| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "components/variations/entropy_provider.h" |
| |
| #include <cmath> |
| #include <limits> |
| #include <numeric> |
| |
| #include "base/basictypes.h" |
| #include "base/guid.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "base/rand_util.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "components/variations/metrics_util.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace metrics { |
| |
| namespace { |
| |
| // Size of the low entropy source to use for the permuted entropy provider |
| // in tests. |
| const size_t kMaxLowEntropySize = 8000; |
| |
| // Field trial names used in unit tests. |
| const char* const kTestTrialNames[] = { "TestTrial", "AnotherTestTrial", |
| "NewTabButton" }; |
| |
| // Computes the Chi-Square statistic for |values| assuming they follow a uniform |
| // distribution, where each entry has expected value |expected_value|. |
| // |
| // The Chi-Square statistic is defined as Sum((O-E)^2/E) where O is the observed |
| // value and E is the expected value. |
| double ComputeChiSquare(const std::vector<int>& values, |
| double expected_value) { |
| double sum = 0; |
| for (size_t i = 0; i < values.size(); ++i) { |
| const double delta = values[i] - expected_value; |
| sum += (delta * delta) / expected_value; |
| } |
| return sum; |
| } |
| |
| // Computes SHA1-based entropy for the given |trial_name| based on |
| // |entropy_source| |
| double GenerateSHA1Entropy(const std::string& entropy_source, |
| const std::string& trial_name) { |
| SHA1EntropyProvider sha1_provider(entropy_source); |
| return sha1_provider.GetEntropyForTrial(trial_name, 0); |
| } |
| |
| // Generates permutation-based entropy for the given |trial_name| based on |
| // |entropy_source| which must be in the range [0, entropy_max). |
| double GeneratePermutedEntropy(uint16 entropy_source, |
| size_t entropy_max, |
| const std::string& trial_name) { |
| PermutedEntropyProvider permuted_provider(entropy_source, entropy_max); |
| return permuted_provider.GetEntropyForTrial(trial_name, 0); |
| } |
| |
| // Helper interface for testing used to generate entropy values for a given |
| // field trial. Unlike EntropyProvider, which keeps the low/high entropy source |
| // value constant and generates entropy for different trial names, instances |
| // of TrialEntropyGenerator keep the trial name constant and generate low/high |
| // entropy source values internally to produce each output entropy value. |
| class TrialEntropyGenerator { |
| public: |
| virtual ~TrialEntropyGenerator() {} |
| virtual double GenerateEntropyValue() const = 0; |
| }; |
| |
| // An TrialEntropyGenerator that uses the SHA1EntropyProvider with the high |
| // entropy source (random GUID with 128 bits of entropy + 13 additional bits of |
| // entropy corresponding to a low entropy source). |
| class SHA1EntropyGenerator : public TrialEntropyGenerator { |
| public: |
| explicit SHA1EntropyGenerator(const std::string& trial_name) |
| : trial_name_(trial_name) { |
| } |
| |
| virtual ~SHA1EntropyGenerator() { |
| } |
| |
| virtual double GenerateEntropyValue() const OVERRIDE { |
| // Use a random GUID + 13 additional bits of entropy to match how the |
| // SHA1EntropyProvider is used in metrics_service.cc. |
| const int low_entropy_source = |
| static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1)); |
| const std::string high_entropy_source = |
| base::GenerateGUID() + base::IntToString(low_entropy_source); |
| return GenerateSHA1Entropy(high_entropy_source, trial_name_); |
| } |
| |
| private: |
| std::string trial_name_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SHA1EntropyGenerator); |
| }; |
| |
| // An TrialEntropyGenerator that uses the permuted entropy provider algorithm, |
| // using 13-bit low entropy source values. |
| class PermutedEntropyGenerator : public TrialEntropyGenerator { |
| public: |
| explicit PermutedEntropyGenerator(const std::string& trial_name) |
| : mapping_(kMaxLowEntropySize) { |
| // Note: Given a trial name, the computed mapping will be the same. |
| // As a performance optimization, pre-compute the mapping once per trial |
| // name and index into it for each entropy value. |
| const uint32 randomization_seed = HashName(trial_name); |
| internal::PermuteMappingUsingRandomizationSeed(randomization_seed, |
| &mapping_); |
| } |
| |
| virtual ~PermutedEntropyGenerator() { |
| } |
| |
| virtual double GenerateEntropyValue() const OVERRIDE { |
| const int low_entropy_source = |
| static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1)); |
| return mapping_[low_entropy_source] / |
| static_cast<double>(kMaxLowEntropySize); |
| } |
| |
| private: |
| std::vector<uint16> mapping_; |
| |
| DISALLOW_COPY_AND_ASSIGN(PermutedEntropyGenerator); |
| }; |
| |
| // Tests uniformity of a given |entropy_generator| using the Chi-Square Goodness |
| // of Fit Test. |
| void PerformEntropyUniformityTest( |
| const std::string& trial_name, |
