blob: 93dc8603cbf9832d9081b2b06bfabcaf05d3bae5 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/system/core_impl.h"
#include <limits>
#include "base/basictypes.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "mojo/system/core_test_base.h"
namespace mojo {
namespace system {
namespace {
typedef test::CoreTestBase CoreImplTest;
TEST_F(CoreImplTest, GetTimeTicksNow) {
const MojoTimeTicks start = core()->GetTimeTicksNow();
EXPECT_NE(static_cast<MojoTimeTicks>(0), start)
<< "GetTimeTicksNow should return nonzero value";
base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(15));
const MojoTimeTicks finish = core()->GetTimeTicksNow();
// Allow for some fuzz in sleep.
EXPECT_GE((finish - start), static_cast<MojoTimeTicks>(8000))
<< "Sleeping should result in increasing time ticks";
}
TEST_F(CoreImplTest, Basic) {
MockHandleInfo info;
EXPECT_EQ(0u, info.GetCtorCallCount());
MojoHandle h = CreateMockHandle(&info);
EXPECT_EQ(1u, info.GetCtorCallCount());
EXPECT_NE(h, MOJO_HANDLE_INVALID);
EXPECT_EQ(0u, info.GetWriteMessageCallCount());
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h, NULL, 0, NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(1u, info.GetWriteMessageCallCount());
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(h, NULL, 1, NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(2u, info.GetWriteMessageCallCount());
EXPECT_EQ(0u, info.GetReadMessageCallCount());
uint32_t num_bytes = 0;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h, NULL, &num_bytes, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(1u, info.GetReadMessageCallCount());
num_bytes = 1;
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->ReadMessage(h, NULL, &num_bytes, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(2u, info.GetReadMessageCallCount());
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h, NULL, NULL, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(3u, info.GetReadMessageCallCount());
EXPECT_EQ(0u, info.GetWriteDataCallCount());
EXPECT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->WriteData(h, NULL, NULL, MOJO_WRITE_DATA_FLAG_NONE));
EXPECT_EQ(1u, info.GetWriteDataCallCount());
EXPECT_EQ(0u, info.GetBeginWriteDataCallCount());
EXPECT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->BeginWriteData(h, NULL, NULL, MOJO_WRITE_DATA_FLAG_NONE));
EXPECT_EQ(1u, info.GetBeginWriteDataCallCount());
EXPECT_EQ(0u, info.GetEndWriteDataCallCount());
EXPECT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->EndWriteData(h, 0));
EXPECT_EQ(1u, info.GetEndWriteDataCallCount());
EXPECT_EQ(0u, info.GetReadDataCallCount());
EXPECT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->ReadData(h, NULL, NULL, MOJO_READ_DATA_FLAG_NONE));
EXPECT_EQ(1u, info.GetReadDataCallCount());
EXPECT_EQ(0u, info.GetBeginReadDataCallCount());
EXPECT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->BeginReadData(h, NULL, NULL, MOJO_READ_DATA_FLAG_NONE));
EXPECT_EQ(1u, info.GetBeginReadDataCallCount());
EXPECT_EQ(0u, info.GetEndReadDataCallCount());
EXPECT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->EndReadData(h, 0));
EXPECT_EQ(1u, info.GetEndReadDataCallCount());
EXPECT_EQ(0u, info.GetAddWaiterCallCount());
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(h, MOJO_WAIT_FLAG_EVERYTHING,
MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(1u, info.GetAddWaiterCallCount());
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(h, MOJO_WAIT_FLAG_EVERYTHING, 0));
EXPECT_EQ(2u, info.GetAddWaiterCallCount());
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(h, MOJO_WAIT_FLAG_EVERYTHING, 10 * 1000));
EXPECT_EQ(3u, info.GetAddWaiterCallCount());
MojoWaitFlags wait_flags = MOJO_WAIT_FLAG_EVERYTHING;
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->WaitMany(&h, &wait_flags, 1, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(4u, info.GetAddWaiterCallCount());
EXPECT_EQ(0u, info.GetDtorCallCount());
EXPECT_EQ(0u, info.GetCloseCallCount());
EXPECT_EQ(0u, info.GetCancelAllWaitersCallCount());
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h));
EXPECT_EQ(1u, info.GetCancelAllWaitersCallCount());
EXPECT_EQ(1u, info.GetCloseCallCount());
EXPECT_EQ(1u, info.GetDtorCallCount());
// No waiters should ever have ever been added.
