blob: c13268c516360dcec5fc5f7cc51797aae1c894a2 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef NET_SPDY_SPDY_PRIORITY_TREE_H_
#define NET_SPDY_SPDY_PRIORITY_TREE_H_
#include <cmath>
#include <list>
#include <map>
#include <queue>
#include <set>
#include "base/basictypes.h"
#include "base/containers/hash_tables.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
namespace net {
// This data structure implements the HTTP2 prioritization data structure
// defined in draft standard:
// http://tools.ietf.org/html/draft-ietf-httpbis-http2-13
//
// Nodes can be added and removed, and dependencies between them defined. Each
// node can have at most one parent and at most one child (forming a list), but
// there can be multiple lists, with each list root having its own priority.
// Individual nodes can also be marked as ready to read/write, and then the
// whole structure can be queried to pick the next node to read/write out of
// those ready.
//
// The NodeId type must be a POD that supports comparison (most
// likely, it will be a number).
namespace test {
template <typename NodeId>
class SpdyPriorityTreePeer;
}
const int kRootNodeId = 0;
const int kDefaultWeight = 16;
const int kMinWeight = 1;
const int kMaxWeight = 256;
template <typename NodeId>
class SpdyPriorityTree {
typedef std::vector<std::pair<NodeId, float> > PriorityNodeList;
public:
SpdyPriorityTree();
~SpdyPriorityTree();
typedef std::list<NodeId> List;
struct Node {
Node();
~Node();
NodeId id;
NodeId parent_id;
int weight; // Weights can range between 1 and 256 (inclusive).
// The total weight of this node's direct descendants.
int total_child_weights;
// The total weight of direct descendants that are writeable
// (ready to write and not blocked). This value does not necessarily
// reflect the current state of the tree; instead, we lazily update it
// on calls to PropagateNodeState(node.id).
int total_writeable_child_weights;
List* child_list; // node ID's of children, if any
bool blocked; // Is the associated stream write-blocked?
bool ready; // Does the stream have data ready for writing?
float priority; // The fraction of resources to dedicate to this node.
};
// Orders in descending order of priority.
struct NodePriorityComparator {
bool operator ()(const std::pair<NodeId, float>& lhs,
const std::pair<NodeId, float>& rhs);
};
friend class test::SpdyPriorityTreePeer<NodeId>;
// Return the number of nodes currently in the tree.
int num_nodes() const;
// Return true if the tree contains a node with the given ID.
bool NodeExists(NodeId node_id) const;
// Add a new node with the given weight and parent. Non-exclusive nodes
// simply get added below the parent node. If exclusive = true, the node
// becomes the parent's sole child and the parent's previous children
// become the children of the new node.
// Returns true on success. Returns false if the node already exists
// in the tree, or if the parent node does not exist.
bool AddNode(NodeId node_id, NodeId parent_id, int weight, bool exclusive);
// Remove an existing node from the tree. Returns true on success, or
// false if the node doesn't exist.
bool RemoveNode(NodeId node_id);
// Get the weight of the given node.
int GetWeight(NodeId node_id) const;
// Get the parent of the given node. If the node doesn't exist, or is a root
// node (and thus has no parent), returns NodeId().
NodeId GetParent(NodeId node_id) const;
// Get the child list of the given node. If the node doesn't exist, or has no
// child, returns NULL.
std::list<NodeId>* GetChildren(NodeId node_id) const;
// Set the priority of the given node.
bool SetWeight(NodeId node_id, int weight);
// Set the parent of the given node. Returns true on success.
// Returns false and has no effect if the node and/or the parent doesn't
// exist. If the new parent is a descendant of the node (i.e. this would have
// created a cycle) then we rearrange the topology of the tree as described
// in the HTTP2 spec.
bool SetParent(NodeId node_id, NodeId parent_id, bool exclusive);
// Returns true if the node parent_id has child_id in its child_list.
bool HasChild(NodeId parent_id, NodeId child_id) const;
// Mark a node as blocked or unblocked. Return true on success, or false
// if unable to mark the specified node.
bool SetBlocked(NodeId node_id, bool blocked);
// Mark whether or not a node is ready to write; i.e. whether there is
// buffered data for the associated stream. Return true on success, or false
// if unable to mark the specified node.
bool SetReady(NodeId node_id, bool ready);
// Return true if all internal invariants hold (useful for unit tests).