| const TrialEntropyGenerator& entropy_generator) { |
| // Number of buckets in the simulated field trials. |
| const size_t kBucketCount = 20; |
| // Max number of iterations to perform before giving up and failing. |
| const size_t kMaxIterationCount = 100000; |
| // The number of iterations to perform before each time the statistical |
| // significance of the results is checked. |
| const size_t kCheckIterationCount = 10000; |
| // This is the Chi-Square threshold from the Chi-Square statistic table for |
| // 19 degrees of freedom (based on |kBucketCount|) with a 99.9% confidence |
| // level. See: http://www.medcalc.org/manual/chi-square-table.php |
| const double kChiSquareThreshold = 43.82; |
| |
| std::vector<int> distribution(kBucketCount); |
| |
| for (size_t i = 1; i <= kMaxIterationCount; ++i) { |
| const double entropy_value = entropy_generator.GenerateEntropyValue(); |
| const size_t bucket = static_cast<size_t>(kBucketCount * entropy_value); |
| ASSERT_LT(bucket, kBucketCount); |
| distribution[bucket] += 1; |
| |
| // After |kCheckIterationCount| iterations, compute the Chi-Square |
| // statistic of the distribution. If the resulting statistic is greater |
| // than |kChiSquareThreshold|, we can conclude with 99.9% confidence |
| // that the observed samples do not follow a uniform distribution. |
| // |
| // However, since 99.9% would still result in a false negative every |
| // 1000 runs of the test, do not treat it as a failure (else the test |
| // will be flaky). Instead, perform additional iterations to determine |
| // if the distribution will converge, up to |kMaxIterationCount|. |
| if ((i % kCheckIterationCount) == 0) { |
| const double expected_value_per_bucket = |
| static_cast<double>(i) / kBucketCount; |
| const double chi_square = |
| ComputeChiSquare(distribution, expected_value_per_bucket); |
| if (chi_square < kChiSquareThreshold) |
| break; |
| |
| // If |i == kMaxIterationCount|, the Chi-Square statistic did not |
| // converge after |kMaxIterationCount|. |
| EXPECT_NE(i, kMaxIterationCount) << "Failed for trial " << |
| trial_name << " with chi_square = " << chi_square << |
| " after " << kMaxIterationCount << " iterations."; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| TEST(EntropyProviderTest, UseOneTimeRandomizationSHA1) { |
| // Simply asserts that two trials using one-time randomization |
| // that have different names, normally generate different results. |
| // |
| // Note that depending on the one-time random initialization, they |
| // _might_ actually give the same result, but we know that given |
| // the particular client_id we use for unit tests they won't. |
| base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id")); |
| const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; |
| scoped_refptr<base::FieldTrial> trials[] = { |
| base::FieldTrialList::FactoryGetFieldTrial( |
| "one", 100, "default", kNoExpirationYear, 1, 1, |
| base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| base::FieldTrialList::FactoryGetFieldTrial( |
| "two", 100, "default", kNoExpirationYear, 1, 1, |
| base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| }; |
| |
| for (size_t i = 0; i < arraysize(trials); ++i) { |
| for (int j = 0; j < 100; ++j) |
| trials[i]->AppendGroup(std::string(), 1); |
| } |
| |
| // The trials are most likely to give different results since they have |
| // different names. |
| EXPECT_NE(trials[0]->group(), trials[1]->group()); |
| EXPECT_NE(trials[0]->group_name(), trials[1]->group_name()); |
| } |
| |
| TEST(EntropyProviderTest, UseOneTimeRandomizationPermuted) { |
| // Simply asserts that two trials using one-time randomization |
| // that have different names, normally generate different results. |
| // |
| // Note that depending on the one-time random initialization, they |
| // _might_ actually give the same result, but we know that given |
| // the particular client_id we use for unit tests they won't. |
| base::FieldTrialList field_trial_list( |
| new PermutedEntropyProvider(1234, kMaxLowEntropySize)); |
| const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; |
| scoped_refptr<base::FieldTrial> trials[] = { |
| base::FieldTrialList::FactoryGetFieldTrial( |
| "one", 100, "default", kNoExpirationYear, 1, 1, |
| base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| base::FieldTrialList::FactoryGetFieldTrial( |
| "two", 100, "default", kNoExpirationYear, 1, 1, |
| base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), |
| }; |
| |
| for (size_t i = 0; i < arraysize(trials); ++i) { |
| for (int j = 0; j < 100; ++j) |
| trials[i]->AppendGroup(std::string(), 1); |
| } |
| |
| // The trials are most likely to give different results since they have |
| // different names. |
| EXPECT_NE(trials[0]->group(), trials[1]->group()); |
| EXPECT_NE(trials[0]->group_name(), trials[1]->group_name()); |
| } |
| |
| TEST(EntropyProviderTest, UseOneTimeRandomizationWithCustomSeedPermuted) { |