EXPECT_EQ(0u, info.GetRemoveWaiterCallCount());
}
TEST_F(CoreImplTest, InvalidArguments) {
// |Close()|:
{
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(MOJO_HANDLE_INVALID));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(10));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(1000000000));
// Test a double-close.
MockHandleInfo info;
MojoHandle h = CreateMockHandle(&info);
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h));
EXPECT_EQ(1u, info.GetCloseCallCount());
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(h));
EXPECT_EQ(1u, info.GetCloseCallCount());
}
// |Wait()|:
{
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->Wait(MOJO_HANDLE_INVALID, MOJO_WAIT_FLAG_EVERYTHING,
MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->Wait(10, MOJO_WAIT_FLAG_EVERYTHING,
MOJO_DEADLINE_INDEFINITE));
}
// |WaitMany()|:
{
MojoHandle handles[2] = { MOJO_HANDLE_INVALID, MOJO_HANDLE_INVALID };
MojoWaitFlags flags[2] = { MOJO_WAIT_FLAG_EVERYTHING,
MOJO_WAIT_FLAG_EVERYTHING };
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(handles, flags, 0, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(NULL, flags, 0, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(handles, NULL, 0, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(NULL, flags, 1, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(handles, NULL, 1, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(handles, flags, 1, MOJO_DEADLINE_INDEFINITE));
MockHandleInfo info[2];
handles[0] = CreateMockHandle(&info[0]);
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->WaitMany(handles, flags, 1, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(handles, flags, 2, MOJO_DEADLINE_INDEFINITE));
handles[1] = handles[0] + 1; // Invalid handle.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WaitMany(handles, flags, 2, MOJO_DEADLINE_INDEFINITE));
handles[1] = CreateMockHandle(&info[1]);
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->WaitMany(handles, flags, 2, MOJO_DEADLINE_INDEFINITE));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(handles[0]));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(handles[1]));
}
// |CreateMessagePipe()|:
{
MojoHandle h;
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->CreateMessagePipe(NULL, NULL));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->CreateMessagePipe(&h, NULL));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->CreateMessagePipe(NULL, &h));
}
// |WriteMessage()|:
// Only check arguments checked by |CoreImpl|, namely |handle|, |handles|, and
// |num_handles|.
{
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(MOJO_HANDLE_INVALID, NULL, 0, NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
MockHandleInfo info;
MojoHandle h = CreateMockHandle(&info);
MojoHandle handles[2] = { MOJO_HANDLE_INVALID, MOJO_HANDLE_INVALID };
// Null |handles| with nonzero |num_handles|.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(h, NULL, 0, NULL, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// Checked by |CoreImpl|, shouldn't go through to the dispatcher.
EXPECT_EQ(0u, info.GetWriteMessageCallCount());
// Huge handle count (implausibly big on some systems -- more than can be
// stored in a 32-bit address space).
// Note: This may return either |MOJO_RESULT_INVALID_ARGUMENT| or
// |MOJO_RESULT_RESOURCE_EXHAUSTED|, depending on whether it's plausible or
// not.
EXPECT_NE(MOJO_RESULT_OK,
core()->WriteMessage(h, NULL, 0, handles,
std::numeric_limits<uint32_t>::max(),
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(0u, info.GetWriteMessageCallCount());
// Huge handle count (plausibly big).
