blob: d4b89dda44bc72a38f280d5c5ca7654b2ec6de7d [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/animation/keyframe_model.h"
#include <cmath>
#include "base/memory/ptr_util.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/trace_event.h"
#include "cc/animation/animation_curve.h"
namespace {
// This should match the RunState enum.
static const char* const s_runStateNames[] = {"WAITING_FOR_TARGET_AVAILABILITY",
"WAITING_FOR_DELETION",
"STARTING",
"RUNNING",
"PAUSED",
"FINISHED",
"ABORTED",
"ABORTED_BUT_NEEDS_COMPLETION"};
static_assert(static_cast<int>(cc::KeyframeModel::LAST_RUN_STATE) + 1 ==
base::size(s_runStateNames),
"RunStateEnumSize should equal the number of elements in "
"s_runStateNames");
static const char* const s_curveTypeNames[] = {
"COLOR", "FLOAT", "TRANSFORM", "FILTER", "SCROLL_OFFSET", "SIZE"};
static_assert(static_cast<int>(cc::AnimationCurve::LAST_CURVE_TYPE) + 1 ==
base::size(s_curveTypeNames),
"CurveType enum should equal the number of elements in "
"s_runStateNames");
} // namespace
namespace cc {
std::string KeyframeModel::ToString(RunState state) {
return s_runStateNames[state];
}
std::unique_ptr<KeyframeModel> KeyframeModel::Create(
std::unique_ptr<AnimationCurve> curve,
int keyframe_model_id,
int group_id,
int target_property_id) {
return base::WrapUnique(new KeyframeModel(std::move(curve), keyframe_model_id,
group_id, target_property_id));
}
std::unique_ptr<KeyframeModel> KeyframeModel::CreateImplInstance(
RunState initial_run_state) const {
// Should never clone a model that is the controlling instance as it ends up
// creating multiple controlling instances.
DCHECK(!is_controlling_instance_);
std::unique_ptr<KeyframeModel> to_return(
new KeyframeModel(curve_->Clone(), id_, group_, target_property_id_));
to_return->element_id_ = element_id_;
to_return->run_state_ = initial_run_state;
to_return->iterations_ = iterations_;
to_return->iteration_start_ = iteration_start_;
to_return->start_time_ = start_time_;
to_return->pause_time_ = pause_time_;
to_return->total_paused_duration_ = total_paused_duration_;
to_return->time_offset_ = time_offset_;
to_return->direction_ = direction_;
to_return->playback_rate_ = playback_rate_;
to_return->fill_mode_ = fill_mode_;
DCHECK(!to_return->is_controlling_instance_);
to_return->is_controlling_instance_ = true;
return to_return;
}
KeyframeModel::KeyframeModel(std::unique_ptr<AnimationCurve> curve,
int keyframe_model_id,
int group_id,
int target_property_id)
: curve_(std::move(curve)),
id_(keyframe_model_id),
group_(group_id),
target_property_id_(target_property_id),
run_state_(WAITING_FOR_TARGET_AVAILABILITY),
iterations_(1),
iteration_start_(0),
direction_(Direction::NORMAL),
playback_rate_(1),
fill_mode_(FillMode::BOTH),
needs_synchronized_start_time_(false),
received_finished_event_(false),
is_controlling_instance_(false),
is_impl_only_(false),
affects_active_elements_(true),
affects_pending_elements_(true) {}
KeyframeModel::~KeyframeModel() {
if (run_state_ == RUNNING || run_state_ == PAUSED)
SetRunState(ABORTED, base::TimeTicks());
}
void KeyframeModel::SetRunState(RunState run_state,
base::TimeTicks monotonic_time) {
char name_buffer[256];
base::snprintf(name_buffer, sizeof(name_buffer), "%s-%d-%d",
s_curveTypeNames[curve_->Type()], target_property_id_, group_);
bool is_waiting_to_start =
run_state_ == WAITING_FOR_TARGET_AVAILABILITY || run_state_ == STARTING;
if (is_controlling_instance_ && is_waiting_to_start && run_state == RUNNING) {
TRACE_EVENT_ASYNC_BEGIN1("cc", "KeyframeModel", this, "Name",
TRACE_STR_COPY(name_buffer));
}
bool was_finished = is_finished();
const char* old_run_state_name = s_runStateNames[run_state_];
if (run_state == RUNNING && run_state_ == PAUSED)
total_paused_duration_ += (monotonic_time - pause_time_);
else if (run_state == PAUSED)
pause_time_ = monotonic_time;
run_state_ = run_state;
const char* new_run_state_name = s_runStateNames[run_state];
if (is_controlling_instance_ && !was_finished && is_finished())
TRACE_EVENT_ASYNC_END0("cc", "KeyframeModel", this);
char state_buffer[256];
base::snprintf(state_buffer, sizeof(state_buffer), "%s->%s",
old_run_state_name, new_run_state_name);
TRACE_EVENT_INSTANT2(
"cc", "ElementAnimations::SetRunState", TRACE_EVENT_SCOPE_THREAD, "Name",
TRACE_STR_COPY(name_buffer), "State", TRACE_STR_COPY(state_buffer));
}
void KeyframeModel::Pause(base::TimeDelta pause_offset) {
// Convert pause offset which is in local time to monotonic time.