| // Ensures that two trials with different names but the same custom seed used |
| // for one time randomization produce the same group assignments. |
| base::FieldTrialList field_trial_list( |
| new PermutedEntropyProvider(1234, kMaxLowEntropySize)); |
| const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; |
| const uint32 kCustomSeed = 9001; |
| scoped_refptr<base::FieldTrial> trials[] = { |
| base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( |
| "one", 100, "default", kNoExpirationYear, 1, 1, |
| base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL), |
| base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( |
| "two", 100, "default", kNoExpirationYear, 1, 1, |
| base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL), |
| }; |
| |
| for (size_t i = 0; i < arraysize(trials); ++i) { |
| for (int j = 0; j < 100; ++j) |
| trials[i]->AppendGroup(std::string(), 1); |
| } |
| |
| // Normally, these trials should produce different groups, but if the same |
| // custom seed is used, they should produce the same group assignment. |
| EXPECT_EQ(trials[0]->group(), trials[1]->group()); |
| EXPECT_EQ(trials[0]->group_name(), trials[1]->group_name()); |
| } |
| |
| TEST(EntropyProviderTest, SHA1Entropy) { |
| const double results[] = { GenerateSHA1Entropy("hi", "1"), |
| GenerateSHA1Entropy("there", "1") }; |
| |
| EXPECT_NE(results[0], results[1]); |
| for (size_t i = 0; i < arraysize(results); ++i) { |
| EXPECT_LE(0.0, results[i]); |
| EXPECT_GT(1.0, results[i]); |
| } |
| |
| EXPECT_EQ(GenerateSHA1Entropy("yo", "1"), |
| GenerateSHA1Entropy("yo", "1")); |
| EXPECT_NE(GenerateSHA1Entropy("yo", "something"), |
| GenerateSHA1Entropy("yo", "else")); |
| } |
| |
| TEST(EntropyProviderTest, PermutedEntropy) { |
| const double results[] = { |
| GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"), |
| GeneratePermutedEntropy(4321, kMaxLowEntropySize, "1") }; |
| |
| EXPECT_NE(results[0], results[1]); |
| for (size_t i = 0; i < arraysize(results); ++i) { |
| EXPECT_LE(0.0, results[i]); |
| EXPECT_GT(1.0, results[i]); |
| } |
| |
| EXPECT_EQ(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"), |
| GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1")); |
| EXPECT_NE(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "something"), |
| GeneratePermutedEntropy(1234, kMaxLowEntropySize, "else")); |
| } |
| |
| TEST(EntropyProviderTest, PermutedEntropyProviderResults) { |
| // Verifies that PermutedEntropyProvider produces expected results. This |
| // ensures that the results are the same between platforms and ensures that |
| // changes to the implementation do not regress this accidentally. |
| |
| EXPECT_DOUBLE_EQ(2194 / static_cast<double>(kMaxLowEntropySize), |
| GeneratePermutedEntropy(1234, kMaxLowEntropySize, "XYZ")); |
| EXPECT_DOUBLE_EQ(5676 / static_cast<double>(kMaxLowEntropySize), |
| GeneratePermutedEntropy(1, kMaxLowEntropySize, "Test")); |
| EXPECT_DOUBLE_EQ(1151 / static_cast<double>(kMaxLowEntropySize), |
| GeneratePermutedEntropy(5000, kMaxLowEntropySize, "Foo")); |
| } |
| |
| TEST(EntropyProviderTest, SHA1EntropyIsUniform) { |
| for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { |
| SHA1EntropyGenerator entropy_generator(kTestTrialNames[i]); |
| PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator); |
| } |
| } |
| |
| TEST(EntropyProviderTest, PermutedEntropyIsUniform) { |
| for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { |
| PermutedEntropyGenerator entropy_generator(kTestTrialNames[i]); |
| PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator); |
| } |
| } |
| |
| TEST(EntropyProviderTest, SeededRandGeneratorIsUniform) { |
| // Verifies that SeededRandGenerator has a uniform distribution. |
| // |
| // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc. |
| |
| const uint32 kTopOfRange = (std::numeric_limits<uint32>::max() / 4ULL) * 3ULL; |
| const uint32 kExpectedAverage = kTopOfRange / 2ULL; |
| const uint32 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2% |
| const int kMinAttempts = 1000; |
| const int kMaxAttempts = 1000000; |
| |
| for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { |
| const uint32 seed = HashName(kTestTrialNames[i]); |
| internal::SeededRandGenerator rand_generator(seed); |
| |
| double cumulative_average = 0.0; |
| int count = 0; |
| while (count < kMaxAttempts) { |
| uint32 value = rand_generator(kTopOfRange); |
| cumulative_average = (count * cumulative_average + value) / (count + 1); |
| |
| // Don't quit too quickly for things to start converging, or we may have |
| // a false positive. |
| if (count > kMinAttempts && |
| kExpectedAverage - kAllowedVariance < cumulative_average && |
| cumulative_average < kExpectedAverage + kAllowedVariance) { |
| break; |
| } |
| |
| ++count; |
| } |
| |
| ASSERT_LT(count, kMaxAttempts) << "Expected average was " << |
| kExpectedAverage << ", average ended at " << cumulative_average << |
| ", for trial " << kTestTrialNames[i]; |
| } |
| } |
| |
| } // namespace metrics |