EXPECT_EQ(MOJO_RESULT_RESOURCE_EXHAUSTED,
core()->WriteMessage(h, NULL, 0, handles,
std::numeric_limits<uint32_t>::max() /
sizeof(handles[0]),
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(0u, info.GetWriteMessageCallCount());
// Invalid handle in |handles|.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(h, NULL, 0, handles, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(0u, info.GetWriteMessageCallCount());
// Two invalid handles in |handles|.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(h, NULL, 0, handles, 2,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(0u, info.GetWriteMessageCallCount());
// Can't send a handle over itself.
handles[0] = h;
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->WriteMessage(h, NULL, 0, handles, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(0u, info.GetWriteMessageCallCount());
MockHandleInfo info2;
MojoHandle h2 = CreateMockHandle(&info2);
// This is "okay", but |MockDispatcher| doesn't implement it.
handles[0] = h2;
EXPECT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->WriteMessage(h, NULL, 0, handles, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(1u, info.GetWriteMessageCallCount());
// One of the |handles| is still invalid.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(h, NULL, 0, handles, 2,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(1u, info.GetWriteMessageCallCount());
// One of the |handles| is the same as |handle|.
handles[1] = h;
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->WriteMessage(h, NULL, 0, handles, 2,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(1u, info.GetWriteMessageCallCount());
// Can't send a handle twice in the same message.
handles[1] = h2;
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->WriteMessage(h, NULL, 0, handles, 2,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(1u, info.GetWriteMessageCallCount());
// Note: Since we never successfully sent anything with it, |h2| should
// still be valid.
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h2));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h));
}
// |ReadMessage()|:
// Only check arguments checked by |CoreImpl|, namely |handle|, |handles|, and
// |num_handles|.
{
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->ReadMessage(MOJO_HANDLE_INVALID, NULL, NULL, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
MockHandleInfo info;
MojoHandle h = CreateMockHandle(&info);
uint32_t handle_count = 1;
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->ReadMessage(h, NULL, NULL, NULL, &handle_count,
MOJO_READ_MESSAGE_FLAG_NONE));
// Checked by |CoreImpl|, shouldn't go through to the dispatcher.
EXPECT_EQ(0u, info.GetReadMessageCallCount());
// Okay.
handle_count = 0;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h, NULL, NULL, NULL, &handle_count,
MOJO_READ_MESSAGE_FLAG_NONE));
// Checked by |CoreImpl|, shouldn't go through to the dispatcher.
EXPECT_EQ(1u, info.GetReadMessageCallCount());
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h));
}
}
// TODO(vtl): test |Wait()| and |WaitMany()| properly
// - including |WaitMany()| with the same handle more than once (with
// same/different flags)
TEST_F(CoreImplTest, MessagePipe) {
MojoHandle h[2];
EXPECT_EQ(MOJO_RESULT_OK, core()->CreateMessagePipe(&h[0], &h[1]));
// Should get two distinct, valid handles.
EXPECT_NE(h[0], MOJO_HANDLE_INVALID);
EXPECT_NE(h[1], MOJO_HANDLE_INVALID);
EXPECT_NE(h[0], h[1]);
// Neither should be readable.
MojoWaitFlags flags[2] = { MOJO_WAIT_FLAG_READABLE, MOJO_WAIT_FLAG_READABLE };
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
core()->WaitMany(h, flags, 2, 0));
// Try to read anyway.
char buffer[1] = { 'a' };
uint32_t buffer_size = 1;
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
core()->ReadMessage(h[0], buffer, &buffer_size, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
// Check that it left its inputs alone.
EXPECT_EQ('a', buffer[0]);
EXPECT_EQ(1u, buffer_size);
// Both should be writable.
