blob: fc74d8caa501b11c79b41d34b910693ced38ce3e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// OpenSSL binding for SSLClientSocket. The class layout and general principle
// of operation is derived from SSLClientSocketNSS.
#include "net/socket/ssl_client_socket_openssl.h"
#include <errno.h>
#include <openssl/bio.h>
#include <openssl/err.h>
#include <openssl/ssl.h>
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/environment.h"
#include "base/memory/singleton.h"
#include "base/metrics/histogram.h"
#include "base/strings/string_piece.h"
#include "base/synchronization/lock.h"
#include "crypto/ec_private_key.h"
#include "crypto/openssl_util.h"
#include "crypto/scoped_openssl_types.h"
#include "net/base/net_errors.h"
#include "net/cert/cert_verifier.h"
#include "net/cert/ct_verifier.h"
#include "net/cert/single_request_cert_verifier.h"
#include "net/cert/x509_certificate_net_log_param.h"
#include "net/cert/x509_util_openssl.h"
#include "net/http/transport_security_state.h"
#include "net/socket/ssl_session_cache_openssl.h"
#include "net/ssl/openssl_ssl_util.h"
#include "net/ssl/ssl_cert_request_info.h"
#include "net/ssl/ssl_connection_status_flags.h"
#include "net/ssl/ssl_info.h"
#if defined(OS_WIN)
#include "base/win/windows_version.h"
#endif
#if defined(USE_OPENSSL_CERTS)
#include "net/ssl/openssl_client_key_store.h"
#else
#include "net/ssl/openssl_platform_key.h"
#endif
namespace net {
namespace {
// Enable this to see logging for state machine state transitions.
#if 0
#define GotoState(s) do { DVLOG(2) << (void *)this << " " << __FUNCTION__ << \
" jump to state " << s; \
next_handshake_state_ = s; } while (0)
#else
#define GotoState(s) next_handshake_state_ = s
#endif
// This constant can be any non-negative/non-zero value (eg: it does not
// overlap with any value of the net::Error range, including net::OK).
const int kNoPendingReadResult = 1;
// If a client doesn't have a list of protocols that it supports, but
// the server supports NPN, choosing "http/1.1" is the best answer.
const char kDefaultSupportedNPNProtocol[] = "http/1.1";
void FreeX509Stack(STACK_OF(X509)* ptr) {
sk_X509_pop_free(ptr, X509_free);
}
typedef crypto::ScopedOpenSSL<X509, X509_free>::Type ScopedX509;
typedef crypto::ScopedOpenSSL<STACK_OF(X509), FreeX509Stack>::Type
ScopedX509Stack;
#if OPENSSL_VERSION_NUMBER < 0x1000103fL
// This method doesn't seem to have made it into the OpenSSL headers.
unsigned long SSL_CIPHER_get_id(const SSL_CIPHER* cipher) { return cipher->id; }
#endif
// Used for encoding the |connection_status| field of an SSLInfo object.
int EncodeSSLConnectionStatus(int cipher_suite,
int compression,
int version) {
return ((cipher_suite & SSL_CONNECTION_CIPHERSUITE_MASK) <<
SSL_CONNECTION_CIPHERSUITE_SHIFT) |
((compression & SSL_CONNECTION_COMPRESSION_MASK) <<
SSL_CONNECTION_COMPRESSION_SHIFT) |
((version & SSL_CONNECTION_VERSION_MASK) <<
SSL_CONNECTION_VERSION_SHIFT);
}
// Returns the net SSL version number (see ssl_connection_status_flags.h) for
// this SSL connection.
int GetNetSSLVersion(SSL* ssl) {
switch (SSL_version(ssl)) {
case SSL2_VERSION:
return SSL_CONNECTION_VERSION_SSL2;
case SSL3_VERSION:
return SSL_CONNECTION_VERSION_SSL3;
case TLS1_VERSION:
return SSL_CONNECTION_VERSION_TLS1;
case 0x0302:
return SSL_CONNECTION_VERSION_TLS1_1;
case 0x0303:
return SSL_CONNECTION_VERSION_TLS1_2;
default:
return SSL_CONNECTION_VERSION_UNKNOWN;
}
}
ScopedX509 OSCertHandleToOpenSSL(
X509Certificate::OSCertHandle os_handle) {
#if defined(USE_OPENSSL_CERTS)
return ScopedX509(X509Certificate::DupOSCertHandle(os_handle));
#else // !defined(USE_OPENSSL_CERTS)
std::string der_encoded;
if (!X509Certificate::GetDEREncoded(os_handle, &der_encoded))
return ScopedX509();
const uint8_t* bytes = reinterpret_cast<const uint8_t*>(der_encoded.data());
return ScopedX509(d2i_X509(NULL, &bytes, der_encoded.size()));
#endif // defined(USE_OPENSSL_CERTS)
}
ScopedX509Stack OSCertHandlesToOpenSSL(
const X509Certificate::OSCertHandles& os_handles) {
ScopedX509Stack stack(sk_X509_new_null());
for (size_t i = 0; i < os_handles.size(); i++) {
ScopedX509 x509 = OSCertHandleToOpenSSL(os_handles[i]);
if (!x509)
return ScopedX509Stack();
sk_X509_push(stack.get(), x509.release());
}
return stack.Pass();
}
int LogErrorCallback(const char* str, size_t len, void* context) {
LOG(ERROR) << base::StringPiece(str, len);
return 1;
}
} // namespace
class SSLClientSocketOpenSSL::SSLContext {
public:
static SSLContext* GetInstance() { return Singleton<SSLContext>::get(); }
SSL_CTX* ssl_ctx() { return ssl_ctx_.get(); }
SSLSessionCacheOpenSSL* session_cache() { return &session_cache_; }
SSLClientSocketOpenSSL* GetClientSocketFromSSL(const SSL* ssl) {
DCHECK(ssl);
SSLClientSocketOpenSSL* socket = static_cast<SSLClientSocketOpenSSL*>(
SSL_get_ex_data(ssl, ssl_socket_data_index_));
DCHECK(socket);
return socket;
}
bool SetClientSocketForSSL(SSL* ssl, SSLClientSocketOpenSSL* socket) {
return SSL_set_ex_data(ssl, ssl_socket_data_index_, socket) != 0;
}
private:
friend struct DefaultSingletonTraits<SSLContext>;
SSLContext() {
crypto::EnsureOpenSSLInit();
ssl_socket_data_index_ = SSL_get_ex_new_index(0, 0, 0, 0, 0);
DCHECK_NE(ssl_socket_data_index_, -1);
ssl_ctx_.reset(SSL_CTX_new(SSLv23_client_method()));
session_cache_.Reset(ssl_ctx_.get(), kDefaultSessionCacheConfig);
SSL_CTX_set_cert_verify_callback(ssl_ctx_.get(), CertVerifyCallback, NULL);
SSL_CTX_set_cert_cb(ssl_ctx_.get(), ClientCertRequestCallback, NULL);
SSL_CTX_set_verify(ssl_ctx_.get(), SSL_VERIFY_PEER, NULL);
// TODO(kristianm): Only select this if ssl_config_.next_proto is not empty.
// It would be better if the callback were not a global setting,
// but that is an OpenSSL issue.
