blob: 344205714c4b8b6242f423a01f8ff28d1e2f952b [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/raster/raster_source.h"
#include <stddef.h>
#include <memory>
#include "cc/test/fake_recording_source.h"
#include "cc/test/skia_common.h"
#include "cc/tiles/software_image_decode_cache.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkPixelRef.h"
#include "third_party/skia/include/core/SkRefCnt.h"
#include "third_party/skia/include/core/SkShader.h"
#include "ui/gfx/geometry/axis_transform2d.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size_conversions.h"
namespace cc {
namespace {
gfx::ColorSpace ColorSpaceForTesting() {
return gfx::ColorSpace();
}
TEST(RasterSourceTest, AnalyzeIsSolidUnscaled) {
gfx::Size layer_bounds(400, 400);
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
PaintFlags solid_flags;
SkColor solid_color = SkColorSetARGB(255, 12, 23, 34);
solid_flags.setColor(solid_color);
SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67);
SkColor color = SK_ColorTRANSPARENT;
PaintFlags non_solid_flags;
bool is_solid_color = false;
non_solid_flags.setColor(non_solid_color);
recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds),
solid_flags);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
// Ensure everything is solid.
for (int y = 0; y <= 300; y += 100) {
for (int x = 0; x <= 300; x += 100) {
gfx::Rect rect(x, y, 100, 100);
is_solid_color = raster->PerformSolidColorAnalysis(rect, 1.f, &color);
EXPECT_TRUE(is_solid_color) << rect.ToString();
EXPECT_EQ(solid_color, color) << rect.ToString();
}
}
// Add one non-solid pixel and recreate the raster source.
recording_source->add_draw_rect_with_flags(gfx::Rect(50, 50, 1, 1),
non_solid_flags);
recording_source->Rerecord();
raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
color = SK_ColorTRANSPARENT;
is_solid_color =
raster->PerformSolidColorAnalysis(gfx::Rect(0, 0, 100, 100), 1.f, &color);
EXPECT_FALSE(is_solid_color);
color = SK_ColorTRANSPARENT;
is_solid_color = raster->PerformSolidColorAnalysis(
gfx::Rect(100, 0, 100, 100), 1.f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(solid_color, color);
// Boundaries should be clipped.
color = SK_ColorTRANSPARENT;
is_solid_color = raster->PerformSolidColorAnalysis(
gfx::Rect(350, 0, 100, 100), 1.f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(solid_color, color);
color = SK_ColorTRANSPARENT;
is_solid_color = raster->PerformSolidColorAnalysis(
gfx::Rect(0, 350, 100, 100), 1.f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(solid_color, color);
color = SK_ColorTRANSPARENT;
is_solid_color = raster->PerformSolidColorAnalysis(
gfx::Rect(350, 350, 100, 100), 1.f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(solid_color, color);
}
TEST(RasterSourceTest, AnalyzeIsSolidScaled) {
gfx::Size layer_bounds(400, 400);
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
SkColor solid_color = SkColorSetARGB(255, 12, 23, 34);
SkColor color = SK_ColorTRANSPARENT;
PaintFlags solid_flags;
bool is_solid_color = false;
solid_flags.setColor(solid_color);
SkColor non_solid_color = SkColorSetARGB(128, 45, 56, 67);
PaintFlags non_solid_flags;
non_solid_flags.setColor(non_solid_color);
recording_source->add_draw_rect_with_flags(gfx::Rect(0, 0, 400, 400),
solid_flags);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
// Ensure everything is solid.
for (int y = 0; y <= 30; y += 10) {
for (int x = 0; x <= 30; x += 10) {
gfx::Rect rect(x, y, 10, 10);
is_solid_color = raster->PerformSolidColorAnalysis(rect, 0.1f, &color);
EXPECT_TRUE(is_solid_color) << rect.ToString();
EXPECT_EQ(color, solid_color) << rect.ToString();
}
}
// Add one non-solid pixel and recreate the raster source.
recording_source->add_draw_rect_with_flags(gfx::Rect(50, 50, 1, 1),
non_solid_flags);
recording_source->Rerecord();
raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
color = SK_ColorTRANSPARENT;
is_solid_color =
raster->PerformSolidColorAnalysis(gfx::Rect(0, 0, 10, 10), 0.1f, &color);
EXPECT_FALSE(is_solid_color);
color = SK_ColorTRANSPARENT;
is_solid_color =
raster->PerformSolidColorAnalysis(gfx::Rect(10, 0, 10, 10), 0.1f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(color, solid_color);
// Boundaries should be clipped.