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h[0], MOJO_WAIT_FLAG_WRITABLE, 1000000000));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h[1], MOJO_WAIT_FLAG_WRITABLE, 1000000000));
// Also check that |h[1]| is writable using |WaitMany()|.
flags[0] = MOJO_WAIT_FLAG_READABLE;
flags[1] = MOJO_WAIT_FLAG_WRITABLE;
EXPECT_EQ(1, core()->WaitMany(h, flags, 2, MOJO_DEADLINE_INDEFINITE));
// Write to |h[1]|.
buffer[0] = 'b';
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h[1], buffer, 1, NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// Check that |h[0]| is now readable.
flags[0] = MOJO_WAIT_FLAG_READABLE;
flags[1] = MOJO_WAIT_FLAG_READABLE;
EXPECT_EQ(0, core()->WaitMany(h, flags, 2, MOJO_DEADLINE_INDEFINITE));
// Read from |h[0]|.
// First, get only the size.
buffer_size = 0;
EXPECT_EQ(MOJO_RESULT_RESOURCE_EXHAUSTED,
core()->ReadMessage(h[0], NULL, &buffer_size, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(1u, buffer_size);
// Then actually read it.
buffer[0] = 'c';
buffer_size = 1;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h[0], buffer, &buffer_size, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ('b', buffer[0]);
EXPECT_EQ(1u, buffer_size);
// |h[0]| should no longer be readable.
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
core()->Wait(h[0], MOJO_WAIT_FLAG_READABLE, 0));
// Write to |h[0]|.
buffer[0] = 'd';
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h[0], buffer, 1, NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// Close |h[0]|.
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h[0]));
// Check that |h[1]| is no longer writable (and will never be).
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(h[1], MOJO_WAIT_FLAG_WRITABLE, 1000000000));
// Check that |h[1]| is still readable (for the moment).
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
// Discard a message from |h[1]|.
EXPECT_EQ(MOJO_RESULT_RESOURCE_EXHAUSTED,
core()->ReadMessage(h[1], NULL, NULL, NULL, NULL,
MOJO_READ_MESSAGE_FLAG_MAY_DISCARD));
// |h[1]| is no longer readable (and will never be).
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(h[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
// Try writing to |h[1]|.
buffer[0] = 'e';
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->WriteMessage(h[1], buffer, 1, NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h[1]));
}
// Tests passing a message pipe handle.
TEST_F(CoreImplTest, MessagePipeBasicLocalHandlePassing1) {
const char kHello[] = "hello";
const uint32_t kHelloSize = static_cast<uint32_t>(sizeof(kHello));
const char kWorld[] = "world!!!";
const uint32_t kWorldSize = static_cast<uint32_t>(sizeof(kWorld));
char buffer[100];
const uint32_t kBufferSize = static_cast<uint32_t>(sizeof(buffer));
uint32_t num_bytes;
MojoHandle handles[10];
uint32_t num_handles;
MojoHandle h_received;
MojoHandle h_passing[2];
EXPECT_EQ(MOJO_RESULT_OK,
core()->CreateMessagePipe(&h_passing[0], &h_passing[1]));
// Make sure that |h_passing[]| work properly.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passing[0],
kHello, kHelloSize,
NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_passing[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passing[1],
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, num_bytes);
EXPECT_STREQ(kHello, buffer);
EXPECT_EQ(0u, num_handles);
// Make sure that you can't pass either of the message pipe's handles over
// itself.
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->WriteMessage(h_passing[0],
kHello, kHelloSize,
&h_passing[0], 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(h_passing[0],
kHello, kHelloSize,
&h_passing[1], 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
MojoHandle h_passed[2];
EXPECT_EQ(MOJO_RESULT_OK,
core()->CreateMessagePipe(&h_passed[0], &h_passed[1]));
// Make sure that |h_passed[]| work properly.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passed[0],
kHello, kHelloSize,
NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_passed[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passed[1],
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, num_bytes);
EXPECT_STREQ(kHello, buffer);
EXPECT_EQ(0u, num_handles);
// Send |h_passed[1]| from |h_passing[0]| to |h_passing[1]|.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passing[0],
kWorld, kWorldSize,
&h_passed[1], 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_passing[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passing[1],
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kWorldSize, num_bytes);
EXPECT_STREQ(kWorld, buffer);
EXPECT_EQ(1u, num_handles);
h_received = handles[0];
EXPECT_NE(h_received, MOJO_HANDLE_INVALID);
EXPECT_NE(h_received, h_passing[0]);
EXPECT_NE(h_received, h_passing[1]);
EXPECT_NE(h_received, h_passed[0]);
// Note: We rely on the Mojo system not re-using handle values very often.