SSL_CTX_set_next_proto_select_cb(ssl_ctx_.get(), SelectNextProtoCallback,
NULL);
ssl_ctx_->tlsext_channel_id_enabled_new = 1;
scoped_ptr<base::Environment> env(base::Environment::Create());
std::string ssl_keylog_file;
if (env->GetVar("SSLKEYLOGFILE", &ssl_keylog_file) &&
!ssl_keylog_file.empty()) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
BIO* bio = BIO_new_file(ssl_keylog_file.c_str(), "a");
if (!bio) {
LOG(ERROR) << "Failed to open " << ssl_keylog_file;
ERR_print_errors_cb(&LogErrorCallback, NULL);
} else {
SSL_CTX_set_keylog_bio(ssl_ctx_.get(), bio);
}
}
}
static std::string GetSessionCacheKey(const SSL* ssl) {
SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl);
DCHECK(socket);
return socket->GetSessionCacheKey();
}
static SSLSessionCacheOpenSSL::Config kDefaultSessionCacheConfig;
static int ClientCertRequestCallback(SSL* ssl, void* arg) {
SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl);
DCHECK(socket);
return socket->ClientCertRequestCallback(ssl);
}
static int CertVerifyCallback(X509_STORE_CTX *store_ctx, void *arg) {
SSL* ssl = reinterpret_cast<SSL*>(X509_STORE_CTX_get_ex_data(
store_ctx, SSL_get_ex_data_X509_STORE_CTX_idx()));
SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl);
CHECK(socket);
return socket->CertVerifyCallback(store_ctx);
}
static int SelectNextProtoCallback(SSL* ssl,
unsigned char** out, unsigned char* outlen,
const unsigned char* in,
unsigned int inlen, void* arg) {
SSLClientSocketOpenSSL* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->SelectNextProtoCallback(out, outlen, in, inlen);
}
// This is the index used with SSL_get_ex_data to retrieve the owner
// SSLClientSocketOpenSSL object from an SSL instance.
int ssl_socket_data_index_;
crypto::ScopedOpenSSL<SSL_CTX, SSL_CTX_free>::Type ssl_ctx_;
// |session_cache_| must be destroyed before |ssl_ctx_|.
SSLSessionCacheOpenSSL session_cache_;
};
// PeerCertificateChain is a helper object which extracts the certificate
// chain, as given by the server, from an OpenSSL socket and performs the needed
// resource management. The first element of the chain is the leaf certificate
// and the other elements are in the order given by the server.
class SSLClientSocketOpenSSL::PeerCertificateChain {
public:
explicit PeerCertificateChain(STACK_OF(X509)* chain) { Reset(chain); }
PeerCertificateChain(const PeerCertificateChain& other) { *this = other; }
~PeerCertificateChain() {}
PeerCertificateChain& operator=(const PeerCertificateChain& other);
// Resets the PeerCertificateChain to the set of certificates in|chain|,
// which may be NULL, indicating to empty the store certificates.
// Note: If an error occurs, such as being unable to parse the certificates,
// this will behave as if Reset(NULL) was called.
void Reset(STACK_OF(X509)* chain);
// Note that when USE_OPENSSL is defined, OSCertHandle is X509*
scoped_refptr<X509Certificate> AsOSChain() const;
size_t size() const {
if (!openssl_chain_.get())
return 0;
return sk_X509_num(openssl_chain_.get());
}
bool empty() const {
return size() == 0;
}
X509* Get(size_t index) const {
DCHECK_LT(index, size());
return sk_X509_value(openssl_chain_.get(), index);
}
private:
ScopedX509Stack openssl_chain_;
};
SSLClientSocketOpenSSL::PeerCertificateChain&
SSLClientSocketOpenSSL::PeerCertificateChain::operator=(
const PeerCertificateChain& other) {
if (this == &other)
return *this;
openssl_chain_.reset(X509_chain_up_ref(other.openssl_chain_.get()));
return *this;
}
void SSLClientSocketOpenSSL::PeerCertificateChain::Reset(
STACK_OF(X509)* chain) {
openssl_chain_.reset(chain ? X509_chain_up_ref(chain) : NULL);
}
scoped_refptr<X509Certificate>
SSLClientSocketOpenSSL::PeerCertificateChain::AsOSChain() const {
#if defined(USE_OPENSSL_CERTS)
// When OSCertHandle is typedef'ed to X509, this implementation does a short
// cut to avoid converting back and forth between DER and the X509 struct.
X509Certificate::OSCertHandles intermediates;
for (size_t i = 1; i < sk_X509_num(openssl_chain_.get()); ++i) {
intermediates.push_back(sk_X509_value(openssl_chain_.get(), i));
}
return make_scoped_refptr(X509Certificate::CreateFromHandle(
sk_X509_value(openssl_chain_.get(), 0), intermediates));
#else
// DER-encode the chain and convert to a platform certificate handle.
std::vector<base::StringPiece> der_chain;
for (size_t i = 0; i < sk_X509_num(openssl_chain_.get()); ++i) {
X509* x = sk_X509_value(openssl_chain_.get(), i);
base::StringPiece der;
if (!x509_util::GetDER(x, &der))
return NULL;
der_chain.push_back(der);
}
return make_scoped_refptr(X509Certificate::CreateFromDERCertChain(der_chain));
#endif
}
// static
SSLSessionCacheOpenSSL::Config
SSLClientSocketOpenSSL::SSLContext::kDefaultSessionCacheConfig = {
&GetSessionCacheKey, // key_func
1024, // max_entries
256, // expiration_check_count
60 * 60, // timeout_seconds
};
// static
void SSLClientSocket::ClearSessionCache() {
SSLClientSocketOpenSSL::SSLContext* context =
SSLClientSocketOpenSSL::SSLContext::GetInstance();
context->session_cache()->Flush();
}
SSLClientSocketOpenSSL::SSLClientSocketOpenSSL(
scoped_ptr<ClientSocketHandle> transport_socket,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config,
const SSLClientSocketContext& context)
: transport_send_busy_(false),
transport_recv_busy_(false),
pending_read_error_(kNoPendingReadResult),
transport_read_error_(OK),
transport_write_error_(OK),
server_cert_chain_(new PeerCertificateChain(NULL)),
completed_connect_(false),
was_ever_used_(false),
client_auth_cert_needed_(false),
cert_verifier_(context.cert_verifier),
cert_transparency_verifier_(context.cert_transparency_verifier),
channel_id_service_(context.channel_id_service),
ssl_(NULL),
transport_bio_(NULL),
transport_(transport_socket.Pass()),
host_and_port_(host_and_port),
ssl_config_(ssl_config),
ssl_session_cache_shard_(context.ssl_session_cache_shard),
trying_cached_session_(false),
next_handshake_state_(STATE_NONE),
npn_status_(kNextProtoUnsupported),
channel_id_xtn_negotiated_(false),
handshake_succeeded_(false),
marked_session_as_good_(false),
transport_security_state_(context.transport_security_state),
net_log_(transport_->socket()->NetLog()),
weak_factory_(this) {
}
SSLClientSocketOpenSSL::~SSLClientSocketOpenSSL() {
Disconnect();
}
std::string SSLClientSocketOpenSSL::GetSessionCacheKey() const {
std::string result = host_and_port_.ToString();
result.append("/");
result.append(ssl_session_cache_shard_);
return result;
}
bool SSLClientSocketOpenSSL::InSessionCache() const {
SSLContext* context = SSLContext::GetInstance();
std::string cache_key = GetSessionCacheKey();
return context->session_cache()->SSLSessionIsInCache(cache_key);
}
void SSLClientSocketOpenSSL::SetHandshakeCompletionCallback(
const base::Closure& callback) {
handshake_completion_callback_ = callback;
}
void SSLClientSocketOpenSSL::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) {
cert_request_info->host_and_port = host_and_port_;
cert_request_info->cert_authorities = cert_authorities_;
cert_request_info->cert_key_types = cert_key_types_;
}
SSLClientSocket::NextProtoStatus SSLClientSocketOpenSSL::GetNextProto(
std::string* proto) {
*proto = npn_proto_;
return npn_status_;
}
ChannelIDService*
SSLClientSocketOpenSSL::GetChannelIDService() const {
return channel_id_service_;
}
int SSLClientSocketOpenSSL::ExportKeyingMaterial(
const base::StringPiece& label,
bool has_context, const base::StringPiece& context,
unsigned char* out, unsigned int outlen) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = SSL_export_keying_material(
ssl_, out, outlen, label.data(), label.size(),
reinterpret_cast<const unsigned char*>(context.data()),
context.length(), context.length() > 0);
if (rv != 1) {
int ssl_error = SSL_get_error(ssl_, rv);
LOG(ERROR) << "Failed to export keying material;"
<< " returned " << rv
<< ", SSL error code " << ssl_error;
return MapOpenSSLError(ssl_error, err_tracer);
}
return OK;
}
int SSLClientSocketOpenSSL::GetTLSUniqueChannelBinding(std::string* out) {
NOTIMPLEMENTED();
return ERR_NOT_IMPLEMENTED;
}
int SSLClientSocketOpenSSL::Connect(const CompletionCallback& callback) {
// It is an error to create an SSLClientSocket whose context has no
// TransportSecurityState.