// TODO(yigu): This should be scaled by playbackrate. http://crbug.com/912407
base::TimeTicks monotonic_time =
pause_offset + start_time_ + total_paused_duration_;
SetRunState(PAUSED, monotonic_time);
}
bool KeyframeModel::IsFinishedAt(base::TimeTicks monotonic_time) const {
if (is_finished())
return true;
if (needs_synchronized_start_time_)
return false;
if (playback_rate_ == 0)
return false;
return run_state_ == RUNNING && iterations_ >= 0 &&
(curve_->Duration() * (iterations_ / std::abs(playback_rate_))) <=
(ConvertMonotonicTimeToLocalTime(monotonic_time) + time_offset_);
}
KeyframeModel::Phase KeyframeModel::CalculatePhaseForTesting(
base::TimeDelta local_time) const {
return CalculatePhase(local_time);
}
KeyframeModel::Phase KeyframeModel::CalculatePhase(
base::TimeDelta local_time) const {
base::TimeDelta opposite_time_offset = time_offset_ == base::TimeDelta::Min()
? base::TimeDelta::Max()
: -time_offset_;
base::TimeDelta before_active_boundary_time =
std::max(opposite_time_offset, base::TimeDelta());
if (local_time < before_active_boundary_time ||
(local_time == before_active_boundary_time && playback_rate_ < 0)) {
return KeyframeModel::Phase::BEFORE;
}
// Scaling the duration is against spec but needed to comply with the cc
// implementation. By spec (in blink) the playback rate is an Animation level
// concept but in cc it's per KeyframeModel. We grab the active time
// calculated here and later scale it with the playback rate in order to get a
// proper progress. Therefore we need to un-scale it here. This can be fixed
// once we scale the local time by playback rate. See
// https://crbug.com/912407.
base::TimeDelta active_duration =
curve_->Duration() * iterations_ / std::abs(playback_rate_);
// TODO(crbug.com/909794): By spec end time = max(start delay + duration +
// end delay, 0). The logic should be updated once "end delay" is supported.
base::TimeDelta active_after_boundary_time =
// Negative iterations_ represents "infinite iterations".
iterations_ >= 0
? std::max(opposite_time_offset + active_duration, base::TimeDelta())
: base::TimeDelta::Max();
if (local_time > active_after_boundary_time ||
(local_time == active_after_boundary_time && playback_rate_ > 0)) {
return KeyframeModel::Phase::AFTER;
}
return KeyframeModel::Phase::ACTIVE;
}
base::Optional<base::TimeDelta> KeyframeModel::CalculateActiveTime(
base::TimeTicks monotonic_time) const {
base::TimeDelta local_time = ConvertMonotonicTimeToLocalTime(monotonic_time);
KeyframeModel::Phase phase = CalculatePhase(local_time);
DCHECK(playback_rate_);
switch (phase) {
case KeyframeModel::Phase::BEFORE:
if (fill_mode_ == FillMode::BACKWARDS || fill_mode_ == FillMode::BOTH)
return std::max(local_time + time_offset_, base::TimeDelta());
return base::nullopt;
case KeyframeModel::Phase::ACTIVE:
return local_time + time_offset_;
case KeyframeModel::Phase::AFTER:
if (fill_mode_ == FillMode::FORWARDS || fill_mode_ == FillMode::BOTH) {
DCHECK_GE(iterations_, 0);
base::TimeDelta active_duration =
curve_->Duration() * iterations_ / std::abs(playback_rate_);
return std::max(std::min(local_time + time_offset_, active_duration),
base::TimeDelta());
}
return base::nullopt;
default:
NOTREACHED();
return base::nullopt;
}
}
bool KeyframeModel::InEffect(base::TimeTicks monotonic_time) const {
return CalculateActiveTime(monotonic_time).has_value();
}
// TODO(yigu): Local time should be scaled by playback rate by spec.