EXPECT_NE(h_received, h_passed[1]);
// |h_passed[1]| should no longer be valid; check that trying to close it
// fails. See above note.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(h_passed[1]));
// Write to |h_passed[0]|. Should receive on |h_received|.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passed[0],
kHello, kHelloSize,
NULL, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_received, MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_received,
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, num_bytes);
EXPECT_STREQ(kHello, buffer);
EXPECT_EQ(0u, num_handles);
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h_passing[0]));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h_passing[1]));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h_passed[0]));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h_received));
}
TEST_F(CoreImplTest, DataPipe) {
MojoHandle ph, ch; // p is for producer and c is for consumer.
EXPECT_EQ(MOJO_RESULT_OK, core()->CreateDataPipe(NULL, &ph, &ch));
// Should get two distinct, valid handles.
EXPECT_NE(ph, MOJO_HANDLE_INVALID);
EXPECT_NE(ch, MOJO_HANDLE_INVALID);
EXPECT_NE(ph, ch);
// Producer should be never-readable, but already writable.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(ph, MOJO_WAIT_FLAG_READABLE, 0));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(ph, MOJO_WAIT_FLAG_WRITABLE, 0));
// Consumer should be never-writable, and not yet readable.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(ch, MOJO_WAIT_FLAG_WRITABLE, 0));
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
core()->Wait(ch, MOJO_WAIT_FLAG_READABLE, 0));
// Write.
char elements[2] = { 'A', 'B' };
uint32_t num_bytes = 2u;
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteData(ph, elements, &num_bytes,
MOJO_WRITE_DATA_FLAG_NONE));
EXPECT_EQ(2u, num_bytes);
// Consumer should now be readable.
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(ch, MOJO_WAIT_FLAG_READABLE, 0));
// Read one character.
elements[0] = -1;
elements[1] = -1;
num_bytes = 1u;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch, elements, &num_bytes,
MOJO_READ_DATA_FLAG_NONE));
EXPECT_EQ('A', elements[0]);
EXPECT_EQ(-1, elements[1]);
// Two-phase write.
void* write_ptr = NULL;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK,
core()->BeginWriteData(ph, &write_ptr, &num_bytes,
MOJO_WRITE_DATA_FLAG_NONE));
// We count on the default options providing a decent buffer size.
ASSERT_GE(num_bytes, 3u);
// Trying to do a normal write during a two-phase write should fail.
elements[0] = 'X';
num_bytes = 1u;
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->WriteData(ph, elements, &num_bytes,
MOJO_WRITE_DATA_FLAG_NONE));
// Actually write the data, and complete it now.
static_cast<char*>(write_ptr)[0] = 'C';
static_cast<char*>(write_ptr)[1] = 'D';
static_cast<char*>(write_ptr)[2] = 'E';
EXPECT_EQ(MOJO_RESULT_OK, core()->EndWriteData(ph, 3u));
// Query how much data we have.
num_bytes = 0;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch, NULL, &num_bytes, MOJO_READ_DATA_FLAG_QUERY));
EXPECT_EQ(4u, num_bytes);
// Try to discard ten characters, in all-or-none mode. Should fail.
num_bytes = 10;
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
core()->ReadData(ch, NULL, &num_bytes,
MOJO_READ_DATA_FLAG_DISCARD |
MOJO_READ_DATA_FLAG_ALL_OR_NONE));
// Discard two characters.