DCHECK(transport_security_state_);
net_log_.BeginEvent(NetLog::TYPE_SSL_CONNECT);
// Set up new ssl object.
int rv = Init();
if (rv != OK) {
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv);
return rv;
}
// Set SSL to client mode. Handshake happens in the loop below.
SSL_set_connect_state(ssl_);
GotoState(STATE_HANDSHAKE);
rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_connect_callback_ = callback;
} else {
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv);
if (rv < OK)
OnHandshakeCompletion();
}
return rv > OK ? OK : rv;
}
void SSLClientSocketOpenSSL::Disconnect() {
// If a handshake was pending (Connect() had been called), notify interested
// parties that it's been aborted now. If the handshake had already
// completed, this is a no-op.
OnHandshakeCompletion();
if (ssl_) {
// Calling SSL_shutdown prevents the session from being marked as
// unresumable.
SSL_shutdown(ssl_);
SSL_free(ssl_);
ssl_ = NULL;
}
if (transport_bio_) {
BIO_free_all(transport_bio_);
transport_bio_ = NULL;
}
// Shut down anything that may call us back.
verifier_.reset();
transport_->socket()->Disconnect();
// Null all callbacks, delete all buffers.
transport_send_busy_ = false;
send_buffer_ = NULL;
transport_recv_busy_ = false;
recv_buffer_ = NULL;
user_connect_callback_.Reset();
user_read_callback_.Reset();
user_write_callback_.Reset();
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
pending_read_error_ = kNoPendingReadResult;
transport_read_error_ = OK;
transport_write_error_ = OK;
server_cert_verify_result_.Reset();
completed_connect_ = false;
cert_authorities_.clear();
cert_key_types_.clear();
client_auth_cert_needed_ = false;
start_cert_verification_time_ = base::TimeTicks();
npn_status_ = kNextProtoUnsupported;
npn_proto_.clear();
channel_id_xtn_negotiated_ = false;
channel_id_request_handle_.Cancel();
}
bool SSLClientSocketOpenSSL::IsConnected() const {
// If the handshake has not yet completed.
if (!completed_connect_)
return false;
// If an asynchronous operation is still pending.
if (user_read_buf_.get() || user_write_buf_.get())
return true;
return transport_->socket()->IsConnected();
}
bool SSLClientSocketOpenSSL::IsConnectedAndIdle() const {
// If the handshake has not yet completed.
if (!completed_connect_)
return false;
// If an asynchronous operation is still pending.
if (user_read_buf_.get() || user_write_buf_.get())
return false;
// If there is data waiting to be sent, or data read from the network that
// has not yet been consumed.
if (BIO_pending(transport_bio_) > 0 ||
BIO_wpending(transport_bio_) > 0) {
return false;
}
return transport_->socket()->IsConnectedAndIdle();
}
int SSLClientSocketOpenSSL::GetPeerAddress(IPEndPoint* addressList) const {
return transport_->socket()->GetPeerAddress(addressList);
}
int SSLClientSocketOpenSSL::GetLocalAddress(IPEndPoint* addressList) const {
return transport_->socket()->GetLocalAddress(addressList);
}
const BoundNetLog& SSLClientSocketOpenSSL::NetLog() const {
return net_log_;
}
void SSLClientSocketOpenSSL::SetSubresourceSpeculation() {
if (transport_.get() && transport_->socket()) {
transport_->socket()->SetSubresourceSpeculation();
} else {
NOTREACHED();
}
}
void SSLClientSocketOpenSSL::SetOmniboxSpeculation() {
if (transport_.get() && transport_->socket()) {
transport_->socket()->SetOmniboxSpeculation();
} else {
NOTREACHED();
}
}
bool SSLClientSocketOpenSSL::WasEverUsed() const {
return was_ever_used_;
}
bool SSLClientSocketOpenSSL::UsingTCPFastOpen() const {
if (transport_.get() && transport_->socket())
return transport_->socket()->UsingTCPFastOpen();
NOTREACHED();
return false;
}
bool SSLClientSocketOpenSSL::GetSSLInfo(SSLInfo* ssl_info) {
ssl_info->Reset();
if (server_cert_chain_->empty())
return false;
ssl_info->cert = server_cert_verify_result_.verified_cert;
ssl_info->cert_status = server_cert_verify_result_.cert_status;
ssl_info->is_issued_by_known_root =
server_cert_verify_result_.is_issued_by_known_root;
ssl_info->public_key_hashes =
server_cert_verify_result_.public_key_hashes;
ssl_info->client_cert_sent =
ssl_config_.send_client_cert && ssl_config_.client_cert.get();
ssl_info->channel_id_sent = WasChannelIDSent();
ssl_info->pinning_failure_log = pinning_failure_log_;
AddSCTInfoToSSLInfo(ssl_info);
const SSL_CIPHER* cipher = SSL_get_current_cipher(ssl_);
CHECK(cipher);
ssl_info->security_bits = SSL_CIPHER_get_bits(cipher, NULL);
ssl_info->connection_status = EncodeSSLConnectionStatus(
SSL_CIPHER_get_id(cipher), 0 /* no compression */,
GetNetSSLVersion(ssl_));
if (!SSL_get_secure_renegotiation_support(ssl_))
ssl_info->connection_status |= SSL_CONNECTION_NO_RENEGOTIATION_EXTENSION;
if (ssl_config_.version_fallback)
ssl_info->connection_status |= SSL_CONNECTION_VERSION_FALLBACK;
ssl_info->handshake_type = SSL_session_reused(ssl_) ?
SSLInfo::HANDSHAKE_RESUME : SSLInfo::HANDSHAKE_FULL;
DVLOG(3) << "Encoded connection status: cipher suite = "
<< SSLConnectionStatusToCipherSuite(ssl_info->connection_status)
<< " version = "
<< SSLConnectionStatusToVersion(ssl_info->connection_status);
return true;
}
int SSLClientSocketOpenSSL::Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
user_read_buf_ = buf;
user_read_buf_len_ = buf_len;
int rv = DoReadLoop();
if (rv == ERR_IO_PENDING) {
user_read_callback_ = callback;
} else {
if (rv > 0)
was_ever_used_ = true;
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
if (rv <= 0) {
// Failure of a read attempt may indicate a failed false start
// connection.
OnHandshakeCompletion();
}
}
return rv;
}
int SSLClientSocketOpenSSL::Write(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
user_write_buf_ = buf;
user_write_buf_len_ = buf_len;
int rv = DoWriteLoop();
if (rv == ERR_IO_PENDING) {
user_write_callback_ = callback;
} else {
if (rv > 0)
was_ever_used_ = true;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
if (rv < 0) {
// Failure of a write attempt may indicate a failed false start
// connection.
OnHandshakeCompletion();
}
}
return rv;
}
int SSLClientSocketOpenSSL::SetReceiveBufferSize(int32 size) {
return transport_->socket()->SetReceiveBufferSize(size);
}
int SSLClientSocketOpenSSL::SetSendBufferSize(int32 size) {
return transport_->socket()->SetSendBufferSize(size);
}
int SSLClientSocketOpenSSL::Init() {
DCHECK(!ssl_);
DCHECK(!transport_bio_);
SSLContext* context = SSLContext::GetInstance();
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
ssl_ = SSL_new(context->ssl_ctx());
if (!ssl_ || !context->SetClientSocketForSSL(ssl_, this))
return ERR_UNEXPECTED;
if (!SSL_set_tlsext_host_name(ssl_, host_and_port_.host().c_str()))
return ERR_UNEXPECTED;
// Set an OpenSSL callback to monitor this SSL*'s connection.
