blob: 3a19c29ac3d4545fad75b15e5b4918ccda113e50 [file] [log] [blame]
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CC_BASE_RTREE_H_
#define CC_BASE_RTREE_H_
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include "cc/base/base_export.h"
#include "ui/gfx/geometry/rect.h"
namespace cc {
// The following description and most of the implementation is borrowed from
// Skia's SkRTree implementation.
// An R-Tree implementation. In short, it is a balanced n-ary tree containing a
// hierarchy of bounding rectangles.
// It only supports bulk-loading, i.e. creation from a batch of bounding
// rectangles. This performs a bottom-up bulk load using the STR
// (sort-tile-recursive) algorithm.
// Things to do: Experiment with other bulk-load algorithms (in particular the
// Hilbert pack variant, which groups rects by position on the Hilbert curve, is
// probably worth a look). There also exist top-down bulk load variants
// (VAMSplit, TopDownGreedy, etc).
// For more details see:
// Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990).
// "The R*-tree: an efficient and robust access method for points and
// rectangles"
class CC_BASE_EXPORT RTree {
template <typename Container, typename Functor>
void Build(const Container& items, const Functor& bounds_getter) {
DCHECK_EQ(0u, num_data_elements_);
std::vector<Branch> branches;
for (size_t i = 0; i < items.size(); i++) {
const gfx::Rect& bounds = bounds_getter(items[i]);
if (bounds.IsEmpty())
Branch& branch = branches.back();
branch.bounds = bounds;
branch.index = i;
num_data_elements_ = branches.size();
if (num_data_elements_ == 1u) {
Node* node = AllocateNodeAtLevel(0);
node->num_children = 1;
node->children[0] = branches[0];
root_.subtree = node;
root_.bounds = branches[0].bounds;
} else if (num_data_elements_ > 1u) {
// Determine a reasonable upper bound on the number of nodes to prevent
// reallocations. This is basically (n**d - 1) / (n - 1), which is the
// number of nodes in a complete tree with n branches at each node. In the
// code n = |branch_count|, d = |depth|. However, we normally would have
// kMaxChildren branch factor, but that can be broken if some children
// don't have enough nodes. That can happen for at most kMinChildren nodes
// (since otherwise, we'd create a new node).
size_t branch_count = kMaxChildren;
double depth = log(branches.size()) / log(branch_count);
size_t node_count =
static_cast<size_t>((std::pow(branch_count, depth) - 1) /
(branch_count - 1)) +
root_ = BuildRecursive(&branches, 0);
// We should've wasted at most kMinChildren nodes.
DCHECK_LE(nodes_.capacity() - nodes_.size(),
template <typename Container>
void Build(const Container& items) {
Build(items, [](const gfx::Rect& bounds) { return bounds; });
void Search(const gfx::Rect& query, std::vector<size_t>* results) const;
gfx::Rect GetBounds() const;
// These values were empirically determined to produce reasonable performance
// in most cases.
enum { kMinChildren = 6 };
enum { kMaxChildren = 11 };
struct Node;
struct Branch {
// When the node level is 0, then the node is a leaf and the branch has a
// valid index pointing to an element in the vector that was used to build
// this rtree. When the level is not 0, it's an internal node and it has a
// valid subtree pointer.
union {
Node* subtree;
size_t index;
gfx::Rect bounds;
struct Node {
uint16_t num_children;
uint16_t level;
Branch children[kMaxChildren];
void SearchRecursive(Node* root,
const gfx::Rect& query,
std::vector<size_t>* results) const;
// Consumes the input array.
Branch BuildRecursive(std::vector<Branch>* branches, int level);
Node* AllocateNodeAtLevel(int level);
// This is the count of data elements (rather than total nodes in the tree)
size_t num_data_elements_;
Branch root_;
std::vector<Node> nodes_;
} // namespace cc
#endif // CC_BASE_RTREE_H_