color = SK_ColorTRANSPARENT;
is_solid_color =
raster->PerformSolidColorAnalysis(gfx::Rect(35, 0, 10, 10), 0.1f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(color, solid_color);
color = SK_ColorTRANSPARENT;
is_solid_color =
raster->PerformSolidColorAnalysis(gfx::Rect(0, 35, 10, 10), 0.1f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(color, solid_color);
color = SK_ColorTRANSPARENT;
is_solid_color = raster->PerformSolidColorAnalysis(gfx::Rect(35, 35, 10, 10),
0.1f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(color, solid_color);
}
TEST(RasterSourceTest, AnalyzeIsSolidEmpty) {
gfx::Size layer_bounds(400, 400);
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
SkColor color = SK_ColorTRANSPARENT;
bool is_solid_color =
raster->PerformSolidColorAnalysis(gfx::Rect(0, 0, 400, 400), 1.f, &color);
EXPECT_TRUE(is_solid_color);
EXPECT_EQ(color, SkColorSetARGB(0, 0, 0, 0));
}
TEST(RasterSourceTest, PixelRefIteratorDiscardableRefsOneTile) {
gfx::Size layer_bounds(512, 512);
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
sk_sp<SkImage> discardable_image[2][2];
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[0][1] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(32, 32));
// Discardable pixel refs are found in the following cells:
// |---|---|
// | x | x |
// |---|---|
// | | x |
// |---|---|
recording_source->add_draw_image(discardable_image[0][0], gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[0][1], gfx::Point(260, 0));
recording_source->add_draw_image(discardable_image[1][1],
gfx::Point(260, 260));
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
// Tile sized iterators. These should find only one pixel ref.
{
gfx::ColorSpace target_color_space = gfx::ColorSpace::CreateSRGB();
std::vector<DrawImage> images;
raster->GetDiscardableImagesInRect(gfx::Rect(0, 0, 256, 256), 1.f,
target_color_space, &images);
EXPECT_EQ(1u, images.size());
EXPECT_EQ(discardable_image[0][0], images[0].image());
EXPECT_EQ(target_color_space, images[0].target_color_space());
}
// Shifted tile sized iterators. These should find only one pixel ref.
{
gfx::ColorSpace target_color_space = gfx::ColorSpace::CreateXYZD50();
std::vector<DrawImage> images;
raster->GetDiscardableImagesInRect(gfx::Rect(260, 260, 256, 256), 1.f,
target_color_space, &images);
EXPECT_EQ(1u, images.size());
EXPECT_EQ(discardable_image[1][1], images[0].image());
EXPECT_EQ(target_color_space, images[0].target_color_space());
}
// Ensure there's no discardable pixel refs in the empty cell
{
gfx::ColorSpace target_color_space = gfx::ColorSpace::CreateSRGB();
std::vector<DrawImage> images;
raster->GetDiscardableImagesInRect(gfx::Rect(0, 256, 256, 256), 1.f,
target_color_space, &images);
EXPECT_EQ(0u, images.size());
}
// Layer sized iterators. These should find three pixel ref.
{
gfx::ColorSpace target_color_space;
std::vector<DrawImage> images;
raster->GetDiscardableImagesInRect(gfx::Rect(0, 0, 512, 512), 1.f,
target_color_space, &images);
EXPECT_EQ(3u, images.size());
EXPECT_EQ(discardable_image[0][0], images[0].image());
EXPECT_EQ(discardable_image[0][1], images[1].image());
EXPECT_EQ(discardable_image[1][1], images[2].image());
EXPECT_EQ(target_color_space, images[0].target_color_space());
EXPECT_EQ(target_color_space, images[1].target_color_space());
EXPECT_EQ(target_color_space, images[2].target_color_space());
}
}
TEST(RasterSourceTest, RasterFullContents) {
gfx::Size layer_bounds(3, 5);
float contents_scale = 1.5f;
float raster_divisions = 2.f;
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
recording_source->SetBackgroundColor(SK_ColorBLACK);
recording_source->SetClearCanvasWithDebugColor(false);
// Because the caller sets content opaque, it also promises that it
// has at least filled in layer_bounds opaquely.
