blob: cabbe8809e6f79d0225dc221bb16cd08b98c7e24 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/core/node_channel.h"
#include <cstring>
#include <limits>
#include <sstream>
#include "base/bind.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "mojo/core/channel.h"
#include "mojo/core/configuration.h"
#include "mojo/core/core.h"
#include "mojo/core/request_context.h"
namespace mojo {
namespace core {
namespace {
// NOTE: Please ONLY append messages to the end of this enum.
enum class MessageType : uint32_t {
ACCEPT_INVITEE,
ACCEPT_INVITATION,
ADD_BROKER_CLIENT,
BROKER_CLIENT_ADDED,
ACCEPT_BROKER_CLIENT,
EVENT_MESSAGE,
REQUEST_PORT_MERGE,
REQUEST_INTRODUCTION,
INTRODUCE,
#if defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
RELAY_EVENT_MESSAGE,
#endif
BROADCAST_EVENT,
#if defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
EVENT_MESSAGE_FROM_RELAY,
#endif
ACCEPT_PEER,
};
struct Header {
MessageType type;
uint32_t padding;
};
static_assert(IsAlignedForChannelMessage(sizeof(Header)),
"Invalid header size.");
struct AcceptInviteeData {
ports::NodeName inviter_name;
ports::NodeName token;
};
struct AcceptInvitationData {
ports::NodeName token;
ports::NodeName invitee_name;
};
struct AcceptPeerData {
ports::NodeName token;
ports::NodeName peer_name;
ports::PortName port_name;
};
// This message may include a process handle on plaforms that require it.
struct AddBrokerClientData {
ports::NodeName client_name;
#if !defined(OS_WIN)
uint32_t process_handle;
uint32_t padding;
#endif
};
#if !defined(OS_WIN)
static_assert(sizeof(base::ProcessHandle) == sizeof(uint32_t),
"Unexpected pid size");
static_assert(sizeof(AddBrokerClientData) % kChannelMessageAlignment == 0,
"Invalid AddBrokerClientData size.");
#endif
// This data is followed by a platform channel handle to the broker.
struct BrokerClientAddedData {
ports::NodeName client_name;
};
// This data may be followed by a platform channel handle to the broker. If not,
// then the inviter is the broker and its channel should be used as such.
struct AcceptBrokerClientData {
ports::NodeName broker_name;
};
// This is followed by arbitrary payload data which is interpreted as a token
// string for port location.
struct RequestPortMergeData {
ports::PortName connector_port_name;
};
// Used for both REQUEST_INTRODUCTION and INTRODUCE.
//
// For INTRODUCE the message also includes a valid platform handle for a channel
// the receiver may use to communicate with the named node directly, or an
// invalid platform handle if the node is unknown to the sender or otherwise
// cannot be introduced.
struct IntroductionData {
ports::NodeName name;
};
#if defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
// This struct is followed by the full payload of a message to be relayed.
struct RelayEventMessageData {
ports::NodeName destination;
};
// This struct is followed by the full payload of a relayed message.
