blob: ccfc88dcb30e860cdd32d6f6e10e016593ed289e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SANDBOX_LINUX_SECCOMP_BPF_SYSCALL_H__
#define SANDBOX_LINUX_SECCOMP_BPF_SYSCALL_H__
#include <signal.h>
#include <stdint.h>
#include "base/macros.h"
#include "sandbox/linux/system_headers/linux_signal.h"
#include "sandbox/sandbox_export.h"
namespace sandbox {
// This purely static class can be used to perform system calls with some
// low-level control.
class SANDBOX_EXPORT Syscall {
public:
// InvalidCall() invokes Call() with a platform-appropriate syscall
// number that is guaranteed to not be implemented (i.e., normally
// returns -ENOSYS).
// This is primarily meant to be useful for writing sandbox policy
// unit tests.
static intptr_t InvalidCall();
// System calls can take up to six parameters (up to eight on some
// architectures). Traditionally, glibc
// implements this property by using variadic argument lists. This works, but
// confuses modern tools such as valgrind, because we are nominally passing
// uninitialized data whenever we call through this function and pass less
// than the full six arguments.
// So, instead, we use C++'s template system to achieve a very similar
// effect. C++ automatically sets the unused parameters to zero for us, and
// it also does the correct type expansion (e.g. from 32bit to 64bit) where
// necessary.
// We have to use C-style cast operators as we want to be able to accept both
// integer and pointer types.
template <class T0,
class T1,
class T2,
class T3,
class T4,
class T5,
class T6,
class T7>
static inline intptr_t
Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4, T5 p5, T6 p6, T7 p7) {
return Call(nr,
(intptr_t)p0,
(intptr_t)p1,
(intptr_t)p2,
(intptr_t)p3,
(intptr_t)p4,
(intptr_t)p5,
(intptr_t)p6,
(intptr_t)p7);
}
template <class T0,
class T1,
class T2,
class T3,
class T4,
class T5,
class T6>
static inline intptr_t
Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4, T5 p5, T6 p6) {
return Call(nr,
(intptr_t)p0,
(intptr_t)p1,
(intptr_t)p2,
(intptr_t)p3,
(intptr_t)p4,
(intptr_t)p5,
(intptr_t)p6,
0);
}
template <class T0, class T1, class T2, class T3, class T4, class T5>
static inline intptr_t
Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4, T5 p5) {
return Call(nr,
(intptr_t)p0,
(intptr_t)p1,
(intptr_t)p2,
(intptr_t)p3,
(intptr_t)p4,
(intptr_t)p5,
0,
0);
}
template <class T0, class T1, class T2, class T3, class T4>
static inline intptr_t Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3, T4 p4) {
return Call(nr, p0, p1, p2, p3, p4, 0, 0, 0);
}
template <class T0, class T1, class T2, class T3>
static inline intptr_t Call(int nr, T0 p0, T1 p1, T2 p2, T3 p3) {
return Call(nr, p0, p1, p2, p3, 0, 0, 0, 0);
}
template <class T0, class T1, class T2>
static inline intptr_t Call(int nr, T0 p0, T1 p1, T2 p2) {
return Call(nr, p0, p1, p2, 0, 0, 0, 0, 0);
}
template <class T0, class T1>
static inline intptr_t Call(int nr, T0 p0, T1 p1) {
return Call(nr, p0, p1, 0, 0, 0, 0, 0, 0);
}
template <class T0>
static inline intptr_t Call(int nr, T0 p0) {
return Call(nr, p0, 0, 0, 0, 0, 0, 0, 0);
}
static inline intptr_t Call(int nr) {
return Call(nr, 0, 0, 0, 0, 0, 0, 0, 0);
}
// Set the registers in |ctx| to match what they would be after a system call
// returning |ret_val|. |ret_val| must follow the Syscall::Call() convention
// of being -errno on errors.
static void PutValueInUcontext(intptr_t ret_val, ucontext_t* ctx);
private:
// This performs system call |nr| with the arguments p0 to p7 from a constant
// userland address, which is for instance observable by seccomp-bpf filters.
// The constant userland address from which these system calls are made will
// be returned if |nr| is passed as -1.
// On error, this function will return a value between -1 and -4095 which
// should be interpreted as -errno.
static intptr_t Call(int nr,
intptr_t p0,
intptr_t p1,
intptr_t p2,
intptr_t p3,
intptr_t p4,
intptr_t p5,
intptr_t p6,
intptr_t p7);
#if defined(__mips__)
// This function basically does on MIPS what SandboxSyscall() is doing on
// other architectures. However, because of specificity of MIPS regarding
// handling syscall errors, SandboxSyscall() is made as a wrapper for this
// function in order for SandboxSyscall() to behave more like on other
// architectures on places where return value from SandboxSyscall() is used
// directly (like in most tests).
// The syscall "nr" is called with arguments that are set in an array on which
// pointer "args" points to and an information weather there is an error or no
// is returned to SandboxSyscall() by err_stat.
static intptr_t SandboxSyscallRaw(int nr,
const intptr_t* args,
intptr_t* err_stat);
#endif // defined(__mips__)
DISALLOW_IMPLICIT_CONSTRUCTORS(Syscall);
};
} // namespace sandbox
#endif // SANDBOX_LINUX_SECCOMP_BPF_SYSCALL_H__