// Unless there are bugs, this should always return true.
bool ValidateInvariantsForTests() const;
// Get the given node, or return NULL if it doesn't exist.
const Node* FindNode(NodeId node_id) const;
// Returns an ordered list of writeable nodes and their priorities.
// Priority is calculated as:
// parent's priority * (node's weight / sum of sibling weights)
PriorityNodeList GetPriorityList();
protected:
// Update the value of total_writeable_child_weights for the given node
// to reflect the current state of the tree.
void PropagateNodeState(NodeId node);
private:
typedef base::hash_map<NodeId, Node> NodeMap;
NodeMap all_nodes_; // maps from node IDs to Node objects
DISALLOW_COPY_AND_ASSIGN(SpdyPriorityTree);
};
template <typename NodeId>
SpdyPriorityTree<NodeId>::SpdyPriorityTree() {
Node* root_node = &all_nodes_[kRootNodeId];
root_node->id = kRootNodeId;
root_node->weight = kDefaultWeight;
root_node->parent_id = static_cast<NodeId>(kRootNodeId);
root_node->child_list = new std::list<NodeId>;
root_node->priority = 1.0;
root_node->ready = true;
}
template <typename NodeId>
SpdyPriorityTree<NodeId>::~SpdyPriorityTree() {}
template <typename NodeId>
SpdyPriorityTree<NodeId>::Node::Node() :
parent_id(kRootNodeId),
weight(kDefaultWeight),
total_child_weights(0),
total_writeable_child_weights(0),
child_list(),
blocked(false),
ready(false),
priority(0) {
}
template <typename NodeId>
SpdyPriorityTree<NodeId>::Node::~Node() {
delete child_list;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::NodePriorityComparator::operator ()(
const std::pair<NodeId, float>& lhs,
const std::pair<NodeId, float>& rhs) {
return lhs.second > rhs.second;
}
template <typename NodeId>
int SpdyPriorityTree<NodeId>::num_nodes() const {
return all_nodes_.size();
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::NodeExists(NodeId node_id) const {
return all_nodes_.count(node_id) != 0;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::AddNode(NodeId node_id,
NodeId parent_id,
int weight,
bool exclusive) {
if (NodeExists(node_id) || !NodeExists(parent_id)) {
return false;
}
if (weight < kMinWeight || weight > kMaxWeight) {
return false;
}
Node* parent = &all_nodes_[parent_id];
Node* new_node = &all_nodes_[node_id];
new_node->id = node_id;
new_node->weight = weight;
new_node->parent_id = parent_id;
if (exclusive) {
// Move the parent's current children below the new node.
new_node->child_list = parent->child_list;
new_node->total_child_weights = parent->total_child_weights;
// Update each child's parent_id.
for (typename List::iterator it = new_node->child_list->begin();
it != new_node->child_list->end(); ++it) {
Node* child = &all_nodes_[*it];
child->parent_id = node_id;
}
// Clear parent's old child data.
parent->child_list = new std::list<NodeId>;
parent->total_child_weights = 0;
} else {
new_node->child_list = new std::list<NodeId>;
}
// Add new node to parent.
parent->child_list->push_back(node_id);
parent->total_child_weights += weight;
return true;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::RemoveNode(NodeId node_id) {
if (node_id == static_cast<NodeId>(kRootNodeId) || !NodeExists(node_id)) {
return false;
}
const Node& node = all_nodes_[node_id];
DCHECK(NodeExists(node.parent_id));
Node* parent = &all_nodes_[node.parent_id];
// Remove the node id from parent's child list.
parent->child_list->remove(node_id);
parent->total_child_weights -= node.weight;
// Move the node's children to the parent's child list.
if (node.child_list != NULL) {
// Update each child's parent_id and weight.
for (typename List::iterator it = node.child_list->begin();
it != node.child_list->end(); ++it) {
Node* child = &all_nodes_[*it];
child->parent_id = node.parent_id;
// Divide the removed node's weight among its children, rounding to the
// nearest valid weight.
