blob: 8431bc0dd92f22a1afd89607a3018c76aceb137f [file] [log] [blame]
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <string>
#include <map>
#include "sandbox/win/src/policy_low_level.h"
#include "base/basictypes.h"
namespace {
// A single rule can use at most this amount of memory.
const size_t kRuleBufferSize = 1024*4;
// The possible states of the string matching opcode generator.
enum {
PENDING_NONE,
PENDING_ASTERISK, // Have seen an '*' but have not generated an opcode.
PENDING_QMARK, // Have seen an '?' but have not generated an opcode.
};
// The category of the last character seen by the string matching opcode
// generator.
const uint32 kLastCharIsNone = 0;
const uint32 kLastCharIsAlpha = 1;
const uint32 kLastCharIsWild = 2;
const uint32 kLastCharIsAsterisk = kLastCharIsWild + 4;
const uint32 kLastCharIsQuestionM = kLastCharIsWild + 8;
}
namespace sandbox {
// Adding a rule is nothing more than pushing it into an stl container. Done()
// is called for the rule in case the code that made the rule in the first
// place has not done it.
bool LowLevelPolicy::AddRule(int service, PolicyRule* rule) {
if (!rule->Done()) {
return false;
}
PolicyRule* local_rule = new PolicyRule(*rule);
RuleNode node = {local_rule, service};
rules_.push_back(node);
return true;
}
LowLevelPolicy::~LowLevelPolicy() {
// Delete all the rules.
typedef std::list<RuleNode> RuleNodes;
for (RuleNodes::iterator it = rules_.begin(); it != rules_.end(); ++it) {
delete it->rule;
}
}
// Here is where the heavy byte shuffling is done. We take all the rules and
// 'compile' them into a single memory region. Now, the rules are in random
// order so the first step is to reorganize them into a stl map that is keyed
// by the service id and as a value contains a list with all the rules that
// belong to that service. Then we enter the big for-loop where we carve a
// memory zone for the opcodes and the data and call RebindCopy on each rule
// so they all end up nicely packed in the policy_store_.
bool LowLevelPolicy::Done() {
typedef std::list<RuleNode> RuleNodes;
typedef std::list<const PolicyRule*> RuleList;
typedef std::map<uint32, RuleList> Mmap;
Mmap mmap;
for (RuleNodes::iterator it = rules_.begin(); it != rules_.end(); ++it) {
mmap[it->service].push_back(it->rule);
}
PolicyBuffer* current_buffer = &policy_store_->data[0];
char* buffer_end = reinterpret_cast<char*>(current_buffer) +
policy_store_->data_size;
size_t avail_size = policy_store_->data_size;
for (Mmap::iterator it = mmap.begin(); it != mmap.end(); ++it) {
uint32 service = (*it).first;
if (service >= kMaxServiceCount) {
return false;
}
policy_store_->entry[service] = current_buffer;
RuleList::iterator rules_it = (*it).second.begin();
RuleList::iterator rules_it_end = (*it).second.end();
size_t svc_opcode_count = 0;
for (; rules_it != rules_it_end; ++rules_it) {
const PolicyRule* rule = (*rules_it);
size_t op_count = rule->GetOpcodeCount();
size_t opcodes_size = op_count * sizeof(PolicyOpcode);
if (avail_size < opcodes_size) {
return false;
}
size_t data_size = avail_size - opcodes_size;
PolicyOpcode* opcodes_start = &current_buffer->opcodes[svc_opcode_count];
if (!rule->RebindCopy(opcodes_start, opcodes_size,
buffer_end, &data_size)) {
return false;
}
size_t used = avail_size - data_size;
buffer_end -= used;
avail_size -= used;
svc_opcode_count += op_count;
}
current_buffer->opcode_count += svc_opcode_count;
size_t policy_byte_count = (svc_opcode_count * sizeof(PolicyOpcode))
/ sizeof(current_buffer[0]);
current_buffer = &current_buffer[policy_byte_count + 1];
}
return true;
}
PolicyRule::PolicyRule(EvalResult action)
: action_(action), done_(false) {
char* memory = new char[sizeof(PolicyBuffer) + kRuleBufferSize];
buffer_ = reinterpret_cast<PolicyBuffer*>(memory);
buffer_->opcode_count = 0;
opcode_factory_ = new OpcodeFactory(buffer_,
kRuleBufferSize + sizeof(PolicyOpcode));
}
PolicyRule::PolicyRule(const PolicyRule& other) {
if (this == &other)
return;
action_ = other.action_;
done_ = other.done_;
size_t buffer_size = sizeof(PolicyBuffer) + kRuleBufferSize;
char* memory = new char[buffer_size];
buffer_ = reinterpret_cast<PolicyBuffer*>(memory);
memcpy(buffer_, other.buffer_, buffer_size);
char* opcode_buffer = reinterpret_cast<char*>(&buffer_->opcodes[0]);
char* buffer_end = &opcode_buffer[kRuleBufferSize + sizeof(PolicyOpcode)];
char* next_opcode = &opcode_buffer[GetOpcodeCount() * sizeof(PolicyOpcode)];
opcode_factory_ = new OpcodeFactory(next_opcode, buffer_end - next_opcode);
}
// This function get called from a simple state machine implemented in
// AddStringMatch() which passes the current state (in state) and it passes
// true in last_call if AddStringMatch() has finished processing the input
// pattern string and this would be the last call to generate any pending
// opcode. The skip_count is the currently accumulated number of '?' seen so
// far and once the associated opcode is generated this function sets it back
// to zero.
bool PolicyRule::GenStringOpcode(RuleType rule_type,
StringMatchOptions match_opts,
uint16 parameter, int state, bool last_call,
int* skip_count, std::wstring* fragment) {
// The last opcode must:
// 1) Always clear the context.
