blob: bbe165515c049f86bd559621943a1d7b02bf7560 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/net_util.h"
#include <iphlpapi.h>
#include <wlanapi.h>
#include <algorithm>
#include "base/files/file_path.h"
#include "base/lazy_instance.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/strings/sys_string_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/thread_restrictions.h"
#include "base/win/scoped_handle.h"
#include "base/win/windows_version.h"
#include "net/base/escape.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "url/gurl.h"
namespace {
struct WlanApi {
typedef DWORD (WINAPI *WlanOpenHandleFunc)(
DWORD, VOID*, DWORD*, HANDLE*);
typedef DWORD (WINAPI *WlanEnumInterfacesFunc)(
HANDLE, VOID*, WLAN_INTERFACE_INFO_LIST**);
typedef DWORD (WINAPI *WlanQueryInterfaceFunc)(
HANDLE, const GUID*, WLAN_INTF_OPCODE, VOID*, DWORD*, VOID**,
WLAN_OPCODE_VALUE_TYPE*);
typedef VOID (WINAPI *WlanFreeMemoryFunc)(VOID*);
typedef DWORD (WINAPI *WlanCloseHandleFunc)(HANDLE, VOID*);
WlanApi() : initialized(false) {
// Use an absolute path to load the DLL to avoid DLL preloading attacks.
static const wchar_t* const kDLL = L"%WINDIR%\\system32\\wlanapi.dll";
wchar_t path[MAX_PATH] = {0};
ExpandEnvironmentStrings(kDLL, path, arraysize(path));
module = ::LoadLibraryEx(path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
if (!module)
return;
open_handle_func = reinterpret_cast<WlanOpenHandleFunc>(
::GetProcAddress(module, "WlanOpenHandle"));
enum_interfaces_func = reinterpret_cast<WlanEnumInterfacesFunc>(
::GetProcAddress(module, "WlanEnumInterfaces"));
query_interface_func = reinterpret_cast<WlanQueryInterfaceFunc>(
::GetProcAddress(module, "WlanQueryInterface"));
free_memory_func = reinterpret_cast<WlanFreeMemoryFunc>(
::GetProcAddress(module, "WlanFreeMemory"));
close_handle_func = reinterpret_cast<WlanCloseHandleFunc>(
::GetProcAddress(module, "WlanCloseHandle"));
initialized = open_handle_func && enum_interfaces_func &&
query_interface_func && free_memory_func &&
close_handle_func;
}
HMODULE module;
WlanOpenHandleFunc open_handle_func;
WlanEnumInterfacesFunc enum_interfaces_func;
WlanQueryInterfaceFunc query_interface_func;
WlanFreeMemoryFunc free_memory_func;
WlanCloseHandleFunc close_handle_func;
bool initialized;
};
} // namespace
namespace net {
bool FileURLToFilePath(const GURL& url, base::FilePath* file_path) {
*file_path = base::FilePath();
std::wstring& file_path_str = const_cast<std::wstring&>(file_path->value());
file_path_str.clear();
if (!url.is_valid())
return false;
std::string path;
std::string host = url.host();
if (host.empty()) {
// URL contains no host, the path is the filename. In this case, the path
// will probably be preceeded with a slash, as in "/C:/foo.txt", so we
// trim out that here.
path = url.path();
size_t first_non_slash = path.find_first_not_of("/\\");
if (first_non_slash != std::string::npos && first_non_slash > 0)
path.erase(0, first_non_slash);
} else {
// URL contains a host: this means it's UNC. We keep the preceeding slash
// on the path.
path = "\\\\";
path.append(host);
path.append(url.path());
}
if (path.empty())
return false;
std::replace(path.begin(), path.end(), '/', '\\');
// GURL stores strings as percent-encoded UTF-8, this will undo if possible.
path = UnescapeURLComponent(path,
UnescapeRule::SPACES | UnescapeRule::URL_SPECIAL_CHARS);
if (!IsStringUTF8(path)) {
// Not UTF-8, assume encoding is native codepage and we're done. We know we
// are giving the conversion function a nonempty string, and it may fail if
// the given string is not in the current encoding and give us an empty
// string back. We detect this and report failure.
file_path_str = base::SysNativeMBToWide(path);
return !file_path_str.empty();
}
file_path_str.assign(UTF8ToWide(path));
// We used to try too hard and see if |path| made up entirely of
// the 1st 256 characters in the Unicode was a zero-extended UTF-16.
// If so, we converted it to 'Latin-1' and checked if the result was UTF-8.
// If the check passed, we converted the result to UTF-8.
// Otherwise, we treated the result as the native OS encoding.
// However, that led to http://crbug.com/4619 and http://crbug.com/14153
return true;
}
bool GetNetworkList(NetworkInterfaceList* networks) {
// GetAdaptersAddresses() may require IO operations.
base::ThreadRestrictions::AssertIOAllowed();
bool is_xp = base::win::GetVersion() < base::win::VERSION_VISTA;
ULONG len = 0;
ULONG flags = is_xp ? GAA_FLAG_INCLUDE_PREFIX : 0;
// First get number of networks.