SSL_set_info_callback(ssl_, &InfoCallback);
trying_cached_session_ = context->session_cache()->SetSSLSessionWithKey(
ssl_, GetSessionCacheKey());
BIO* ssl_bio = NULL;
// 0 => use default buffer sizes.
if (!BIO_new_bio_pair(&ssl_bio, 0, &transport_bio_, 0))
return ERR_UNEXPECTED;
DCHECK(ssl_bio);
DCHECK(transport_bio_);
// Install a callback on OpenSSL's end to plumb transport errors through.
BIO_set_callback(ssl_bio, BIOCallback);
BIO_set_callback_arg(ssl_bio, reinterpret_cast<char*>(this));
SSL_set_bio(ssl_, ssl_bio, ssl_bio);
// OpenSSL defaults some options to on, others to off. To avoid ambiguity,
// set everything we care about to an absolute value.
SslSetClearMask options;
options.ConfigureFlag(SSL_OP_NO_SSLv2, true);
bool ssl3_enabled = (ssl_config_.version_min == SSL_PROTOCOL_VERSION_SSL3);
options.ConfigureFlag(SSL_OP_NO_SSLv3, !ssl3_enabled);
bool tls1_enabled = (ssl_config_.version_min <= SSL_PROTOCOL_VERSION_TLS1 &&
ssl_config_.version_max >= SSL_PROTOCOL_VERSION_TLS1);
options.ConfigureFlag(SSL_OP_NO_TLSv1, !tls1_enabled);
bool tls1_1_enabled =
(ssl_config_.version_min <= SSL_PROTOCOL_VERSION_TLS1_1 &&
ssl_config_.version_max >= SSL_PROTOCOL_VERSION_TLS1_1);
options.ConfigureFlag(SSL_OP_NO_TLSv1_1, !tls1_1_enabled);
bool tls1_2_enabled =
(ssl_config_.version_min <= SSL_PROTOCOL_VERSION_TLS1_2 &&
ssl_config_.version_max >= SSL_PROTOCOL_VERSION_TLS1_2);
options.ConfigureFlag(SSL_OP_NO_TLSv1_2, !tls1_2_enabled);
options.ConfigureFlag(SSL_OP_NO_COMPRESSION, true);
// TODO(joth): Set this conditionally, see http://crbug.com/55410
options.ConfigureFlag(SSL_OP_LEGACY_SERVER_CONNECT, true);
SSL_set_options(ssl_, options.set_mask);
SSL_clear_options(ssl_, options.clear_mask);
// Same as above, this time for the SSL mode.
SslSetClearMask mode;
mode.ConfigureFlag(SSL_MODE_RELEASE_BUFFERS, true);
mode.ConfigureFlag(SSL_MODE_CBC_RECORD_SPLITTING, true);
mode.ConfigureFlag(SSL_MODE_HANDSHAKE_CUTTHROUGH,
ssl_config_.false_start_enabled);
SSL_set_mode(ssl_, mode.set_mask);
SSL_clear_mode(ssl_, mode.clear_mask);
// Removing ciphers by ID from OpenSSL is a bit involved as we must use the
// textual name with SSL_set_cipher_list because there is no public API to
// directly remove a cipher by ID.
STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl_);
DCHECK(ciphers);
// See SSLConfig::disabled_cipher_suites for description of the suites
// disabled by default. Note that !SHA256 and !SHA384 only remove HMAC-SHA256
// and HMAC-SHA384 cipher suites, not GCM cipher suites with SHA256 or SHA384
// as the handshake hash.
std::string command("DEFAULT:!NULL:!aNULL:!IDEA:!FZA:!SRP:!SHA256:!SHA384:"
"!aECDH:!AESGCM+AES256");
// Walk through all the installed ciphers, seeing if any need to be
// appended to the cipher removal |command|.
for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); ++i) {
const SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i);
const uint16 id = SSL_CIPHER_get_id(cipher);
// Remove any ciphers with a strength of less than 80 bits. Note the NSS
// implementation uses "effective" bits here but OpenSSL does not provide
// this detail. This only impacts Triple DES: reports 112 vs. 168 bits,
// both of which are greater than 80 anyway.
bool disable = SSL_CIPHER_get_bits(cipher, NULL) < 80;
if (!disable) {
disable = std::find(ssl_config_.disabled_cipher_suites.begin(),
ssl_config_.disabled_cipher_suites.end(), id) !=
ssl_config_.disabled_cipher_suites.end();
}
if (disable) {
const char* name = SSL_CIPHER_get_name(cipher);
DVLOG(3) << "Found cipher to remove: '" << name << "', ID: " << id
<< " strength: " << SSL_CIPHER_get_bits(cipher, NULL);
command.append(":!");
command.append(name);
}
}
// Disable ECDSA cipher suites on platforms that do not support ECDSA
// signed certificates, as servers may use the presence of such
// ciphersuites as a hint to send an ECDSA certificate.
#if defined(OS_WIN)
if (base::win::GetVersion() < base::win::VERSION_VISTA)
command.append(":!ECDSA");
#endif
int rv = SSL_set_cipher_list(ssl_, command.c_str());
// If this fails (rv = 0) it means there are no ciphers enabled on this SSL.
// This will almost certainly result in the socket failing to complete the
// handshake at which point the appropriate error is bubbled up to the client.
LOG_IF(WARNING, rv != 1) << "SSL_set_cipher_list('" << command << "') "
"returned " << rv;
if (ssl_config_.version_fallback)
SSL_enable_fallback_scsv(ssl_);
// TLS channel ids.
if (IsChannelIDEnabled(ssl_config_, channel_id_service_)) {
SSL_enable_tls_channel_id(ssl_);
}
if (!ssl_config_.next_protos.empty()) {
std::vector<uint8_t> wire_protos =
SerializeNextProtos(ssl_config_.next_protos);
SSL_set_alpn_protos(ssl_, wire_protos.empty() ? NULL : &wire_protos[0],
wire_protos.size());
}
if (ssl_config_.signed_cert_timestamps_enabled) {
SSL_enable_signed_cert_timestamps(ssl_);
SSL_enable_ocsp_stapling(ssl_);
}
// TODO(davidben): Enable OCSP stapling on platforms which support it and pass
// into the certificate verifier. https://crbug.com/398677
return OK;
}
void SSLClientSocketOpenSSL::DoReadCallback(int rv) {
// Since Run may result in Read being called, clear |user_read_callback_|
// up front.
if (rv > 0)
was_ever_used_ = true;
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
if (rv <= 0) {
// Failure of a read attempt may indicate a failed false start
// connection.
OnHandshakeCompletion();
}
base::ResetAndReturn(&user_read_callback_).Run(rv);
}
void SSLClientSocketOpenSSL::DoWriteCallback(int rv) {
// Since Run may result in Write being called, clear |user_write_callback_|
// up front.
if (rv > 0)
was_ever_used_ = true;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
if (rv < 0) {
// Failure of a write attempt may indicate a failed false start
// connection.
OnHandshakeCompletion();
}
base::ResetAndReturn(&user_write_callback_).Run(rv);
}
void SSLClientSocketOpenSSL::OnHandshakeCompletion() {
if (!handshake_completion_callback_.is_null())
base::ResetAndReturn(&handshake_completion_callback_).Run();
}
bool SSLClientSocketOpenSSL::DoTransportIO() {
bool network_moved = false;
int rv;
// Read and write as much data as possible. The loop is necessary because
// Write() may return synchronously.
do {
rv = BufferSend();
if (rv != ERR_IO_PENDING && rv != 0)
network_moved = true;
} while (rv > 0);
if (transport_read_error_ == OK && BufferRecv() != ERR_IO_PENDING)
network_moved = true;
return network_moved;
}
int SSLClientSocketOpenSSL::DoHandshake() {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int net_error = OK;
int rv = SSL_do_handshake(ssl_);
if (client_auth_cert_needed_) {
net_error = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
// If the handshake already succeeded (because the server requests but
// doesn't require a client cert), we need to invalidate the SSL session
// so that we won't try to resume the non-client-authenticated session in
// the next handshake. This will cause the server to ask for a client
// cert again.
if (rv == 1) {
// Remove from session cache but don't clear this connection.