PaintFlags white_flags;
white_flags.setColor(SK_ColorWHITE);
recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds),
white_flags);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
gfx::Size content_bounds(
gfx::ScaleToCeiledSize(layer_bounds, contents_scale));
// Simulate drawing into different tiles at different offsets.
int step_x = std::ceil(content_bounds.width() / raster_divisions);
int step_y = std::ceil(content_bounds.height() / raster_divisions);
for (int offset_x = 0; offset_x < content_bounds.width();
offset_x += step_x) {
for (int offset_y = 0; offset_y < content_bounds.height();
offset_y += step_y) {
gfx::Rect content_rect(offset_x, offset_y, step_x, step_y);
content_rect.Intersect(gfx::Rect(content_bounds));
// Simulate a canvas rect larger than the content rect. Every pixel
// up to one pixel outside the content rect is guaranteed to be opaque.
// Outside of that is undefined.
gfx::Rect canvas_rect(content_rect);
canvas_rect.Inset(0, 0, -1, -1);
SkBitmap bitmap;
bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height());
SkCanvas canvas(bitmap);
canvas.clear(SK_ColorTRANSPARENT);
raster->PlaybackToCanvas(
&canvas, ColorSpaceForTesting(), canvas_rect, canvas_rect,
gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()),
RasterSource::PlaybackSettings());
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
int num_pixels = bitmap.width() * bitmap.height();
bool all_white = true;
for (int i = 0; i < num_pixels; ++i) {
EXPECT_EQ(SkColorGetA(pixels[i]), 255u);
all_white &= (SkColorGetR(pixels[i]) == 255);
all_white &= (SkColorGetG(pixels[i]) == 255);
all_white &= (SkColorGetB(pixels[i]) == 255);
}
// If the canvas doesn't extend past the edge of the content,
// it should be entirely white. Otherwise, the edge of the content
// will be non-white.
EXPECT_EQ(all_white, gfx::Rect(content_bounds).Contains(canvas_rect));
}
}
}
TEST(RasterSourceTest, RasterPartialContents) {
gfx::Size layer_bounds(3, 5);
float contents_scale = 1.5f;
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
recording_source->SetBackgroundColor(SK_ColorGREEN);
recording_source->SetClearCanvasWithDebugColor(false);
// First record everything as white.
PaintFlags white_flags;
white_flags.setColor(SK_ColorWHITE);
recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds),
white_flags);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
gfx::Size content_bounds(
gfx::ScaleToCeiledSize(layer_bounds, contents_scale));
SkBitmap bitmap;
bitmap.allocN32Pixels(content_bounds.width(), content_bounds.height());
SkCanvas canvas(bitmap);
canvas.clear(SK_ColorTRANSPARENT);
// Playback the full rect which should make everything white.
gfx::Rect raster_full_rect(content_bounds);
gfx::Rect playback_rect(content_bounds);
raster->PlaybackToCanvas(
&canvas, ColorSpaceForTesting(), raster_full_rect, playback_rect,
gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()),
RasterSource::PlaybackSettings());
{
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
for (int i = 0; i < bitmap.width(); ++i) {
for (int j = 0; j < bitmap.height(); ++j) {
SCOPED_TRACE(i);
SCOPED_TRACE(j);
EXPECT_EQ(255u, SkColorGetA(pixels[i + j * bitmap.width()]));
EXPECT_EQ(255u, SkColorGetR(pixels[i + j * bitmap.width()]));
EXPECT_EQ(255u, SkColorGetG(pixels[i + j * bitmap.width()]));
EXPECT_EQ(255u, SkColorGetB(pixels[i + j * bitmap.width()]));
}
}
}
// Re-record everything as black.
PaintFlags black_flags;
black_flags.setColor(SK_ColorBLACK);
recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds),
black_flags);
recording_source->Rerecord();
// Make a new RasterSource from the new recording.
raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
// We're going to playback from "everything is black" into a smaller area,
// that touches the edge pixels of the recording.