num_bytes = 2;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch, NULL, &num_bytes,
MOJO_READ_DATA_FLAG_DISCARD |
MOJO_READ_DATA_FLAG_ALL_OR_NONE));
// Read the remaining two characters, in two-phase mode (all-or-none).
const void* read_ptr = NULL;
num_bytes = 2;
ASSERT_EQ(MOJO_RESULT_OK,
core()->BeginReadData(ch, &read_ptr, &num_bytes,
MOJO_READ_DATA_FLAG_ALL_OR_NONE));
// Note: Count on still being able to do the contiguous read here.
ASSERT_EQ(2u, num_bytes);
// Discarding right now should fail.
num_bytes = 1;
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->ReadData(ch, NULL, &num_bytes,
MOJO_READ_DATA_FLAG_DISCARD));
// Actually check our data and end the two-phase read.
EXPECT_EQ('D', static_cast<const char*>(read_ptr)[0]);
EXPECT_EQ('E', static_cast<const char*>(read_ptr)[1]);
EXPECT_EQ(MOJO_RESULT_OK, core()->EndReadData(ch, 2u));
// Consumer should now be no longer readable.
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
core()->Wait(ch, MOJO_WAIT_FLAG_READABLE, 0));
// TODO(vtl): More.
// Close the producer.
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(ph));
// The consumer should now be never-readable.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->Wait(ch, MOJO_WAIT_FLAG_READABLE, 0));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(ch));
}
// Tests passing data pipe producer and consumer handles.
TEST_F(CoreImplTest, MessagePipeBasicLocalHandlePassing2) {
const char kHello[] = "hello";
const uint32_t kHelloSize = static_cast<uint32_t>(sizeof(kHello));
const char kWorld[] = "world!!!";
const uint32_t kWorldSize = static_cast<uint32_t>(sizeof(kWorld));
char buffer[100];
const uint32_t kBufferSize = static_cast<uint32_t>(sizeof(buffer));
uint32_t num_bytes;
MojoHandle handles[10];
uint32_t num_handles;
MojoHandle h_passing[2];
EXPECT_EQ(MOJO_RESULT_OK,
core()->CreateMessagePipe(&h_passing[0], &h_passing[1]));
MojoHandle ph, ch;
EXPECT_EQ(MOJO_RESULT_OK,
core()->CreateDataPipe(NULL, &ph, &ch));
// Send |ch| from |h_passing[0]| to |h_passing[1]|.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passing[0],
kHello, kHelloSize,
&ch, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_passing[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passing[1],
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, num_bytes);
EXPECT_STREQ(kHello, buffer);
EXPECT_EQ(1u, num_handles);
MojoHandle ch_received = handles[0];
EXPECT_NE(ch_received, MOJO_HANDLE_INVALID);
EXPECT_NE(ch_received, h_passing[0]);
EXPECT_NE(ch_received, h_passing[1]);
EXPECT_NE(ch_received, ph);
// Note: We rely on the Mojo system not re-using handle values very often.
EXPECT_NE(ch_received, ch);
// |ch| should no longer be valid; check that trying to close it fails. See
// above note.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(ch));
// Write to |ph|. Should receive on |ch_received|.
num_bytes = kWorldSize;
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteData(ph, kWorld, &num_bytes,
MOJO_WRITE_DATA_FLAG_ALL_OR_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(ch_received, MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch_received, buffer, &num_bytes,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kWorldSize, num_bytes);
EXPECT_STREQ(kWorld, buffer);
// Now pass |ph| in the same direction.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passing[0],
kWorld, kWorldSize,
&ph, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_passing[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passing[1],
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kWorldSize, num_bytes);
EXPECT_STREQ(kWorld, buffer);
EXPECT_EQ(1u, num_handles);
MojoHandle ph_received = handles[0];
EXPECT_NE(ph_received, MOJO_HANDLE_INVALID);
EXPECT_NE(ph_received, h_passing[0]);
EXPECT_NE(ph_received, h_passing[1]);
EXPECT_NE(ph_received, ch_received);
// Again, rely on the Mojo system not re-using handle values very often.