struct EventMessageFromRelayData {
ports::NodeName source;
};
#endif
template <typename DataType>
Channel::MessagePtr CreateMessage(MessageType type,
size_t payload_size,
size_t num_handles,
DataType** out_data,
size_t capacity = 0) {
const size_t total_size = payload_size + sizeof(Header);
if (capacity == 0)
capacity = total_size;
else
capacity = std::max(total_size, capacity);
auto message =
std::make_unique<Channel::Message>(capacity, total_size, num_handles);
Header* header = reinterpret_cast<Header*>(message->mutable_payload());
header->type = type;
header->padding = 0;
*out_data = reinterpret_cast<DataType*>(&header[1]);
return message;
}
template <typename DataType>
bool GetMessagePayload(const void* bytes,
size_t num_bytes,
DataType** out_data) {
static_assert(sizeof(DataType) > 0, "DataType must have non-zero size.");
if (num_bytes < sizeof(Header) + sizeof(DataType))
return false;
*out_data = reinterpret_cast<const DataType*>(
static_cast<const char*>(bytes) + sizeof(Header));
return true;
}
} // namespace
// static
scoped_refptr<NodeChannel> NodeChannel::Create(
Delegate* delegate,
ConnectionParams connection_params,
Channel::HandlePolicy channel_handle_policy,
scoped_refptr<base::TaskRunner> io_task_runner,
const ProcessErrorCallback& process_error_callback) {
#if defined(OS_NACL_SFI)
LOG(FATAL) << "Multi-process not yet supported on NaCl-SFI";
return nullptr;
#else
return new NodeChannel(delegate, std::move(connection_params),
channel_handle_policy, io_task_runner,
process_error_callback);
#endif
}
// static
Channel::MessagePtr NodeChannel::CreateEventMessage(size_t capacity,
size_t payload_size,
void** payload,
size_t num_handles) {
return CreateMessage(MessageType::EVENT_MESSAGE, payload_size, num_handles,
payload, capacity);
}
// static
void NodeChannel::GetEventMessageData(Channel::Message* message,
void** data,
size_t* num_data_bytes) {
// NOTE: OnChannelMessage guarantees that we never accept a Channel::Message
// with a payload of fewer than |sizeof(Header)| bytes.
*data = reinterpret_cast<Header*>(message->mutable_payload()) + 1;
*num_data_bytes = message->payload_size() - sizeof(Header);
}
void NodeChannel::Start() {
base::AutoLock lock(channel_lock_);
// ShutDown() may have already been called, in which case |channel_| is null.
if (channel_)
channel_->Start();
}
void NodeChannel::ShutDown() {
base::AutoLock lock(channel_lock_);
if (channel_) {
channel_->ShutDown();
channel_ = nullptr;
}
}
void NodeChannel::LeakHandleOnShutdown() {
base::AutoLock lock(channel_lock_);
if (channel_) {
channel_->LeakHandle();
}
}
void NodeChannel::NotifyBadMessage(const std::string& error) {
if (!process_error_callback_.is_null())
process_error_callback_.Run("Received bad user message: " + error);
}
void NodeChannel::SetRemoteProcessHandle(ScopedProcessHandle process_handle) {
DCHECK(io_task_runner_->RunsTasksInCurrentSequence());
{
base::AutoLock lock(channel_lock_);
if (channel_)
channel_->set_remote_process(process_handle.Clone());
}
base::AutoLock lock(remote_process_handle_lock_);
DCHECK(!remote_process_handle_.is_valid());
CHECK_NE(remote_process_handle_.get(), base::GetCurrentProcessHandle());
remote_process_handle_ = std::move(process_handle);
}
bool NodeChannel::HasRemoteProcessHandle() {
base::AutoLock lock(remote_process_handle_lock_);
return remote_process_handle_.is_valid();
}
ScopedProcessHandle NodeChannel::CloneRemoteProcessHandle() {
base::AutoLock lock(remote_process_handle_lock_);
if (!remote_process_handle_.is_valid())
return ScopedProcessHandle();
return remote_process_handle_.Clone();
}
void NodeChannel::SetRemoteNodeName(const ports::NodeName& name) {
DCHECK(io_task_runner_->RunsTasksInCurrentSequence());
remote_node_name_ = name;
}
void NodeChannel::AcceptInvitee(const ports::NodeName& inviter_name,
const ports::NodeName& token) {
AcceptInviteeData* data;
Channel::MessagePtr message = CreateMessage(
MessageType::ACCEPT_INVITEE, sizeof(AcceptInviteeData), 0, &data);
data->inviter_name = inviter_name;
data->token = token;
WriteChannelMessage(std::move(message));
}
void NodeChannel::AcceptInvitation(const ports::NodeName& token,
const ports::NodeName& invitee_name) {
AcceptInvitationData* data;