float float_weight = node.weight * static_cast<float>(child->weight) /
static_cast<float>(node.total_child_weights);
int new_weight = std::floor(float_weight + 0.5);
if (new_weight == 0) {
new_weight = 1;
}
child->weight = new_weight;
parent->total_child_weights += child->weight;
}
parent->child_list->splice(parent->child_list->end(), *node.child_list);
}
// Delete the node.
all_nodes_.erase(node_id);
return true;
}
template <typename NodeId>
int SpdyPriorityTree<NodeId>::GetWeight(NodeId node_id) const {
const Node* node = FindNode(node_id);
if (node != NULL) {
return node->weight;
}
return 0;
}
template <typename NodeId>
NodeId SpdyPriorityTree<NodeId>::GetParent(NodeId node_id) const {
const Node* node = FindNode(node_id);
if (node != NULL && node->id != static_cast<NodeId>(kRootNodeId)) {
return node->parent_id;
}
return static_cast<NodeId>(kRootNodeId);
}
template <typename NodeId>
std::list<NodeId>* SpdyPriorityTree<NodeId>::GetChildren(NodeId node_id) const {
const Node* node = FindNode(node_id);
if (node != NULL) {
return node->child_list;
}
return NULL;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::SetWeight(
NodeId node_id, int weight) {
if (!NodeExists(node_id)) {
return false;
}
if (weight < kMinWeight || weight > kMaxWeight) {
return false;
}
Node* node = &all_nodes_[node_id];
Node* parent = &all_nodes_[node->parent_id];
parent->total_child_weights += (weight - node->weight);
node->weight = weight;
return true;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::SetParent(
NodeId node_id, NodeId parent_id, bool exclusive) {
if (!NodeExists(node_id) || !NodeExists(parent_id)) {
return false;
}
if (node_id == parent_id) return false;
Node* node = &all_nodes_[node_id];
Node* new_parent = &all_nodes_[parent_id];
// If the new parent is already the node's parent, we're done.
if (node->parent_id == parent_id) {
return true;
}
// Next, check to see if the new parent is currently a descendant
// of the node.
Node* last = new_parent;
NodeId last_id = parent_id;
bool cycle_exists = false;
while (last->parent_id != static_cast<NodeId>(kRootNodeId)) {
if (last->parent_id == node_id) {
cycle_exists = true;
break;
}
last_id = last->parent_id;
DCHECK(NodeExists(last_id));
last = &all_nodes_[last_id];
}
if (cycle_exists) {
// The new parent moves to the level of the current node.
SetParent(parent_id, node->parent_id, false);
}
// Remove node from old parent's child list.
const NodeId old_parent_id = node->parent_id;
DCHECK(NodeExists(old_parent_id));
Node* old_parent = &all_nodes_[old_parent_id];
old_parent->child_list->remove(node_id);
old_parent->total_child_weights -= node->weight;
// Make the change.
node->parent_id = parent_id;
new_parent->child_list->push_back(node_id);
new_parent->total_child_weights += node->weight;
return true;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::SetBlocked(NodeId node_id, bool blocked) {
if (!NodeExists(node_id)) {
return false;
}
Node* node = &all_nodes_[node_id];
node->blocked = blocked;
return true;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::SetReady(NodeId node_id, bool ready) {
if (!NodeExists(node_id)) {
return false;
}
Node* node = &all_nodes_[node_id];
node->ready = ready;
return true;
}
template <typename NodeId>
void SpdyPriorityTree<NodeId>::PropagateNodeState(NodeId node_id) {
// Reset total_writeable_child_weights to its maximum value.
Node* node = &all_nodes_[node_id];
node->total_writeable_child_weights = node->total_child_weights;
for (typename List::iterator it = node->child_list->begin();
it != node->child_list->end(); ++it) {
PropagateNodeState(*it);
}
if (node->total_writeable_child_weights == 0 &&
(node->blocked || !node->ready)) {
// Tell the parent that this entire subtree is unwriteable.