playback_rect.Inset(1, 2, 0, 1);
raster->PlaybackToCanvas(
&canvas, ColorSpaceForTesting(), raster_full_rect, playback_rect,
gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()),
RasterSource::PlaybackSettings());
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
int num_black = 0;
int num_white = 0;
for (int i = 0; i < bitmap.width(); ++i) {
for (int j = 0; j < bitmap.height(); ++j) {
SCOPED_TRACE(j);
SCOPED_TRACE(i);
bool expect_black = playback_rect.Contains(i, j);
if (expect_black) {
EXPECT_EQ(255u, SkColorGetA(pixels[i + j * bitmap.width()]));
EXPECT_EQ(0u, SkColorGetR(pixels[i + j * bitmap.width()]));
EXPECT_EQ(0u, SkColorGetG(pixels[i + j * bitmap.width()]));
EXPECT_EQ(0u, SkColorGetB(pixels[i + j * bitmap.width()]));
++num_black;
} else {
EXPECT_EQ(255u, SkColorGetA(pixels[i + j * bitmap.width()]));
EXPECT_EQ(255u, SkColorGetR(pixels[i + j * bitmap.width()]));
EXPECT_EQ(255u, SkColorGetG(pixels[i + j * bitmap.width()]));
EXPECT_EQ(255u, SkColorGetB(pixels[i + j * bitmap.width()]));
++num_white;
}
}
}
EXPECT_GT(num_black, 0);
EXPECT_GT(num_white, 0);
}
TEST(RasterSourceTest, RasterPartialClear) {
gfx::Size layer_bounds(3, 5);
gfx::Size partial_bounds(2, 4);
float contents_scale = 1.5f;
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
recording_source->SetBackgroundColor(SK_ColorGREEN);
recording_source->SetRequiresClear(true);
recording_source->SetClearCanvasWithDebugColor(false);
// First record everything as white.
const unsigned alpha_dark = 10u;
PaintFlags white_flags;
white_flags.setColor(SK_ColorWHITE);
white_flags.setAlpha(alpha_dark);
recording_source->add_draw_rect_with_flags(gfx::Rect(layer_bounds),
white_flags);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
gfx::Size content_bounds(
gfx::ScaleToCeiledSize(layer_bounds, contents_scale));
SkBitmap bitmap;
bitmap.allocN32Pixels(content_bounds.width(), content_bounds.height());
SkCanvas canvas(bitmap);
canvas.clear(SK_ColorTRANSPARENT);
// Playback the full rect which should make everything light gray (alpha=10).
gfx::Rect raster_full_rect(content_bounds);
gfx::Rect playback_rect(content_bounds);
raster->PlaybackToCanvas(
&canvas, ColorSpaceForTesting(), raster_full_rect, playback_rect,
gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()),
RasterSource::PlaybackSettings());
{
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
for (int i = 0; i < bitmap.width(); ++i) {
for (int j = 0; j < bitmap.height(); ++j) {
SCOPED_TRACE(i);
SCOPED_TRACE(j);
EXPECT_EQ(alpha_dark, SkColorGetA(pixels[i + j * bitmap.width()]));
EXPECT_EQ(alpha_dark, SkColorGetR(pixels[i + j * bitmap.width()]));
EXPECT_EQ(alpha_dark, SkColorGetG(pixels[i + j * bitmap.width()]));
EXPECT_EQ(alpha_dark, SkColorGetB(pixels[i + j * bitmap.width()]));
}
}
}
std::unique_ptr<FakeRecordingSource> recording_source_light =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
recording_source_light->SetBackgroundColor(SK_ColorGREEN);
recording_source_light->SetRequiresClear(true);
recording_source_light->SetClearCanvasWithDebugColor(false);
// Record everything as a slightly lighter white.
const unsigned alpha_light = 18u;
white_flags.setAlpha(alpha_light);
recording_source_light->add_draw_rect_with_flags(gfx::Rect(layer_bounds),
white_flags);
recording_source_light->Rerecord();
// Make a new RasterSource from the new recording.
raster = RasterSource::CreateFromRecordingSource(recording_source_light.get(),
false);
// We're going to playback from alpha(18) white rectangle into a smaller area
// of the recording resulting in a smaller lighter white rectangle over a
// darker white background rectangle.
playback_rect =
gfx::Rect(gfx::ScaleToCeiledSize(partial_bounds, contents_scale));
raster->PlaybackToCanvas(
&canvas, ColorSpaceForTesting(), raster_full_rect, playback_rect,
gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()),
RasterSource::PlaybackSettings());
// Test that the whole playback_rect was cleared and repainted with new alpha.