SSL_SESSION* session = SSL_get_session(ssl_);
if (session) {
int rv = SSL_CTX_remove_session(SSL_get_SSL_CTX(ssl_), session);
LOG_IF(WARNING, !rv) << "Couldn't invalidate SSL session: " << session;
}
}
} else if (rv == 1) {
if (trying_cached_session_ && logging::DEBUG_MODE) {
DVLOG(2) << "Result of session reuse for " << host_and_port_.ToString()
<< " is: " << (SSL_session_reused(ssl_) ? "Success" : "Fail");
}
if (ssl_config_.version_fallback &&
ssl_config_.version_max < ssl_config_.version_fallback_min) {
return ERR_SSL_FALLBACK_BEYOND_MINIMUM_VERSION;
}
// SSL handshake is completed. If NPN wasn't negotiated, see if ALPN was.
if (npn_status_ == kNextProtoUnsupported) {
const uint8_t* alpn_proto = NULL;
unsigned alpn_len = 0;
SSL_get0_alpn_selected(ssl_, &alpn_proto, &alpn_len);
if (alpn_len > 0) {
npn_proto_.assign(reinterpret_cast<const char*>(alpn_proto), alpn_len);
npn_status_ = kNextProtoNegotiated;
set_negotiation_extension(kExtensionALPN);
}
}
RecordChannelIDSupport(channel_id_service_,
channel_id_xtn_negotiated_,
ssl_config_.channel_id_enabled,
crypto::ECPrivateKey::IsSupported());
uint8_t* ocsp_response;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_, &ocsp_response, &ocsp_response_len);
set_stapled_ocsp_response_received(ocsp_response_len != 0);
uint8_t* sct_list;
size_t sct_list_len;
SSL_get0_signed_cert_timestamp_list(ssl_, &sct_list, &sct_list_len);
set_signed_cert_timestamps_received(sct_list_len != 0);
// Verify the certificate.
UpdateServerCert();
GotoState(STATE_VERIFY_CERT);
} else {
int ssl_error = SSL_get_error(ssl_, rv);
if (ssl_error == SSL_ERROR_WANT_CHANNEL_ID_LOOKUP) {
// The server supports channel ID. Stop to look one up before returning to
// the handshake.
channel_id_xtn_negotiated_ = true;
GotoState(STATE_CHANNEL_ID_LOOKUP);
return OK;
}
OpenSSLErrorInfo error_info;
net_error = MapOpenSSLErrorWithDetails(ssl_error, err_tracer, &error_info);
// If not done, stay in this state
if (net_error == ERR_IO_PENDING) {
GotoState(STATE_HANDSHAKE);
} else {
LOG(ERROR) << "handshake failed; returned " << rv
<< ", SSL error code " << ssl_error
<< ", net_error " << net_error;
net_log_.AddEvent(
NetLog::TYPE_SSL_HANDSHAKE_ERROR,
CreateNetLogOpenSSLErrorCallback(net_error, ssl_error, error_info));
}
}
return net_error;
}
int SSLClientSocketOpenSSL::DoChannelIDLookup() {
GotoState(STATE_CHANNEL_ID_LOOKUP_COMPLETE);
return channel_id_service_->GetOrCreateChannelID(
host_and_port_.host(),
&channel_id_private_key_,
&channel_id_cert_,
base::Bind(&SSLClientSocketOpenSSL::OnHandshakeIOComplete,
base::Unretained(this)),
&channel_id_request_handle_);
}
int SSLClientSocketOpenSSL::DoChannelIDLookupComplete(int result) {
if (result < 0)
return result;
DCHECK_LT(0u, channel_id_private_key_.size());
// Decode key.
std::vector<uint8> encrypted_private_key_info;
std::vector<uint8> subject_public_key_info;
encrypted_private_key_info.assign(
channel_id_private_key_.data(),
channel_id_private_key_.data() + channel_id_private_key_.size());
subject_public_key_info.assign(
channel_id_cert_.data(),
channel_id_cert_.data() + channel_id_cert_.size());
scoped_ptr<crypto::ECPrivateKey> ec_private_key(
crypto::ECPrivateKey::CreateFromEncryptedPrivateKeyInfo(
ChannelIDService::kEPKIPassword,
encrypted_private_key_info,
subject_public_key_info));
if (!ec_private_key) {
LOG(ERROR) << "Failed to import Channel ID.";
return ERR_CHANNEL_ID_IMPORT_FAILED;
}
// Hand the key to OpenSSL. Check for error in case OpenSSL rejects the key
// type.
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = SSL_set1_tls_channel_id(ssl_, ec_private_key->key());
if (!rv) {
LOG(ERROR) << "Failed to set Channel ID.";
int err = SSL_get_error(ssl_, rv);
return MapOpenSSLError(err, err_tracer);
}
// Return to the handshake.
set_channel_id_sent(true);
GotoState(STATE_HANDSHAKE);
return OK;
}
int SSLClientSocketOpenSSL::DoVerifyCert(int result) {
DCHECK(!server_cert_chain_->empty());
DCHECK(start_cert_verification_time_.is_null());
GotoState(STATE_VERIFY_CERT_COMPLETE);
// If the certificate is bad and has been previously accepted, use
// the previous status and bypass the error.
base::StringPiece der_cert;
if (!x509_util::GetDER(server_cert_chain_->Get(0), &der_cert)) {
NOTREACHED();
return ERR_CERT_INVALID;
}
CertStatus cert_status;
if (ssl_config_.IsAllowedBadCert(der_cert, &cert_status)) {
VLOG(1) << "Received an expected bad cert with status: " << cert_status;
server_cert_verify_result_.Reset();
server_cert_verify_result_.cert_status = cert_status;
server_cert_verify_result_.verified_cert = server_cert_;
return OK;
}
// When running in a sandbox, it may not be possible to create an
// X509Certificate*, as that may depend on OS functionality blocked
// in the sandbox.
if (!server_cert_.get()) {
server_cert_verify_result_.Reset();
server_cert_verify_result_.cert_status = CERT_STATUS_INVALID;
return ERR_CERT_INVALID;
}
start_cert_verification_time_ = base::TimeTicks::Now();
int flags = 0;
if (ssl_config_.rev_checking_enabled)
flags |= CertVerifier::VERIFY_REV_CHECKING_ENABLED;
if (ssl_config_.verify_ev_cert)
flags |= CertVerifier::VERIFY_EV_CERT;
if (ssl_config_.cert_io_enabled)
flags |= CertVerifier::VERIFY_CERT_IO_ENABLED;
if (ssl_config_.rev_checking_required_local_anchors)
flags |= CertVerifier::VERIFY_REV_CHECKING_REQUIRED_LOCAL_ANCHORS;
verifier_.reset(new SingleRequestCertVerifier(cert_verifier_));
return verifier_->Verify(
server_cert_.get(),
host_and_port_.host(),
flags,
// TODO(davidben): Route the CRLSet through SSLConfig so
// SSLClientSocket doesn't depend on SSLConfigService.
SSLConfigService::GetCRLSet().get(),
&server_cert_verify_result_,
base::Bind(&SSLClientSocketOpenSSL::OnHandshakeIOComplete,
base::Unretained(this)),
net_log_);
}
int SSLClientSocketOpenSSL::DoVerifyCertComplete(int result) {
verifier_.reset();
if (!start_cert_verification_time_.is_null()) {
base::TimeDelta verify_time =
base::TimeTicks::Now() - start_cert_verification_time_;
if (result == OK) {
UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTime", verify_time);
} else {
UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTimeError", verify_time);
}
}
const CertStatus cert_status = server_cert_verify_result_.cert_status;
if (transport_security_state_ &&
(result == OK ||
(IsCertificateError(result) && IsCertStatusMinorError(cert_status))) &&
!transport_security_state_->CheckPublicKeyPins(
host_and_port_.host(),
server_cert_verify_result_.is_issued_by_known_root,
server_cert_verify_result_.public_key_hashes,
&pinning_failure_log_)) {
result = ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN;
}
if (result == OK) {
// Only check Certificate Transparency if there were no other errors with
// the connection.
VerifyCT();
// TODO(joth): Work out if we need to remember the intermediate CA certs
// when the server sends them to us, and do so here.
