blob: 6b3f5d20c6dd9fd6f822c424eba7253f09a2b850 [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_BASE_CURSOR_CURSOR_DATA_H_
#define UI_BASE_CURSOR_CURSOR_DATA_H_
#include <vector>
#include "base/time/time.h"
#include "build/build_config.h"
#include "ui/base/ui_base_export.h"
#include "ui/gfx/geometry/point.h"
class SkBitmap;
namespace ui {
enum class CursorType;
// The new Cursor class. (aka, Cursor2)
//
// Contains all data for a cursor. Its type, along with any custom bitmap
// images, hotspot data, scaling factors, etc.
//
// Why a new class? ui::Cursor currently wraps a PlatformCursor, which is a
// platform specific representation, which is generated in //content/. This
// previously was OK, as a WebCursor was sent over chrome IPC from the renderer
// to the browser process, and then the data in WebCursor was turned into the
// an opaque platform specific structure, stuffed inside ui::Cursor, and then
// read by win32 or x11. Now, the windowing server can be in a separate
// process, so this doesn't work.
//
// Using a raw mojo struct is not convenient; we want to have copyable classes
// which are internally copy-on-write for large data, like the internally used
// SkBitmap, as we cache this data at multiple layers.
//
// TODO(erg): Rename this to ui::Cursor once we've mojoified the entire chain
// from the renderer to the window server.
class UI_BASE_EXPORT CursorData {
public:
CursorData();
explicit CursorData(CursorType type);
CursorData(const gfx::Point& hostpot_point,
const std::vector<SkBitmap>& cursor_frames,
float scale_factor,
const base::TimeDelta& frame_delay);
CursorData(const CursorData& cursor);
CursorData(CursorData&& cursor);
~CursorData();
CursorData& operator=(const CursorData& cursor);
CursorData& operator=(CursorData&& cursor);
CursorType cursor_type() const { return cursor_type_; }
const base::TimeDelta& frame_delay() const { return frame_delay_; }
float scale_factor() const { return scale_factor_; }
const gfx::Point& hotspot_in_pixels() const { return hotspot_; }
const std::vector<SkBitmap>& cursor_frames() const { return cursor_frames_; }
// Returns true if this CursorData instance is of |cursor_type|.
bool IsType(CursorType cursor_type) const;
// Checks if the data in |rhs| was created from the same input data.
//
// This is subtly different from operator==, as we need this to be a
// lightweight operation instead of performing pixel equality checks on
// arbitrary sized SkBitmaps. So we check the internal SkBitmap generation
// IDs, which are per-process, monotonically increasing ids which get changed
// whenever there's a modification to the pixel data. This means that this
// method can have false negatives: two SkBitmap instances made with the same
// input data (but which weren't copied from each other) can have equal pixel
// data, but different generation ids.
bool IsSameAs(const CursorData& rhs) const;
private:
// A native type constant from cursor.h.
CursorType cursor_type_;
// The delay between cursor frames.
base::TimeDelta frame_delay_;
// The scale factor of the images in |cursor_frames_|.
float scale_factor_;
// The hotspot in cursor frames.
gfx::Point hotspot_;
// The frames of a cursor.
std::vector<SkBitmap> cursor_frames_;
// Generator IDs. The size of |generator_ids_| must be equal to the size of
// cursor_frames_, and is generated when we set the bitmaps. We produce these
// unique IDs so we can do quick equality checks.
std::vector<uint32_t> generator_ids_;
};
} // namespace ui
#endif // UI_BASE_CURSOR_CURSOR_DATA_H_