| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "crypto/secure_hash.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <memory> |
| #include <string> |
| |
| #include "crypto/sha2.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| TEST(SecureHashTest, TestUpdate) { |
| // Example B.3 from FIPS 180-2: long message. |
| std::string input3(500000, 'a'); // 'a' repeated half a million times |
| const int kExpectedHashOfInput3[] = { |
| 0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7, |
| 0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, |
| 0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0}; |
| |
| uint8_t output3[crypto::kSHA256Length]; |
| |
| std::unique_ptr<crypto::SecureHash> ctx( |
| crypto::SecureHash::Create(crypto::SecureHash::SHA256)); |
| ctx->Update(input3.data(), input3.size()); |
| ctx->Update(input3.data(), input3.size()); |
| |
| ctx->Finish(output3, sizeof(output3)); |
| for (size_t i = 0; i < crypto::kSHA256Length; i++) |
| EXPECT_EQ(kExpectedHashOfInput3[i], static_cast<int>(output3[i])); |
| } |
| |
| TEST(SecureHashTest, TestClone) { |
| std::string input1(10001, 'a'); // 'a' repeated 10001 times |
| std::string input2(10001, 'd'); // 'd' repeated 10001 times |
| |
| const uint8_t kExpectedHashOfInput1[crypto::kSHA256Length] = { |
| 0x0c, 0xab, 0x99, 0xa0, 0x58, 0x60, 0x0f, 0xfa, 0xad, 0x12, 0x92, |
| 0xd0, 0xc5, 0x3c, 0x05, 0x48, 0xeb, 0xaf, 0x88, 0xdd, 0x1d, 0x01, |
| 0x03, 0x03, 0x45, 0x70, 0x5f, 0x01, 0x8a, 0x81, 0x39, 0x09}; |
| const uint8_t kExpectedHashOfInput1And2[crypto::kSHA256Length] = { |
| 0x4c, 0x8e, 0x26, 0x5a, 0xc3, 0x85, 0x1f, 0x1f, 0xa5, 0x04, 0x1c, |
| 0xc7, 0x88, 0x53, 0x1c, 0xc7, 0x80, 0x47, 0x15, 0xfb, 0x47, 0xff, |
| 0x72, 0xb1, 0x28, 0x37, 0xb0, 0x4d, 0x6e, 0x22, 0x2e, 0x4d}; |
| |
| uint8_t output1[crypto::kSHA256Length]; |
| uint8_t output2[crypto::kSHA256Length]; |
| uint8_t output3[crypto::kSHA256Length]; |
| |
| std::unique_ptr<crypto::SecureHash> ctx1( |
| crypto::SecureHash::Create(crypto::SecureHash::SHA256)); |
| ctx1->Update(input1.data(), input1.size()); |
| |
| std::unique_ptr<crypto::SecureHash> ctx2(ctx1->Clone()); |
| std::unique_ptr<crypto::SecureHash> ctx3(ctx2->Clone()); |
| // At this point, ctx1, ctx2, and ctx3 are all equivalent and represent the |
| // state after hashing input1. |
| |
| // Updating ctx1 and ctx2 with input2 should produce equivalent results. |
| ctx1->Update(input2.data(), input2.size()); |
| ctx1->Finish(output1, sizeof(output1)); |
| |
| ctx2->Update(input2.data(), input2.size()); |
| ctx2->Finish(output2, sizeof(output2)); |
| |
| EXPECT_EQ(0, memcmp(output1, output2, crypto::kSHA256Length)); |
| EXPECT_EQ(0, |
| memcmp(output1, kExpectedHashOfInput1And2, crypto::kSHA256Length)); |
| |
| // Finish() ctx3, which should produce the hash of input1. |
| ctx3->Finish(&output3, sizeof(output3)); |
| EXPECT_EQ(0, memcmp(output3, kExpectedHashOfInput1, crypto::kSHA256Length)); |
| } |
| |
| TEST(SecureHashTest, TestLength) { |
| std::unique_ptr<crypto::SecureHash> ctx( |
| crypto::SecureHash::Create(crypto::SecureHash::SHA256)); |
| EXPECT_EQ(crypto::kSHA256Length, ctx->GetHashLength()); |
| } |