blob: 1bf52d8f9d27584eb64d381cd9470b1070803d2c [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipc/ipc_message.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <limits>
#include <memory>
#include "base/memory/ptr_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/values.h"
#include "build/build_config.h"
#include "ipc/ipc_message_utils.h"
#include "testing/gtest/include/gtest/gtest.h"
// IPC messages for testing ----------------------------------------------------
#define IPC_MESSAGE_IMPL
#include "ipc/ipc_message_macros.h"
#define IPC_MESSAGE_START TestMsgStart
IPC_MESSAGE_CONTROL0(TestMsgClassEmpty)
IPC_MESSAGE_CONTROL1(TestMsgClassI, int)
IPC_SYNC_MESSAGE_CONTROL1_1(TestMsgClassIS, int, std::string)
namespace IPC {
TEST(IPCMessageTest, BasicMessageTest) {
int v1 = 10;
std::string v2("foobar");
base::string16 v3(base::ASCIIToUTF16("hello world"));
IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL);
EXPECT_TRUE(m.WriteInt(v1));
EXPECT_TRUE(m.WriteString(v2));
EXPECT_TRUE(m.WriteString16(v3));
base::PickleIterator iter(m);
int vi;
std::string vs;
base::string16 vs16;
EXPECT_TRUE(iter.ReadInt(&vi));
EXPECT_EQ(v1, vi);
EXPECT_TRUE(iter.ReadString(&vs));
EXPECT_EQ(v2, vs);
EXPECT_TRUE(iter.ReadString16(&vs16));
EXPECT_EQ(v3, vs16);
// should fail
EXPECT_FALSE(iter.ReadInt(&vi));
EXPECT_FALSE(iter.ReadString(&vs));
EXPECT_FALSE(iter.ReadString16(&vs16));
}
TEST(IPCMessageTest, ListValue) {
base::ListValue input;
input.Set(0, new base::Value(42.42));
input.Set(1, new base::Value("forty"));
input.Set(2, base::MakeUnique<base::Value>());
IPC::Message msg(1, 2, IPC::Message::PRIORITY_NORMAL);
IPC::WriteParam(&msg, input);
base::ListValue output;
base::PickleIterator iter(msg);
EXPECT_TRUE(IPC::ReadParam(&msg, &iter, &output));
EXPECT_TRUE(input.Equals(&output));
// Also test the corrupt case.
IPC::Message bad_msg(1, 2, IPC::Message::PRIORITY_NORMAL);
bad_msg.WriteInt(99);
iter = base::PickleIterator(bad_msg);
EXPECT_FALSE(IPC::ReadParam(&bad_msg, &iter, &output));
}
TEST(IPCMessageTest, DictionaryValue) {
base::DictionaryValue input;
input.Set("null", base::MakeUnique<base::Value>());
input.Set("bool", new base::Value(true));
input.Set("int", new base::Value(42));
input.SetWithoutPathExpansion("int.with.dot", new base::Value(43));
std::unique_ptr<base::DictionaryValue> subdict(new base::DictionaryValue());
subdict->Set("str", new base::Value("forty two"));
subdict->Set("bool", new base::Value(false));
std::unique_ptr<base::ListValue> sublist(new base::ListValue());
sublist->Set(0, new base::Value(42.42));
sublist->Set(1, new base::Value("forty"));
sublist->Set(2, new base::Value("two"));
subdict->Set("list", sublist.release());
input.Set("dict", subdict.release());
IPC::Message msg(1, 2, IPC::Message::PRIORITY_NORMAL);
IPC::WriteParam(&msg, input);
base::DictionaryValue output;
base::PickleIterator iter(msg);
EXPECT_TRUE(IPC::ReadParam(&msg, &iter, &output));
EXPECT_TRUE(input.Equals(&output));
// Also test the corrupt case.