Channel::MessagePtr message = CreateMessage(
MessageType::ACCEPT_INVITATION, sizeof(AcceptInvitationData), 0, &data);
data->token = token;
data->invitee_name = invitee_name;
WriteChannelMessage(std::move(message));
}
void NodeChannel::AcceptPeer(const ports::NodeName& sender_name,
const ports::NodeName& token,
const ports::PortName& port_name) {
AcceptPeerData* data;
Channel::MessagePtr message =
CreateMessage(MessageType::ACCEPT_PEER, sizeof(AcceptPeerData), 0, &data);
data->token = token;
data->peer_name = sender_name;
data->port_name = port_name;
WriteChannelMessage(std::move(message));
}
void NodeChannel::AddBrokerClient(const ports::NodeName& client_name,
ScopedProcessHandle process_handle) {
AddBrokerClientData* data;
std::vector<PlatformHandle> handles;
#if defined(OS_WIN)
handles.emplace_back(base::win::ScopedHandle(process_handle.release()));
#endif
Channel::MessagePtr message =
CreateMessage(MessageType::ADD_BROKER_CLIENT, sizeof(AddBrokerClientData),
handles.size(), &data);
message->SetHandles(std::move(handles));
data->client_name = client_name;
#if !defined(OS_WIN)
data->process_handle = process_handle.get();
data->padding = 0;
#endif
WriteChannelMessage(std::move(message));
}
void NodeChannel::BrokerClientAdded(const ports::NodeName& client_name,
PlatformHandle broker_channel) {
BrokerClientAddedData* data;
std::vector<PlatformHandle> handles;
if (broker_channel.is_valid())
handles.emplace_back(std::move(broker_channel));
Channel::MessagePtr message =
CreateMessage(MessageType::BROKER_CLIENT_ADDED,
sizeof(BrokerClientAddedData), handles.size(), &data);
message->SetHandles(std::move(handles));
data->client_name = client_name;
WriteChannelMessage(std::move(message));
}
void NodeChannel::AcceptBrokerClient(const ports::NodeName& broker_name,
PlatformHandle broker_channel) {
AcceptBrokerClientData* data;
std::vector<PlatformHandle> handles;
if (broker_channel.is_valid())
handles.emplace_back(std::move(broker_channel));
Channel::MessagePtr message =
CreateMessage(MessageType::ACCEPT_BROKER_CLIENT,
sizeof(AcceptBrokerClientData), handles.size(), &data);
message->SetHandles(std::move(handles));
data->broker_name = broker_name;
WriteChannelMessage(std::move(message));
}
void NodeChannel::RequestPortMerge(const ports::PortName& connector_port_name,
const std::string& token) {
RequestPortMergeData* data;
Channel::MessagePtr message =
CreateMessage(MessageType::REQUEST_PORT_MERGE,
sizeof(RequestPortMergeData) + token.size(), 0, &data);
data->connector_port_name = connector_port_name;
memcpy(data + 1, token.data(), token.size());
WriteChannelMessage(std::move(message));
}
void NodeChannel::RequestIntroduction(const ports::NodeName& name) {
IntroductionData* data;
Channel::MessagePtr message = CreateMessage(
MessageType::REQUEST_INTRODUCTION, sizeof(IntroductionData), 0, &data);
data->name = name;
WriteChannelMessage(std::move(message));
}
void NodeChannel::Introduce(const ports::NodeName& name,
PlatformHandle channel_handle) {
IntroductionData* data;
std::vector<PlatformHandle> handles;
if (channel_handle.is_valid())
handles.emplace_back(std::move(channel_handle));
Channel::MessagePtr message = CreateMessage(
MessageType::INTRODUCE, sizeof(IntroductionData), handles.size(), &data);
message->SetHandles(std::move(handles));
data->name = name;
WriteChannelMessage(std::move(message));
}
void NodeChannel::SendChannelMessage(Channel::MessagePtr message) {
WriteChannelMessage(std::move(message));
}
void NodeChannel::Broadcast(Channel::MessagePtr message) {
DCHECK(!message->has_handles());
void* data;
Channel::MessagePtr broadcast_message = CreateMessage(
MessageType::BROADCAST_EVENT, message->data_num_bytes(), 0, &data);
memcpy(data, message->data(), message->data_num_bytes());
WriteChannelMessage(std::move(broadcast_message));
}
#if defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
void NodeChannel::RelayEventMessage(const ports::NodeName& destination,
Channel::MessagePtr message) {
#if defined(OS_WIN)
DCHECK(message->has_handles());
// Note that this is only used on Windows, and on Windows all platform
// handles are included in the message data. We blindly copy all the data
// here and the relay node (the broker) will duplicate handles as needed.