// 2) Preserve the negation.
// 3) Remove the 'OR' mode flag.
uint32 options = kPolNone;
if (last_call) {
if (IF_NOT == rule_type) {
options = kPolClearContext | kPolNegateEval;
} else {
options = kPolClearContext;
}
} else if (IF_NOT == rule_type) {
options = kPolUseOREval | kPolNegateEval;
}
PolicyOpcode* op = NULL;
// The fragment string contains the accumulated characters to match with, it
// never contains wildcards (unless they have been escaped) and while there
// is no fragment there is no new string match opcode to generate.
if (fragment->empty()) {
// There is no new opcode to generate but in the last call we have to fix
// the previous opcode because it was really the last but we did not know
// it at that time.
if (last_call && (buffer_->opcode_count > 0)) {
op = &buffer_->opcodes[buffer_->opcode_count - 1];
op->SetOptions(options);
}
return true;
}
if (PENDING_ASTERISK == state) {
if (last_call) {
op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(),
kSeekToEnd, match_opts,
options);
} else {
op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(),
kSeekForward, match_opts,
options);
}
} else if (PENDING_QMARK == state) {
op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(),
*skip_count, match_opts, options);
*skip_count = 0;
} else {
if (last_call) {
match_opts = static_cast<StringMatchOptions>(EXACT_LENGHT | match_opts);
}
op = opcode_factory_->MakeOpWStringMatch(parameter, fragment->c_str(), 0,
match_opts, options);
}
if (NULL == op) {
return false;
}
++buffer_->opcode_count;
fragment->clear();
return true;
}
bool PolicyRule::AddStringMatch(RuleType rule_type, int16 parameter,
const wchar_t* string,
StringMatchOptions match_opts) {
if (done_) {
// Do not allow to add more rules after generating the action opcode.
return false;
}
const wchar_t* current_char = string;
uint32 last_char = kLastCharIsNone;
int state = PENDING_NONE;
int skip_count = 0; // counts how many '?' we have seen in a row.
std::wstring fragment; // accumulates the non-wildcard part of the string.
while (L'\0' != *current_char) {
switch (*current_char) {
case L'*':
if (kLastCharIsWild & last_char) {
// '**' and '&*' is an error.
return false;
}
if (!GenStringOpcode(rule_type, match_opts, parameter,
state, false, &skip_count, &fragment)) {
return false;
}
last_char = kLastCharIsAsterisk;
state = PENDING_ASTERISK;
break;
case L'?':
if (kLastCharIsAsterisk == last_char) {
// '*?' is an error.
return false;
}
if (!GenStringOpcode(rule_type, match_opts, parameter,
state, false, &skip_count, &fragment)) {
return false;
}
++skip_count;
last_char = kLastCharIsQuestionM;
state = PENDING_QMARK;
break;
case L'/':
// Note: "/?" is an escaped '?'. Eat the slash and fall through.
if (L'?' == current_char[1]) {
++current_char;
}
default:
fragment += *current_char;
last_char = kLastCharIsAlpha;
}
++current_char;
}
if (!GenStringOpcode(rule_type, match_opts, parameter,
state, true, &skip_count, &fragment)) {
return false;
}
return true;
}
bool PolicyRule::AddNumberMatch(RuleType rule_type, int16 parameter,
unsigned long number, RuleOp comparison_op) {
if (done_) {
// Do not allow to add more rules after generating the action opcode.
return false;
}
uint32 opts = (rule_type == IF_NOT)? kPolNegateEval : kPolNone;
if (EQUAL == comparison_op) {
if (NULL == opcode_factory_->MakeOpNumberMatch(parameter, number, opts)) {
return false;
}
} else if (AND == comparison_op) {
if (NULL == opcode_factory_->MakeOpUlongAndMatch(parameter, number, opts)) {
return false;
}
}
++buffer_->opcode_count;
return true;
}
bool PolicyRule::Done() {
if (done_) {
return true;
}
if (NULL == opcode_factory_->MakeOpAction(action_, kPolNone)) {
return false;
}
++buffer_->opcode_count;
done_ = true;
return true;
}
bool PolicyRule::RebindCopy(PolicyOpcode* opcode_start, size_t opcode_size,
char* data_start, size_t* data_size) const {
size_t count = buffer_->opcode_count;
for (size_t ix = 0; ix != count; ++ix) {
if (opcode_size < sizeof(PolicyOpcode)) {
return false;
}
PolicyOpcode& opcode = buffer_->opcodes[ix];
*opcode_start = opcode;
if (OP_WSTRING_MATCH == opcode.GetID()) {
// For this opcode argument 0 is a delta to the string and argument 1
// is the length (in chars) of the string.
const wchar_t* str = opcode.GetRelativeString(0);
size_t str_len;
opcode.GetArgument(1, &str_len);
str_len = str_len * sizeof(wchar_t);
if ((*data_size) < str_len) {
return false;
}
*data_size -= str_len;
data_start -= str_len;
memcpy(data_start, str, str_len);
// Recompute the string displacement
ptrdiff_t delta = data_start - reinterpret_cast<char*>(opcode_start);
opcode_start->SetArgument(0, delta);
}
++opcode_start;
opcode_size -= sizeof(PolicyOpcode);
}
return true;
}
PolicyRule::~PolicyRule() {
delete [] reinterpret_cast<char*>(buffer_);
delete opcode_factory_;
}
} // namespace sandbox