SSLContext::GetInstance()->session_cache()->MarkSSLSessionAsGood(ssl_);
marked_session_as_good_ = true;
CheckIfHandshakeFinished();
} else {
DVLOG(1) << "DoVerifyCertComplete error " << ErrorToString(result)
<< " (" << result << ")";
}
completed_connect_ = true;
// Exit DoHandshakeLoop and return the result to the caller to Connect.
DCHECK_EQ(STATE_NONE, next_handshake_state_);
return result;
}
void SSLClientSocketOpenSSL::DoConnectCallback(int rv) {
if (rv < OK)
OnHandshakeCompletion();
if (!user_connect_callback_.is_null()) {
CompletionCallback c = user_connect_callback_;
user_connect_callback_.Reset();
c.Run(rv > OK ? OK : rv);
}
}
void SSLClientSocketOpenSSL::UpdateServerCert() {
server_cert_chain_->Reset(SSL_get_peer_cert_chain(ssl_));
server_cert_ = server_cert_chain_->AsOSChain();
if (server_cert_.get()) {
net_log_.AddEvent(
NetLog::TYPE_SSL_CERTIFICATES_RECEIVED,
base::Bind(&NetLogX509CertificateCallback,
base::Unretained(server_cert_.get())));
}
}
void SSLClientSocketOpenSSL::VerifyCT() {
if (!cert_transparency_verifier_)
return;
uint8_t* ocsp_response_raw;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_, &ocsp_response_raw, &ocsp_response_len);
std::string ocsp_response;
if (ocsp_response_len > 0) {
ocsp_response.assign(reinterpret_cast<const char*>(ocsp_response_raw),
ocsp_response_len);
}
uint8_t* sct_list_raw;
size_t sct_list_len;
SSL_get0_signed_cert_timestamp_list(ssl_, &sct_list_raw, &sct_list_len);
std::string sct_list;
if (sct_list_len > 0)
sct_list.assign(reinterpret_cast<const char*>(sct_list_raw), sct_list_len);
// Note that this is a completely synchronous operation: The CT Log Verifier
// gets all the data it needs for SCT verification and does not do any
// external communication.
int result = cert_transparency_verifier_->Verify(
server_cert_verify_result_.verified_cert.get(),
ocsp_response, sct_list, &ct_verify_result_, net_log_);
VLOG(1) << "CT Verification complete: result " << result
<< " Invalid scts: " << ct_verify_result_.invalid_scts.size()
<< " Verified scts: " << ct_verify_result_.verified_scts.size()
<< " scts from unknown logs: "
<< ct_verify_result_.unknown_logs_scts.size();
}
void SSLClientSocketOpenSSL::OnHandshakeIOComplete(int result) {
int rv = DoHandshakeLoop(result);
if (rv != ERR_IO_PENDING) {
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SSL_CONNECT, rv);
DoConnectCallback(rv);
}
}
void SSLClientSocketOpenSSL::OnSendComplete(int result) {
if (next_handshake_state_ == STATE_HANDSHAKE) {
// In handshake phase.
OnHandshakeIOComplete(result);
return;
}
// OnSendComplete may need to call DoPayloadRead while the renegotiation
// handshake is in progress.
int rv_read = ERR_IO_PENDING;
int rv_write = ERR_IO_PENDING;
bool network_moved;
do {
if (user_read_buf_.get())
rv_read = DoPayloadRead();
if (user_write_buf_.get())
rv_write = DoPayloadWrite();
network_moved = DoTransportIO();
} while (rv_read == ERR_IO_PENDING && rv_write == ERR_IO_PENDING &&
(user_read_buf_.get() || user_write_buf_.get()) && network_moved);
// Performing the Read callback may cause |this| to be deleted. If this
// happens, the Write callback should not be invoked. Guard against this by
// holding a WeakPtr to |this| and ensuring it's still valid.
base::WeakPtr<SSLClientSocketOpenSSL> guard(weak_factory_.GetWeakPtr());
if (user_read_buf_.get() && rv_read != ERR_IO_PENDING)
DoReadCallback(rv_read);
if (!guard.get())
return;
if (user_write_buf_.get() && rv_write != ERR_IO_PENDING)
DoWriteCallback(rv_write);
}
void SSLClientSocketOpenSSL::OnRecvComplete(int result) {
if (next_handshake_state_ == STATE_HANDSHAKE) {
// In handshake phase.
OnHandshakeIOComplete(result);
return;
}
// Network layer received some data, check if client requested to read
// decrypted data.
if (!user_read_buf_.get())
return;
int rv = DoReadLoop();
if (rv != ERR_IO_PENDING)
DoReadCallback(rv);
}
int SSLClientSocketOpenSSL::DoHandshakeLoop(int last_io_result) {
int rv = last_io_result;
do {
// Default to STATE_NONE for next state.
// (This is a quirk carried over from the windows
// implementation. It makes reading the logs a bit harder.)
// State handlers can and often do call GotoState just
// to stay in the current state.
State state = next_handshake_state_;
GotoState(STATE_NONE);
switch (state) {
case STATE_HANDSHAKE:
rv = DoHandshake();
break;
case STATE_CHANNEL_ID_LOOKUP:
DCHECK_EQ(OK, rv);
rv = DoChannelIDLookup();
break;
case STATE_CHANNEL_ID_LOOKUP_COMPLETE:
rv = DoChannelIDLookupComplete(rv);
break;
case STATE_VERIFY_CERT:
DCHECK_EQ(OK, rv);
rv = DoVerifyCert(rv);
break;
case STATE_VERIFY_CERT_COMPLETE:
rv = DoVerifyCertComplete(rv);
break;
case STATE_NONE:
default:
rv = ERR_UNEXPECTED;
NOTREACHED() << "unexpected state" << state;
break;
}
bool network_moved = DoTransportIO();
if (network_moved && next_handshake_state_ == STATE_HANDSHAKE) {
// In general we exit the loop if rv is ERR_IO_PENDING. In this
// special case we keep looping even if rv is ERR_IO_PENDING because
// the transport IO may allow DoHandshake to make progress.
rv = OK; // This causes us to stay in the loop.
}
} while (rv != ERR_IO_PENDING && next_handshake_state_ != STATE_NONE);
return rv;
}
int SSLClientSocketOpenSSL::DoReadLoop() {
bool network_moved;
int rv;
do {
rv = DoPayloadRead();
network_moved = DoTransportIO();
} while (rv == ERR_IO_PENDING && network_moved);
return rv;
}
int SSLClientSocketOpenSSL::DoWriteLoop() {
bool network_moved;
int rv;
do {
rv = DoPayloadWrite();
network_moved = DoTransportIO();
} while (rv == ERR_IO_PENDING && network_moved);
return rv;
}
int SSLClientSocketOpenSSL::DoPayloadRead() {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv;
if (pending_read_error_ != kNoPendingReadResult) {
rv = pending_read_error_;
pending_read_error_ = kNoPendingReadResult;
if (rv == 0) {
net_log_.AddByteTransferEvent(NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED,
rv, user_read_buf_->data());
}
return rv;
}
int total_bytes_read = 0;
do {
rv = SSL_read(ssl_, user_read_buf_->data() + total_bytes_read,
user_read_buf_len_ - total_bytes_read);
if (rv > 0)
total_bytes_read += rv;
} while (total_bytes_read < user_read_buf_len_ && rv > 0);
if (total_bytes_read == user_read_buf_len_) {
rv = total_bytes_read;
} else {
// Otherwise, an error occurred (rv <= 0). The error needs to be handled
// immediately, while the OpenSSL errors are still available in
// thread-local storage. However, the handled/remapped error code should
// only be returned if no application data was already read; if it was, the
// error code should be deferred until the next call of DoPayloadRead.