IPC::Message bad_msg(1, 2, IPC::Message::PRIORITY_NORMAL);
bad_msg.WriteInt(99);
iter = base::PickleIterator(bad_msg);
EXPECT_FALSE(IPC::ReadParam(&bad_msg, &iter, &output));
}
TEST(IPCMessageTest, FindNext) {
IPC::Message message;
EXPECT_TRUE(message.WriteString("Goooooooogle"));
EXPECT_TRUE(message.WriteInt(111));
std::vector<char> message_data(message.size() + 7);
memcpy(message_data.data(), message.data(), message.size());
const char* data_start = message_data.data();
const char* data_end = data_start + message.size();
IPC::Message::NextMessageInfo next;
// Data range contains the entire message plus some extra bytes
IPC::Message::FindNext(data_start, data_end + 1, &next);
EXPECT_TRUE(next.message_found);
EXPECT_EQ(next.message_size, message.size());
EXPECT_EQ(next.pickle_end, data_end);
EXPECT_EQ(next.message_end, data_end);
// Data range exactly contains the entire message
IPC::Message::FindNext(data_start, data_end, &next);
EXPECT_TRUE(next.message_found);
EXPECT_EQ(next.message_size, message.size());
EXPECT_EQ(next.pickle_end, data_end);
EXPECT_EQ(next.message_end, data_end);
// Data range doesn't contain the entire message
// (but contains the message header)
IPC::Message::FindNext(data_start, data_end - 1, &next);
EXPECT_FALSE(next.message_found);
EXPECT_EQ(next.message_size, message.size());
// Data range doesn't contain the message header
// (but contains the pickle header)
IPC::Message::FindNext(data_start,
data_start + sizeof(IPC::Message::Header) - 1,
&next);
EXPECT_FALSE(next.message_found);
EXPECT_EQ(next.message_size, 0u);
// Data range doesn't contain the pickle header
IPC::Message::FindNext(data_start,
data_start + sizeof(base::Pickle::Header) - 1,
&next);
EXPECT_FALSE(next.message_found);
EXPECT_EQ(next.message_size, 0u);
}
TEST(IPCMessageTest, FindNextOverflow) {
IPC::Message message;
EXPECT_TRUE(message.WriteString("Data"));
EXPECT_TRUE(message.WriteInt(777));
const char* data_start = reinterpret_cast<const char*>(message.data());
const char* data_end = data_start + message.size();
IPC::Message::NextMessageInfo next;
// Payload size is negative (defeats 'start + size > end' check)
message.header()->payload_size = static_cast<uint32_t>(-1);
IPC::Message::FindNext(data_start, data_end, &next);
EXPECT_FALSE(next.message_found);
if (sizeof(size_t) > sizeof(uint32_t)) {
// No overflow, just insane message size
EXPECT_EQ(next.message_size,
message.header()->payload_size + sizeof(IPC::Message::Header));
} else {
// Actual overflow, reported as max size_t
EXPECT_EQ(next.message_size, std::numeric_limits<size_t>::max());
}
// Payload size is max positive integer (defeats size < 0 check, while
// still potentially causing overflow down the road).
message.header()->payload_size = std::numeric_limits<int32_t>::max();
IPC::Message::FindNext(data_start, data_end, &next);
EXPECT_FALSE(next.message_found);
EXPECT_EQ(next.message_size,
message.header()->payload_size + sizeof(IPC::Message::Header));
}
namespace {
class IPCMessageParameterTest : public testing::Test {
public:
IPCMessageParameterTest() : extra_param_("extra_param"), called_(false) {}
bool OnMessageReceived(const IPC::Message& message) {
bool handled = true;
IPC_BEGIN_MESSAGE_MAP_WITH_PARAM(IPCMessageParameterTest, message,
&extra_param_)
IPC_MESSAGE_HANDLER(TestMsgClassEmpty, OnEmpty)
IPC_MESSAGE_HANDLER(TestMsgClassI, OnInt)
//IPC_MESSAGE_HANDLER(TestMsgClassIS, OnSync)
IPC_MESSAGE_UNHANDLED(handled = false)
IPC_END_MESSAGE_MAP()
return handled;
}
void OnEmpty(std::string* extra_param) {
EXPECT_EQ(extra_param, &extra_param_);
called_ = true;
}
void OnInt(std::string* extra_param, int foo) {
EXPECT_EQ(extra_param, &extra_param_);
EXPECT_EQ(foo, 42);
called_ = true;
}
/* TODO: handle sync IPCs
void OnSync(std::string* extra_param, int foo, std::string* out) {
EXPECT_EQ(extra_param, &extra_param_);
EXPECT_EQ(foo, 42);
called_ = true;
*out = std::string("out");
}
bool Send(IPC::Message* reply) {
delete reply;
return true;
}*/
std::string extra_param_;
bool called_;
};
} // namespace
TEST_F(IPCMessageParameterTest, EmptyDispatcherWithParam) {
TestMsgClassEmpty message;
EXPECT_TRUE(OnMessageReceived(message));
EXPECT_TRUE(called_);
}
#if defined(OS_ANDROID)
#define MAYBE_OneIntegerWithParam DISABLED_OneIntegerWithParam
#else
#define MAYBE_OneIntegerWithParam OneIntegerWithParam
#endif
TEST_F(IPCMessageParameterTest, MAYBE_OneIntegerWithParam) {
TestMsgClassI message(42);
EXPECT_TRUE(OnMessageReceived(message));
EXPECT_TRUE(called_);
}
/* TODO: handle sync IPCs
TEST_F(IPCMessageParameterTest, Sync) {
std::string output;
TestMsgClassIS message(42, &output);
EXPECT_TRUE(OnMessageReceived(message));
EXPECT_TRUE(called_);
EXPECT_EQ(output, std::string("out"));
}*/
} // namespace IPC