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
for (int i = 0; i < playback_rect.width(); ++i) {
for (int j = 0; j < playback_rect.height(); ++j) {
SCOPED_TRACE(j);
SCOPED_TRACE(i);
EXPECT_EQ(alpha_light, SkColorGetA(pixels[i + j * bitmap.width()]));
EXPECT_EQ(alpha_light, SkColorGetR(pixels[i + j * bitmap.width()]));
EXPECT_EQ(alpha_light, SkColorGetG(pixels[i + j * bitmap.width()]));
EXPECT_EQ(alpha_light, SkColorGetB(pixels[i + j * bitmap.width()]));
}
}
}
TEST(RasterSourceTest, RasterContentsTransparent) {
gfx::Size layer_bounds(5, 3);
float contents_scale = 0.5f;
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
recording_source->SetBackgroundColor(SK_ColorTRANSPARENT);
recording_source->SetRequiresClear(true);
recording_source->SetClearCanvasWithDebugColor(false);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
gfx::Size content_bounds(
gfx::ScaleToCeiledSize(layer_bounds, contents_scale));
gfx::Rect canvas_rect(content_bounds);
canvas_rect.Inset(0, 0, -1, -1);
SkBitmap bitmap;
bitmap.allocN32Pixels(canvas_rect.width(), canvas_rect.height());
SkCanvas canvas(bitmap);
raster->PlaybackToCanvas(
&canvas, ColorSpaceForTesting(), canvas_rect, canvas_rect,
gfx::AxisTransform2d(contents_scale, gfx::Vector2dF()),
RasterSource::PlaybackSettings());
SkColor* pixels = reinterpret_cast<SkColor*>(bitmap.getPixels());
int num_pixels = bitmap.width() * bitmap.height();
for (int i = 0; i < num_pixels; ++i) {
EXPECT_EQ(SkColorGetA(pixels[i]), 0u);
}
}
TEST(RasterSourceTest, GetPictureMemoryUsageIncludesClientReportedMemory) {
const size_t kReportedMemoryUsageInBytes = 100 * 1024 * 1024;
gfx::Size layer_bounds(5, 3);
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(layer_bounds);
recording_source->set_reported_memory_usage(kReportedMemoryUsageInBytes);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster =
RasterSource::CreateFromRecordingSource(recording_source.get(), false);
size_t total_memory_usage = raster->GetMemoryUsage();
EXPECT_GE(total_memory_usage, kReportedMemoryUsageInBytes);
EXPECT_LT(total_memory_usage, 2 * kReportedMemoryUsageInBytes);
}
TEST(RasterSourceTest, ImageHijackCanvasRespectsSharedCanvasTransform) {
gfx::Size size(100, 100);
// Create a recording source that is filled with red and every corner is
// green (4x4 rects in the corner are green to account for blending when
// scaling). Note that we paint an image first, so that we can force image
// hijack canvas to be used.
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(size);
// 1. Paint the image.
recording_source->add_draw_image(CreateDiscardableImage(gfx::Size(5, 5)),
gfx::Point(0, 0));
// 2. Cover everything in red.
PaintFlags flags;
flags.setColor(SK_ColorRED);
recording_source->add_draw_rect_with_flags(gfx::Rect(size), flags);
// 3. Draw 4x4 green rects into every corner.
flags.setColor(SK_ColorGREEN);
recording_source->add_draw_rect_with_flags(gfx::Rect(0, 0, 4, 4), flags);
recording_source->add_draw_rect_with_flags(
gfx::Rect(size.width() - 4, 0, 4, 4), flags);
recording_source->add_draw_rect_with_flags(
gfx::Rect(0, size.height() - 4, 4, 4), flags);
recording_source->add_draw_rect_with_flags(
gfx::Rect(size.width() - 4, size.height() - 4, 4, 4), flags);
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
bool can_use_lcd = true;
scoped_refptr<RasterSource> raster_source =
recording_source->CreateRasterSource(can_use_lcd);
SoftwareImageDecodeCache controller(
ResourceFormat::RGBA_8888,
LayerTreeSettings().decoded_image_working_set_budget_bytes);
raster_source->set_image_decode_cache(&controller);
SkBitmap bitmap;
bitmap.allocN32Pixels(size.width() * 0.5f, size.height() * 0.25f);
SkCanvas canvas(bitmap);
canvas.scale(0.5f, 0.25f);
RasterSource::PlaybackSettings settings;
settings.playback_to_shared_canvas = true;
settings.use_image_hijack_canvas = true;
raster_source->PlaybackToCanvas(&canvas, ColorSpaceForTesting(),
gfx::Rect(size), gfx::Rect(size),
gfx::AxisTransform2d(), settings);
EXPECT_EQ(SK_ColorGREEN, bitmap.getColor(0, 0));
EXPECT_EQ(SK_ColorGREEN, bitmap.getColor(49, 0));
EXPECT_EQ(SK_ColorGREEN, bitmap.getColor(0, 24));
EXPECT_EQ(SK_ColorGREEN, bitmap.getColor(49, 24));
for (int x = 0; x < 49; ++x)
EXPECT_EQ(SK_ColorRED, bitmap.getColor(x, 12));
for (int y = 0; y < 24; ++y)
EXPECT_EQ(SK_ColorRED, bitmap.getColor(24, y));
}
} // namespace
} // namespace cc