//
// If no data was read, |*next_result| will point to the return value of
// this function. If at least some data was read, |*next_result| will point
// to |pending_read_error_|, to be returned in a future call to
// DoPayloadRead() (e.g.: after the current data is handled).
int *next_result = &rv;
if (total_bytes_read > 0) {
pending_read_error_ = rv;
rv = total_bytes_read;
next_result = &pending_read_error_;
}
if (client_auth_cert_needed_) {
*next_result = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
} else if (*next_result < 0) {
int err = SSL_get_error(ssl_, *next_result);
*next_result = MapOpenSSLError(err, err_tracer);
// Many servers do not reliably send a close_notify alert when shutting
// down a connection, and instead terminate the TCP connection. This is
// reported as ERR_CONNECTION_CLOSED. Because of this, map the unclean
// shutdown to a graceful EOF, instead of treating it as an error as it
// should be.
if (*next_result == ERR_CONNECTION_CLOSED)
*next_result = 0;
if (rv > 0 && *next_result == ERR_IO_PENDING) {
// If at least some data was read from SSL_read(), do not treat
// insufficient data as an error to return in the next call to
// DoPayloadRead() - instead, let the call fall through to check
// SSL_read() again. This is because DoTransportIO() may complete
// in between the next call to DoPayloadRead(), and thus it is
// important to check SSL_read() on subsequent invocations to see
// if a complete record may now be read.
*next_result = kNoPendingReadResult;
}
}
}
if (rv >= 0) {
net_log_.AddByteTransferEvent(NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED, rv,
user_read_buf_->data());
}
return rv;
}
int SSLClientSocketOpenSSL::DoPayloadWrite() {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = SSL_write(ssl_, user_write_buf_->data(), user_write_buf_len_);
if (rv >= 0) {
net_log_.AddByteTransferEvent(NetLog::TYPE_SSL_SOCKET_BYTES_SENT, rv,
user_write_buf_->data());
return rv;
}
int err = SSL_get_error(ssl_, rv);
return MapOpenSSLError(err, err_tracer);
}
int SSLClientSocketOpenSSL::BufferSend(void) {
if (transport_send_busy_)
return ERR_IO_PENDING;
if (!send_buffer_.get()) {
// Get a fresh send buffer out of the send BIO.
size_t max_read = BIO_pending(transport_bio_);
if (!max_read)
return 0; // Nothing pending in the OpenSSL write BIO.
send_buffer_ = new DrainableIOBuffer(new IOBuffer(max_read), max_read);
int read_bytes = BIO_read(transport_bio_, send_buffer_->data(), max_read);
DCHECK_GT(read_bytes, 0);
CHECK_EQ(static_cast<int>(max_read), read_bytes);
}
int rv = transport_->socket()->Write(
send_buffer_.get(),
send_buffer_->BytesRemaining(),
base::Bind(&SSLClientSocketOpenSSL::BufferSendComplete,
base::Unretained(this)));
if (rv == ERR_IO_PENDING) {
transport_send_busy_ = true;
} else {
TransportWriteComplete(rv);
}
return rv;
}
int SSLClientSocketOpenSSL::BufferRecv(void) {
if (transport_recv_busy_)
return ERR_IO_PENDING;
// Determine how much was requested from |transport_bio_| that was not
// actually available.
size_t requested = BIO_ctrl_get_read_request(transport_bio_);
if (requested == 0) {
// This is not a perfect match of error codes, as no operation is
// actually pending. However, returning 0 would be interpreted as
// a possible sign of EOF, which is also an inappropriate match.
return ERR_IO_PENDING;
}
// Known Issue: While only reading |requested| data is the more correct
// implementation, it has the downside of resulting in frequent reads:
// One read for the SSL record header (~5 bytes) and one read for the SSL
// record body. Rather than issuing these reads to the underlying socket
// (and constantly allocating new IOBuffers), a single Read() request to
// fill |transport_bio_| is issued. As long as an SSL client socket cannot
// be gracefully shutdown (via SSL close alerts) and re-used for non-SSL
// traffic, this over-subscribed Read()ing will not cause issues.
size_t max_write = BIO_ctrl_get_write_guarantee(transport_bio_);
if (!max_write)
return ERR_IO_PENDING;
recv_buffer_ = new IOBuffer(max_write);
int rv = transport_->socket()->Read(
recv_buffer_.get(),
max_write,
base::Bind(&SSLClientSocketOpenSSL::BufferRecvComplete,
base::Unretained(this)));
if (rv == ERR_IO_PENDING) {
transport_recv_busy_ = true;
} else {
rv = TransportReadComplete(rv);
}
return rv;
}
void SSLClientSocketOpenSSL::BufferSendComplete(int result) {
transport_send_busy_ = false;
TransportWriteComplete(result);
OnSendComplete(result);
}
void SSLClientSocketOpenSSL::BufferRecvComplete(int result) {
result = TransportReadComplete(result);
OnRecvComplete(result);
}
void SSLClientSocketOpenSSL::TransportWriteComplete(int result) {
DCHECK(ERR_IO_PENDING != result);
if (result < 0) {
// Record the error. Save it to be reported in a future read or write on
// transport_bio_'s peer.
transport_write_error_ = result;
send_buffer_ = NULL;
} else {
DCHECK(send_buffer_.get());
send_buffer_->DidConsume(result);
DCHECK_GE(send_buffer_->BytesRemaining(), 0);
if (send_buffer_->BytesRemaining() <= 0)
send_buffer_ = NULL;
}
}
int SSLClientSocketOpenSSL::TransportReadComplete(int result) {
DCHECK(ERR_IO_PENDING != result);
// If an EOF, canonicalize to ERR_CONNECTION_CLOSED here so MapOpenSSLError
// does not report success.
if (result == 0)
result = ERR_CONNECTION_CLOSED;
if (result < 0) {
DVLOG(1) << "TransportReadComplete result " << result;
// Received an error. Save it to be reported in a future read on
// transport_bio_'s peer.
transport_read_error_ = result;
} else {
DCHECK(recv_buffer_.get());
int ret = BIO_write(transport_bio_, recv_buffer_->data(), result);
// A write into a memory BIO should always succeed.
DCHECK_EQ(result, ret);
}
recv_buffer_ = NULL;
transport_recv_busy_ = false;
return result;
}
int SSLClientSocketOpenSSL::ClientCertRequestCallback(SSL* ssl) {
DVLOG(3) << "OpenSSL ClientCertRequestCallback called";
DCHECK(ssl == ssl_);
// Clear any currently configured certificates.
SSL_certs_clear(ssl_);
#if defined(OS_IOS)
// TODO(droger): Support client auth on iOS. See http://crbug.com/145954).
LOG(WARNING) << "Client auth is not supported";
#else // !defined(OS_IOS)
if (!ssl_config_.send_client_cert) {
// First pass: we know that a client certificate is needed, but we do not
// have one at hand.
client_auth_cert_needed_ = true;
STACK_OF(X509_NAME) *authorities = SSL_get_client_CA_list(ssl);
for (size_t i = 0; i < sk_X509_NAME_num(authorities); i++) {
X509_NAME *ca_name = (X509_NAME *)sk_X509_NAME_value(authorities, i);
unsigned char* str = NULL;
int length = i2d_X509_NAME(ca_name, &str);
cert_authorities_.push_back(std::string(
reinterpret_cast<const char*>(str),
static_cast<size_t>(length)));
OPENSSL_free(str);
}
const unsigned char* client_cert_types;
size_t num_client_cert_types =
SSL_get0_certificate_types(ssl, &client_cert_types);
for (size_t i = 0; i < num_client_cert_types; i++) {
cert_key_types_.push_back(
static_cast<SSLClientCertType>(client_cert_types[i]));
}
return -1; // Suspends handshake.
}
// Second pass: a client certificate should have been selected.
if (ssl_config_.client_cert.get()) {
ScopedX509 leaf_x509 =
OSCertHandleToOpenSSL(ssl_config_.client_cert->os_cert_handle());
if (!leaf_x509) {
LOG(WARNING) << "Failed to import certificate";
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_BAD_FORMAT);
return -1;
}
ScopedX509Stack chain = OSCertHandlesToOpenSSL(
ssl_config_.client_cert->GetIntermediateCertificates());
if (!chain) {
LOG(WARNING) << "Failed to import intermediate certificates";
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_BAD_FORMAT);
return -1;
}
// TODO(davidben): With Linux client auth support, this should be
// conditioned on OS_ANDROID and then, with https://crbug.com/394131,
// removed altogether. OpenSSLClientKeyStore is mostly an artifact of the
// net/ client auth API lacking a private key handle.