EXPECT_NE(ph_received, ph);
// |ph| should no longer be valid; check that trying to close it fails. See
// above note.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(ph));
// Write to |ph_received|. Should receive on |ch_received|.
num_bytes = kHelloSize;
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteData(ph_received, kHello, &num_bytes,
MOJO_WRITE_DATA_FLAG_ALL_OR_NONE));
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(ch_received, MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch_received, buffer, &num_bytes,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, num_bytes);
EXPECT_STREQ(kHello, buffer);
ph = ph_received;
ph_received = MOJO_HANDLE_INVALID;
ch = ch_received;
ch_received = MOJO_HANDLE_INVALID;
// Make sure that |ph| can't be sent if it's in a two-phase write.
void* write_ptr = NULL;
num_bytes = 0;
ASSERT_EQ(MOJO_RESULT_OK,
core()->BeginWriteData(ph, &write_ptr, &num_bytes,
MOJO_WRITE_DATA_FLAG_NONE));
ASSERT_GE(num_bytes, 1u);
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->WriteMessage(h_passing[0],
kHello, kHelloSize,
&ph, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// But |ch| can, even if |ph| is in a two-phase write.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passing[0],
kHello, kHelloSize,
&ch, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
ch = MOJO_HANDLE_INVALID;
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_passing[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passing[1],
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, num_bytes);
EXPECT_STREQ(kHello, buffer);
EXPECT_EQ(1u, num_handles);
ch = handles[0];
EXPECT_NE(ch, MOJO_HANDLE_INVALID);
// Complete the two-phase write.
static_cast<char*>(write_ptr)[0] = 'x';
EXPECT_EQ(MOJO_RESULT_OK, core()->EndWriteData(ph, 1));
// Wait for |ch| to be readable.
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(ch, MOJO_WAIT_FLAG_READABLE, 1000000000));
// Make sure that |ch| can't be sent if it's in a two-phase read.
const void* read_ptr = NULL;
num_bytes = 1;
ASSERT_EQ(MOJO_RESULT_OK,
core()->BeginReadData(ch, &read_ptr, &num_bytes,
MOJO_READ_DATA_FLAG_ALL_OR_NONE));
EXPECT_EQ(MOJO_RESULT_BUSY,
core()->WriteMessage(h_passing[0],
kHello, kHelloSize,
&ch, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// But |ph| can, even if |ch| is in a two-phase read.
EXPECT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passing[0],
kWorld, kWorldSize,
&ph, 1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
ph = MOJO_HANDLE_INVALID;
EXPECT_EQ(MOJO_RESULT_OK,
core()->Wait(h_passing[1], MOJO_WAIT_FLAG_READABLE, 1000000000));
num_bytes = kBufferSize;
num_handles = arraysize(handles);
EXPECT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passing[1],
buffer, &num_bytes,
handles, &num_handles,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kWorldSize, num_bytes);
EXPECT_STREQ(kWorld, buffer);
EXPECT_EQ(1u, num_handles);
ph = handles[0];
EXPECT_NE(ph, MOJO_HANDLE_INVALID);
// Complete the two-phase read.
EXPECT_EQ('x', static_cast<const char*>(read_ptr)[0]);
EXPECT_EQ(MOJO_RESULT_OK, core()->EndReadData(ch, 1));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h_passing[0]));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(h_passing[1]));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(ph));
EXPECT_EQ(MOJO_RESULT_OK, core()->Close(ch));
}
// TODO(vtl): Test |DuplicateBufferHandle()| and |MapBuffer()|.
} // namespace
} // namespace system
} // namespace mojo