size_t num_bytes = sizeof(RelayEventMessageData) + message->data_num_bytes();
RelayEventMessageData* data;
Channel::MessagePtr relay_message =
CreateMessage(MessageType::RELAY_EVENT_MESSAGE, num_bytes, 0, &data);
data->destination = destination;
memcpy(data + 1, message->data(), message->data_num_bytes());
// When the handles are duplicated in the broker, the source handles will
// be closed. If the broker never receives this message then these handles
// will leak, but that means something else has probably broken and the
// sending process won't likely be around much longer.
//
// TODO(https://crbug.com/813112): We would like to be able to violate the
// above stated assumption. We should not leak handles in cases where we
// outlive the broker, as we may continue existing and eventually accept a new
// broker invitation.
std::vector<PlatformHandleInTransit> handles = message->TakeHandles();
for (auto& handle : handles)
handle.TakeHandle().release();
#else
DCHECK(message->has_mach_ports());
// On OSX, the handles are extracted from the relayed message and attached to
// the wrapper. The broker then takes the handles attached to the wrapper and
// moves them back to the relayed message. This is necessary because the
// message may contain fds which need to be attached to the outer message so
// that they can be transferred to the broker.
std::vector<PlatformHandleInTransit> handles = message->TakeHandles();
size_t num_bytes = sizeof(RelayEventMessageData) + message->data_num_bytes();
RelayEventMessageData* data;
Channel::MessagePtr relay_message = CreateMessage(
MessageType::RELAY_EVENT_MESSAGE, num_bytes, handles.size(), &data);
data->destination = destination;
memcpy(data + 1, message->data(), message->data_num_bytes());
relay_message->SetHandles(std::move(handles));
#endif // defined(OS_WIN)
WriteChannelMessage(std::move(relay_message));
}
void NodeChannel::EventMessageFromRelay(const ports::NodeName& source,
Channel::MessagePtr message) {
size_t num_bytes =
sizeof(EventMessageFromRelayData) + message->payload_size();
EventMessageFromRelayData* data;
Channel::MessagePtr relayed_message =
CreateMessage(MessageType::EVENT_MESSAGE_FROM_RELAY, num_bytes,
message->num_handles(), &data);
data->source = source;
if (message->payload_size())
memcpy(data + 1, message->payload(), message->payload_size());
relayed_message->SetHandles(message->TakeHandles());
WriteChannelMessage(std::move(relayed_message));
}
#endif // defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
NodeChannel::NodeChannel(Delegate* delegate,
ConnectionParams connection_params,
Channel::HandlePolicy channel_handle_policy,
scoped_refptr<base::TaskRunner> io_task_runner,
const ProcessErrorCallback& process_error_callback)
: delegate_(delegate),
io_task_runner_(io_task_runner),
process_error_callback_(process_error_callback)
#if !defined(OS_NACL_SFI)
,
channel_(Channel::Create(this,
std::move(connection_params),
channel_handle_policy,
io_task_runner_))
#endif
{
}
NodeChannel::~NodeChannel() {
ShutDown();
}
void NodeChannel::OnChannelMessage(const void* payload,
size_t payload_size,
std::vector<PlatformHandle> handles) {
DCHECK(io_task_runner_->RunsTasksInCurrentSequence());
RequestContext request_context(RequestContext::Source::SYSTEM);
// Ensure this NodeChannel stays alive through the extent of this method. The
// delegate may have the only other reference to this object and it may choose
// to drop it here in response to, e.g., a malformed message.