#if defined(USE_OPENSSL_CERTS)
crypto::ScopedEVP_PKEY privkey =
OpenSSLClientKeyStore::GetInstance()->FetchClientCertPrivateKey(
ssl_config_.client_cert.get());
#else // !defined(USE_OPENSSL_CERTS)
crypto::ScopedEVP_PKEY privkey =
FetchClientCertPrivateKey(ssl_config_.client_cert.get());
#endif // defined(USE_OPENSSL_CERTS)
if (!privkey) {
// Could not find the private key. Fail the handshake and surface an
// appropriate error to the caller.
LOG(WARNING) << "Client cert found without private key";
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_NO_PRIVATE_KEY);
return -1;
}
if (!SSL_use_certificate(ssl_, leaf_x509.get()) ||
!SSL_use_PrivateKey(ssl_, privkey.get()) ||
!SSL_set1_chain(ssl_, chain.get())) {
LOG(WARNING) << "Failed to set client certificate";
return -1;
}
return 1;
}
#endif // defined(OS_IOS)
// Send no client certificate.
return 1;
}
int SSLClientSocketOpenSSL::CertVerifyCallback(X509_STORE_CTX* store_ctx) {
if (!completed_connect_) {
// If the first handshake hasn't completed then we accept any certificates
// because we verify after the handshake.
return 1;
}
// Disallow the server certificate to change in a renegotiation.
if (server_cert_chain_->empty()) {
LOG(ERROR) << "Received invalid certificate chain between handshakes";
return 0;
}
base::StringPiece old_der, new_der;
if (store_ctx->cert == NULL ||
!x509_util::GetDER(server_cert_chain_->Get(0), &old_der) ||
!x509_util::GetDER(store_ctx->cert, &new_der)) {
LOG(ERROR) << "Failed to encode certificates";
return 0;
}
if (old_der != new_der) {
LOG(ERROR) << "Server certificate changed between handshakes";
return 0;
}
return 1;
}
// SelectNextProtoCallback is called by OpenSSL during the handshake. If the
// server supports NPN, selects a protocol from the list that the server
// provides. According to third_party/openssl/openssl/ssl/ssl_lib.c, the
// callback can assume that |in| is syntactically valid.
int SSLClientSocketOpenSSL::SelectNextProtoCallback(unsigned char** out,
unsigned char* outlen,
const unsigned char* in,
unsigned int inlen) {
if (ssl_config_.next_protos.empty()) {
*out = reinterpret_cast<uint8*>(
const_cast<char*>(kDefaultSupportedNPNProtocol));
*outlen = arraysize(kDefaultSupportedNPNProtocol) - 1;
npn_status_ = kNextProtoUnsupported;
return SSL_TLSEXT_ERR_OK;
}
// Assume there's no overlap between our protocols and the server's list.
npn_status_ = kNextProtoNoOverlap;
// For each protocol in server preference order, see if we support it.
for (unsigned int i = 0; i < inlen; i += in[i] + 1) {
for (std::vector<std::string>::const_iterator
j = ssl_config_.next_protos.begin();
j != ssl_config_.next_protos.end(); ++j) {
if (in[i] == j->size() &&
memcmp(&in[i + 1], j->data(), in[i]) == 0) {
// We found a match.
*out = const_cast<unsigned char*>(in) + i + 1;
*outlen = in[i];
npn_status_ = kNextProtoNegotiated;
break;
}
}
if (npn_status_ == kNextProtoNegotiated)
break;
}
// If we didn't find a protocol, we select the first one from our list.
if (npn_status_ == kNextProtoNoOverlap) {
*out = reinterpret_cast<uint8*>(const_cast<char*>(
ssl_config_.next_protos[0].data()));
*outlen = ssl_config_.next_protos[0].size();
}
npn_proto_.assign(reinterpret_cast<const char*>(*out), *outlen);
DVLOG(2) << "next protocol: '" << npn_proto_ << "' status: " << npn_status_;
set_negotiation_extension(kExtensionNPN);
return SSL_TLSEXT_ERR_OK;
}
long SSLClientSocketOpenSSL::MaybeReplayTransportError(
BIO *bio,
int cmd,
const char *argp, int argi, long argl,
long retvalue) {
if (cmd == (BIO_CB_READ|BIO_CB_RETURN) && retvalue <= 0) {
// If there is no more data in the buffer, report any pending errors that
// were observed. Note that both the readbuf and the writebuf are checked
// for errors, since the application may have encountered a socket error
// while writing that would otherwise not be reported until the application
// attempted to write again - which it may never do. See
// https://crbug.com/249848.
if (transport_read_error_ != OK) {
OpenSSLPutNetError(FROM_HERE, transport_read_error_);
return -1;
}
if (transport_write_error_ != OK) {
OpenSSLPutNetError(FROM_HERE, transport_write_error_);
return -1;
}
} else if (cmd == BIO_CB_WRITE) {
// Because of the write buffer, this reports a failure from the previous
// write payload. If the current payload fails to write, the error will be
// reported in a future write or read to |bio|.
if (transport_write_error_ != OK) {
OpenSSLPutNetError(FROM_HERE, transport_write_error_);
return -1;
}
}
return retvalue;
}
// static
long SSLClientSocketOpenSSL::BIOCallback(
BIO *bio,
int cmd,
const char *argp, int argi, long argl,
long retvalue) {
SSLClientSocketOpenSSL* socket = reinterpret_cast<SSLClientSocketOpenSSL*>(
BIO_get_callback_arg(bio));
CHECK(socket);
return socket->MaybeReplayTransportError(
bio, cmd, argp, argi, argl, retvalue);
}
// static
void SSLClientSocketOpenSSL::InfoCallback(const SSL* ssl,
int type,
int /*val*/) {
if (type == SSL_CB_HANDSHAKE_DONE) {
SSLClientSocketOpenSSL* ssl_socket =
SSLContext::GetInstance()->GetClientSocketFromSSL(ssl);
ssl_socket->handshake_succeeded_ = true;
ssl_socket->CheckIfHandshakeFinished();
}
}
// Determines if both the handshake and certificate verification have completed
// successfully, and calls the handshake completion callback if that is the
// case.
//
// CheckIfHandshakeFinished is called twice per connection: once after
// MarkSSLSessionAsGood, when the certificate has been verified, and
// once via an OpenSSL callback when the handshake has completed. On the
// second call, when the certificate has been verified and the handshake
// has completed, the connection's handshake completion callback is run.
void SSLClientSocketOpenSSL::CheckIfHandshakeFinished() {
if (handshake_succeeded_ && marked_session_as_good_)
OnHandshakeCompletion();
}
void SSLClientSocketOpenSSL::AddSCTInfoToSSLInfo(SSLInfo* ssl_info) const {
for (ct::SCTList::const_iterator iter =
ct_verify_result_.verified_scts.begin();
iter != ct_verify_result_.verified_scts.end(); ++iter) {
ssl_info->signed_certificate_timestamps.push_back(
SignedCertificateTimestampAndStatus(*iter, ct::SCT_STATUS_OK));
}
for (ct::SCTList::const_iterator iter =
ct_verify_result_.invalid_scts.begin();
iter != ct_verify_result_.invalid_scts.end(); ++iter) {
ssl_info->signed_certificate_timestamps.push_back(
SignedCertificateTimestampAndStatus(*iter, ct::SCT_STATUS_INVALID));
}
for (ct::SCTList::const_iterator iter =
ct_verify_result_.unknown_logs_scts.begin();
iter != ct_verify_result_.unknown_logs_scts.end(); ++iter) {
ssl_info->signed_certificate_timestamps.push_back(
SignedCertificateTimestampAndStatus(*iter,
ct::SCT_STATUS_LOG_UNKNOWN));
}
}
scoped_refptr<X509Certificate>
SSLClientSocketOpenSSL::GetUnverifiedServerCertificateChain() const {
return server_cert_;
}
} // namespace net