// https://crbug.com/912407.
base::TimeDelta KeyframeModel::ConvertMonotonicTimeToLocalTime(
base::TimeTicks monotonic_time) const {
// When waiting on receiving a start time, then our global clock is 'stuck' at
// the initial state.
if ((run_state_ == STARTING && !has_set_start_time()) ||
needs_synchronized_start_time())
return base::TimeDelta();
// If we're paused, time is 'stuck' at the pause time.
base::TimeTicks time = (run_state_ == PAUSED) ? pause_time_ : monotonic_time;
return time - start_time_ - total_paused_duration_;
}
base::TimeDelta KeyframeModel::TrimTimeToCurrentIteration(
base::TimeTicks monotonic_time) const {
DCHECK(playback_rate_);
DCHECK_GE(iteration_start_, 0);
DCHECK(InEffect(monotonic_time));
base::TimeDelta active_time = CalculateActiveTime(monotonic_time).value();
base::TimeDelta start_offset = curve_->Duration() * iteration_start_;
// Return start offset if we are before the start of the keyframe model
if (active_time < base::TimeDelta())
return start_offset;
// Always return zero if we have no iterations.
if (!iterations_)
return base::TimeDelta();
// Don't attempt to trim if we have no duration.
if (curve_->Duration() <= base::TimeDelta())
return base::TimeDelta();
base::TimeDelta repeated_duration = curve_->Duration() * iterations_;
base::TimeDelta active_duration =
repeated_duration / std::abs(playback_rate_);
// Calculate the scaled active time
base::TimeDelta scaled_active_time;
if (playback_rate_ < 0) {
scaled_active_time =
((active_time - active_duration) * playback_rate_) + start_offset;
} else {
scaled_active_time = (active_time * playback_rate_) + start_offset;
}
// Calculate the iteration time
base::TimeDelta iteration_time;
if (scaled_active_time - start_offset == repeated_duration &&
fmod(iterations_ + iteration_start_, 1) == 0)
iteration_time = curve_->Duration();
else
iteration_time = scaled_active_time % curve_->Duration();
// Calculate the current iteration
int iteration;
if (scaled_active_time <= base::TimeDelta())
iteration = 0;
else if (iteration_time == curve_->Duration())
iteration = ceil(iteration_start_ + iterations_ - 1);
else
iteration = static_cast<int>(scaled_active_time / curve_->Duration());
// Check if we are running the keyframe model in reverse direction for the
// current iteration
bool reverse =
(direction_ == Direction::REVERSE) ||
(direction_ == Direction::ALTERNATE_NORMAL && iteration % 2 == 1) ||
(direction_ == Direction::ALTERNATE_REVERSE && iteration % 2 == 0);
// If we are running the keyframe model in reverse direction, reverse the
// result
if (reverse)
iteration_time = curve_->Duration() - iteration_time;
return iteration_time;
}
void KeyframeModel::PushPropertiesTo(KeyframeModel* other) const {
other->element_id_ = element_id_;
if (run_state_ == KeyframeModel::PAUSED ||
other->run_state_ == KeyframeModel::PAUSED) {
other->run_state_ = run_state_;
other->pause_time_ = pause_time_;
other->total_paused_duration_ = total_paused_duration_;
}
}
std::string KeyframeModel::ToString() const {
return base::StringPrintf(
"KeyframeModel{id=%d, group=%d, target_property_id=%d, "
"run_state=%s}",
id_, group_, target_property_id_,
KeyframeModel::ToString(run_state_).c_str());
}
void KeyframeModel::SetIsImplOnly() {
is_impl_only_ = true;
// Impl only animations have a single instance which by definition is the
// controlling instance.
is_controlling_instance_ = true;
}
} // namespace cc