scoped_refptr<NodeChannel> keepalive = this;
if (payload_size <= sizeof(Header)) {
delegate_->OnChannelError(remote_node_name_, this);
return;
}
const Header* header = static_cast<const Header*>(payload);
switch (header->type) {
case MessageType::ACCEPT_INVITEE: {
const AcceptInviteeData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
delegate_->OnAcceptInvitee(remote_node_name_, data->inviter_name,
data->token);
return;
}
break;
}
case MessageType::ACCEPT_INVITATION: {
const AcceptInvitationData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
delegate_->OnAcceptInvitation(remote_node_name_, data->token,
data->invitee_name);
return;
}
break;
}
case MessageType::ADD_BROKER_CLIENT: {
const AddBrokerClientData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
#if defined(OS_WIN)
if (handles.size() != 1) {
DLOG(ERROR) << "Dropping invalid AddBrokerClient message.";
break;
}
delegate_->OnAddBrokerClient(remote_node_name_, data->client_name,
handles[0].ReleaseHandle());
#else
if (!handles.empty()) {
DLOG(ERROR) << "Dropping invalid AddBrokerClient message.";
break;
}
delegate_->OnAddBrokerClient(remote_node_name_, data->client_name,
data->process_handle);
#endif
return;
}
break;
}
case MessageType::BROKER_CLIENT_ADDED: {
const BrokerClientAddedData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
if (handles.size() != 1) {
DLOG(ERROR) << "Dropping invalid BrokerClientAdded message.";
break;
}
delegate_->OnBrokerClientAdded(remote_node_name_, data->client_name,
std::move(handles[0]));
return;
}
break;
}
case MessageType::ACCEPT_BROKER_CLIENT: {
const AcceptBrokerClientData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
PlatformHandle broker_channel;
if (handles.size() > 1) {
DLOG(ERROR) << "Dropping invalid AcceptBrokerClient message.";
break;
}
if (handles.size() == 1)
broker_channel = std::move(handles[0]);
delegate_->OnAcceptBrokerClient(remote_node_name_, data->broker_name,
std::move(broker_channel));
return;
}
break;
}
case MessageType::EVENT_MESSAGE: {
Channel::MessagePtr message(
new Channel::Message(payload_size, handles.size()));
message->SetHandles(std::move(handles));
memcpy(message->mutable_payload(), payload, payload_size);
delegate_->OnEventMessage(remote_node_name_, std::move(message));
return;
}
case MessageType::REQUEST_PORT_MERGE: {
const RequestPortMergeData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
// Don't accept an empty token.
size_t token_size = payload_size - sizeof(*data) - sizeof(Header);
if (token_size == 0)
break;
std::string token(reinterpret_cast<const char*>(data + 1), token_size);
delegate_->OnRequestPortMerge(remote_node_name_,
data->connector_port_name, token);
return;
}
break;
}
case MessageType::REQUEST_INTRODUCTION: {
const IntroductionData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
delegate_->OnRequestIntroduction(remote_node_name_, data->name);
return;
}
break;
}
case MessageType::INTRODUCE: {
const IntroductionData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
if (handles.size() > 1) {
DLOG(ERROR) << "Dropping invalid introduction message.";
break;
}
PlatformHandle channel_handle;
if (handles.size() == 1)
channel_handle = std::move(handles[0]);
delegate_->OnIntroduce(remote_node_name_, data->name,
std::move(channel_handle));
return;
}
break;
}
#if defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
case MessageType::RELAY_EVENT_MESSAGE: {
base::ProcessHandle from_process;
{
base::AutoLock lock(remote_process_handle_lock_);
// NOTE: It's safe to retain a weak reference to this process handle
// through the extent of this call because |this| is kept alive and
// |remote_process_handle_| is never reset once set.