Node* parent = &all_nodes_[node->parent_id];
parent->total_writeable_child_weights -= node->weight;
}
}
template <typename NodeId>
const typename SpdyPriorityTree<NodeId>::Node*
SpdyPriorityTree<NodeId>::FindNode(NodeId node_id) const {
typename NodeMap::const_iterator iter = all_nodes_.find(node_id);
if (iter == all_nodes_.end()) {
return NULL;
}
return &iter->second;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::HasChild(NodeId parent_id,
NodeId child_id) const {
const Node* parent = FindNode(parent_id);
return parent->child_list->end() !=
std::find(parent->child_list->begin(),
parent->child_list->end(),
child_id);
}
template <typename NodeId>
std::vector<std::pair<NodeId, float> >
SpdyPriorityTree<NodeId>::GetPriorityList() {
typedef std::pair<NodeId, float> PriorityNode;
typedef std::vector<PriorityNode> PriorityList;
PriorityList priority_list;
// Update total_writeable_child_weights to reflect the current
// state of the tree.
PropagateNodeState(kRootNodeId);
List queue;
const Node* root_node = FindNode(kRootNodeId);
DCHECK(root_node->priority == 1.0);
// Start by examining our top-level nodes.
for (typename List::iterator it = root_node->child_list->begin();
it != root_node->child_list->end(); ++it) {
queue.push_back(*it);
}
while (!queue.empty()) {
NodeId current_node_id = queue.front();
Node* current_node = &all_nodes_[current_node_id];
const Node* parent_node = FindNode(current_node->parent_id);
if (current_node->blocked || !current_node->ready) {
if (current_node->total_writeable_child_weights > 0) {
// This node isn't writeable, but it has writeable children.
// Calculate the total fraction of resources we can allot
// to this subtree.
current_node->priority = parent_node->priority *
(static_cast<float>(current_node->weight) /
static_cast<float>(parent_node->total_writeable_child_weights));
// Examine the children.
for (typename List::iterator it = current_node->child_list->begin();
it != current_node->child_list->end(); ++it) {
queue.push_back(*it);
}
} else {
// There's nothing to see in this subtree.
current_node->priority = 0;
}
} else {
// This node is writeable; calculate its priority.
current_node->priority = parent_node->priority *
(static_cast<float>(current_node->weight) /
static_cast<float>(parent_node->total_writeable_child_weights));
// Add this node to the priority list.
priority_list.push_back(PriorityNode(current_node_id,
current_node->priority));
}
// Remove this node from the queue.
queue.pop_front();
}
// Sort the nodes in descending order of priority.
std::sort(priority_list.begin(), priority_list.end(),
NodePriorityComparator());
return priority_list;
}
template <typename NodeId>
bool SpdyPriorityTree<NodeId>::ValidateInvariantsForTests() const {
int total_nodes = 0;
int nodes_visited = 0;
// Iterate through all nodes in the map.
for (typename NodeMap::const_iterator iter = all_nodes_.begin();
iter != all_nodes_.end(); ++iter) {
++total_nodes;
++nodes_visited;
const Node& node = iter->second;
// All nodes except the root should have a parent, and should appear in
// the child_list of that parent.
if (node.id != static_cast<NodeId>(kRootNodeId) &&
(!NodeExists(node.parent_id) ||
!HasChild(node.parent_id, node.id))) {
DLOG(INFO) << "Parent node " << node.parent_id
<< " does not exist, or does not list node " << node.id
<< " as its child.";
return false;
}
if (!node.child_list->empty()) {
int total_child_weights = 0;
// Iterate through the node's children.
for (typename List::iterator it = node.child_list->begin();
it != node.child_list->end(); ++it) {
++nodes_visited;
// Each node in the list should exist and should have this node
// set as its parent.
if (!NodeExists(*it) || node.id != GetParent(*it)) {
DLOG(INFO) << "Child node " << *it << " does not exist, "
<< "or does not list " << node.id << " as its parent.";
return false;
}
const Node* child = FindNode(*it);
total_child_weights += child->weight;
}
// Verify that total_child_weights is correct.
if (total_child_weights != node.total_child_weights) {
DLOG(INFO) << "Child weight totals do not agree. For node " << node.id
<< " total_child_weights has value "
<< node.total_child_weights
<< ", expected " << total_child_weights;
return false;
}
}
}
// Make sure num_nodes reflects the total number of nodes the map contains.
if (total_nodes != num_nodes()) {
DLOG(INFO) << "Map contains incorrect number of nodes.";
return false;
}
// Validate the validation function; we should have visited each node twice
// (except for the root)
DCHECK(nodes_visited == 2*num_nodes() - 1);
return true;
}
} // namespace net
#endif // NET_SPDY_SPDY_PRIORITY_TREE_H_