ(3, i.interval_begin());
EXPECT_EQ(11, i.interval_end());
EXPECT_EQ(1, i.value());
}
TEST_F(IntervalMapTest, SetJoinIntervalsTest) {
SetInterval(3, 5, 1);
SetInterval(7, 8, 1);
SetInterval(9, 11, 1);
SetInterval(5, 9, 1); // overwrites one interval
auto i = testee_.find(5);
EXPECT_EQ(3, i.interval_begin());
EXPECT_EQ(11, i.interval_end());
EXPECT_EQ(1, i.value());
}
TEST_F(IntervalMapTest, FindTest) {
IncrementInterval(5, 6, 1);
IncrementInterval(1, 10, 2);
int32_t min_value = std::numeric_limits<int32_t>::min();
int32_t max_value = std::numeric_limits<int32_t>::max();
auto i = testee_.find(0);
EXPECT_EQ(min_value, i.interval_begin());
EXPECT_EQ(1, i.interval_end());
EXPECT_EQ(0, i.value());
i = testee_.find(4);
EXPECT_EQ(1, i.interval_begin());
EXPECT_EQ(5, i.interval_end());
EXPECT_EQ(2, i.value());
i = testee_.find(5);
EXPECT_EQ(5, i.interval_begin());
EXPECT_EQ(6, i.interval_end());
EXPECT_EQ(3, i.value());
i = testee_.find(6);
EXPECT_EQ(6, i.interval_begin());
EXPECT_EQ(10, i.interval_end());
EXPECT_EQ(2, i.value());
i = testee_.find(9);
EXPECT_EQ(6, i.interval_begin());
EXPECT_EQ(10, i.interval_end());
EXPECT_EQ(2, i.value());
i = testee_.find(10);
EXPECT_EQ(10, i.interval_begin());
EXPECT_EQ(max_value, i.interval_end());
EXPECT_EQ(0, i.value());
}
TEST_F(IntervalMapTest, MinMaxInt) {
int32_t min_value = std::numeric_limits<int32_t>::min();
int32_t max_value = std::numeric_limits<int32_t>::max();
// Change a single value at minint
testee_.IncrementInterval(min_value, min_value + 1, 7);
EXPECT_EQ(7, testee_[min_value]);
EXPECT_EQ(0, testee_[min_value + 1]);
auto i = testee_.find(0);
EXPECT_EQ(min_value + 1, i.interval_begin());
EXPECT_EQ(max_value, i.interval_end());
EXPECT_EQ(0, i.value());
--i;
EXPECT_TRUE(i == testee_.find(min_value));
EXPECT_EQ(min_value, i.interval_begin());
EXPECT_EQ(min_value + 1, i.interval_end());
EXPECT_EQ(7, i.value());
testee_.clear();
// Change a single value at maxint
// Note that we don't actually have a way to represent a range
// that includes maxint as the end of the interval is non-inclusive.
testee_.IncrementInterval(max_value - 1, max_value, 7);
EXPECT_EQ(7, testee_[max_value - 1]);
EXPECT_EQ(0, testee_[max_value - 2]);
i = testee_.find(0);
EXPECT_EQ(min_value, i.interval_begin());
EXPECT_EQ(max_value - 1, i.interval_end());
EXPECT_EQ(0, i.value());
++i;
EXPECT_TRUE(i == testee_.find(max_value - 1));
EXPECT_EQ(max_value - 1, i.interval_begin());
EXPECT_EQ(max_value, i.interval_end());
EXPECT_EQ(7, i.value());
testee_.clear();
// Change entire range (almost)
testee_.IncrementInterval(min_value, max_value, 17);
EXPECT_EQ(17, testee_[min_value]);
EXPECT_EQ(17, testee_[0]);
EXPECT_EQ(17, testee_[max_value - 1]);
i = testee_.find(0);
EXPECT_EQ(min_value, i.interval_begin());
EXPECT_EQ(max_value, i.interval_end());
EXPECT_EQ(17, i.value());
EXPECT_TRUE(i == testee_.find(max_value - 1));
EXPECT_TRUE(i == testee_.find(min_value));
}
TEST_F(IntervalMapTest, RandomIncrementTest) {
for (int j = 0; j < 200; j++) {
Clear();
for (int i = 0; i < 200; i++) {
int32_t begin = rnd_.Rand() % (kTestSize - 1);
int32_t end = begin + 1 + rnd_.Rand() % (kTestSize - begin - 1);
IncrementInterval(begin, end, (rnd_.Rand() & 32) ? 1 : -1);
if (HasFailure()) {
return;
}
}
}
}
TEST_F(IntervalMapTest, RandomSetTest) {
for (int j = 0; j < 200; j++) {
Clear();
for (int i = 0; i < 200; i++) {
int32_t begin = rnd_.Rand() % (kTestSize - 1);
int32_t end = begin + 1 + rnd_.Rand() % (kTestSize - begin - 1);
SetInterval(begin, end, rnd_.Rand() & 3);
if (HasFailure()) {
return;
}
}
}
}