from_process = remote_process_handle_.get();
}
const RelayEventMessageData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
// Don't try to relay an empty message.
if (payload_size <= sizeof(Header) + sizeof(RelayEventMessageData))
break;
const void* message_start = data + 1;
Channel::MessagePtr message = Channel::Message::Deserialize(
message_start, payload_size - sizeof(Header) - sizeof(*data),
from_process);
if (!message) {
DLOG(ERROR) << "Dropping invalid relay message.";
break;
}
#if defined(OS_MACOSX) && !defined(OS_IOS)
message->SetHandles(std::move(handles));
#endif
delegate_->OnRelayEventMessage(remote_node_name_, from_process,
data->destination, std::move(message));
return;
}
break;
}
#endif
case MessageType::BROADCAST_EVENT: {
if (payload_size <= sizeof(Header))
break;
const void* data = static_cast<const void*>(
reinterpret_cast<const Header*>(payload) + 1);
Channel::MessagePtr message =
Channel::Message::Deserialize(data, payload_size - sizeof(Header));
if (!message || message->has_handles()) {
DLOG(ERROR) << "Dropping invalid broadcast message.";
break;
}
delegate_->OnBroadcast(remote_node_name_, std::move(message));
return;
}
#if defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
case MessageType::EVENT_MESSAGE_FROM_RELAY:
const EventMessageFromRelayData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
size_t num_bytes = payload_size - sizeof(*data);
if (num_bytes < sizeof(Header))
break;
num_bytes -= sizeof(Header);
Channel::MessagePtr message(
new Channel::Message(num_bytes, handles.size()));
message->SetHandles(std::move(handles));
if (num_bytes)
memcpy(message->mutable_payload(), data + 1, num_bytes);
delegate_->OnEventMessageFromRelay(remote_node_name_, data->source,
std::move(message));
return;
}
break;
#endif // defined(OS_WIN) || (defined(OS_MACOSX) && !defined(OS_IOS))
case MessageType::ACCEPT_PEER: {
const AcceptPeerData* data;
if (GetMessagePayload(payload, payload_size, &data)) {
delegate_->OnAcceptPeer(remote_node_name_, data->token, data->peer_name,
data->port_name);
return;
}
break;
}
default:
// Ignore unrecognized message types, allowing for future extensibility.
return;
}
DLOG(ERROR) << "Received invalid message. Closing channel.";
if (process_error_callback_)
process_error_callback_.Run("NodeChannel received a malformed message");
delegate_->OnChannelError(remote_node_name_, this);
}
void NodeChannel::OnChannelError(Channel::Error error) {
DCHECK(io_task_runner_->RunsTasksInCurrentSequence());
RequestContext request_context(RequestContext::Source::SYSTEM);
ShutDown();
if (process_error_callback_ &&
error == Channel::Error::kReceivedMalformedData) {
process_error_callback_.Run("Channel received a malformed message");
}
// |OnChannelError()| may cause |this| to be destroyed, but still need access
// to the name after that destruction. So make a copy of
// |remote_node_name_| so it can be used if |this| becomes destroyed.
ports::NodeName node_name = remote_node_name_;
delegate_->OnChannelError(node_name, this);
}
void NodeChannel::WriteChannelMessage(Channel::MessagePtr message) {
// Force a crash if this process attempts to send a message larger than the
// maximum allowed size. This is more useful than killing a Channel when we
// *receive* an oversized message, as we should consider oversized message
// transmission to be a bug and this helps easily identify offending code.
CHECK_LT(message->data_num_bytes(), GetConfiguration().max_message_num_bytes);
base::AutoLock lock(channel_lock_);
if (!channel_)
DLOG(ERROR) << "Dropping message on closed channel.";
else
channel_->Write(std::move(message));
}
} // namespace core
} // namespace mojo