ULONG result = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, NULL, &len);
if (result != ERROR_BUFFER_OVERFLOW) {
// There are 0 networks.
return true;
}
scoped_ptr<char[]> buf(new char[len]);
IP_ADAPTER_ADDRESSES *adapters =
reinterpret_cast<IP_ADAPTER_ADDRESSES *>(buf.get());
result = GetAdaptersAddresses(AF_UNSPEC, flags, NULL, adapters, &len);
if (result != NO_ERROR) {
LOG(ERROR) << "GetAdaptersAddresses failed: " << result;
return false;
}
for (IP_ADAPTER_ADDRESSES *adapter = adapters; adapter != NULL;
adapter = adapter->Next) {
// Ignore the loopback device.
if (adapter->IfType == IF_TYPE_SOFTWARE_LOOPBACK) {
continue;
}
if (adapter->OperStatus != IfOperStatusUp) {
continue;
}
std::string name = adapter->AdapterName;
for (IP_ADAPTER_UNICAST_ADDRESS* address = adapter->FirstUnicastAddress;
address; address = address->Next) {
int family = address->Address.lpSockaddr->sa_family;
if (family == AF_INET || family == AF_INET6) {
IPEndPoint endpoint;
if (endpoint.FromSockAddr(address->Address.lpSockaddr,
address->Address.iSockaddrLength)) {
// XP has no OnLinkPrefixLength field.
size_t net_prefix = is_xp ? 0 : address->OnLinkPrefixLength;
if (is_xp) {
// Prior to Windows Vista the FirstPrefix pointed to the list with
// single prefix for each IP address assigned to the adapter.
// Order of FirstPrefix does not match order of FirstUnicastAddress,
// so we need to find corresponding prefix.
for (IP_ADAPTER_PREFIX* prefix = adapter->FirstPrefix; prefix;
prefix = prefix->Next) {
int prefix_family = prefix->Address.lpSockaddr->sa_family;
IPEndPoint network_endpoint;
if (prefix_family == family &&
network_endpoint.FromSockAddr(prefix->Address.lpSockaddr,
prefix->Address.iSockaddrLength) &&
IPNumberMatchesPrefix(endpoint.address(),
network_endpoint.address(),
prefix->PrefixLength)) {
net_prefix = std::max<size_t>(net_prefix, prefix->PrefixLength);
}
}
}
networks->push_back(
NetworkInterface(adapter->AdapterName, endpoint.address(),
net_prefix));
}
}
}
}
return true;
}
WifiPHYLayerProtocol GetWifiPHYLayerProtocol() {
static base::LazyInstance<WlanApi>::Leaky lazy_wlanapi =
LAZY_INSTANCE_INITIALIZER;
struct WlanApiHandleTraits {
typedef HANDLE Handle;
static bool CloseHandle(HANDLE handle) {
return lazy_wlanapi.Get().close_handle_func(handle, NULL) ==
ERROR_SUCCESS;
}
static bool IsHandleValid(HANDLE handle) {
return base::win::HandleTraits::IsHandleValid(handle);
}
static HANDLE NullHandle() {
return base::win::HandleTraits::NullHandle();
}
};
typedef base::win::GenericScopedHandle<
WlanApiHandleTraits,
base::win::DummyVerifierTraits> WlanHandle;
struct WlanApiDeleter {
inline void operator()(void* ptr) const {
lazy_wlanapi.Get().free_memory_func(ptr);
}
};
const WlanApi& wlanapi = lazy_wlanapi.Get();
if (!wlanapi.initialized)
return WIFI_PHY_LAYER_PROTOCOL_NONE;
WlanHandle client;
DWORD cur_version = 0;
const DWORD kMaxClientVersion = 2;
DWORD result = wlanapi.open_handle_func(kMaxClientVersion, NULL, &cur_version,
client.Receive());
if (result != ERROR_SUCCESS)
return WIFI_PHY_LAYER_PROTOCOL_NONE;
WLAN_INTERFACE_INFO_LIST* interface_list_ptr = NULL;
result = wlanapi.enum_interfaces_func(client, NULL, &interface_list_ptr);
if (result != ERROR_SUCCESS)
return WIFI_PHY_LAYER_PROTOCOL_NONE;
scoped_ptr<WLAN_INTERFACE_INFO_LIST, WlanApiDeleter> interface_list(
interface_list_ptr);
// Assume at most one connected wifi interface.
WLAN_INTERFACE_INFO* info = NULL;
for (unsigned i = 0; i < interface_list->dwNumberOfItems; ++i) {
if (interface_list->InterfaceInfo[i].isState ==
wlan_interface_state_connected) {
info = &interface_list->InterfaceInfo[i];
break;
}
}
if (info == NULL)
return WIFI_PHY_LAYER_PROTOCOL_NONE;
WLAN_CONNECTION_ATTRIBUTES* conn_info_ptr;
DWORD conn_info_size = 0;
WLAN_OPCODE_VALUE_TYPE op_code;
result = wlanapi.query_interface_func(
client, &info->InterfaceGuid, wlan_intf_opcode_current_connection, NULL,
&conn_info_size, reinterpret_cast<VOID**>(&conn_info_ptr), &op_code);
if (result != ERROR_SUCCESS)
return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN;
scoped_ptr<WLAN_CONNECTION_ATTRIBUTES, WlanApiDeleter> conn_info(
conn_info_ptr);
switch (conn_info->wlanAssociationAttributes.dot11PhyType) {
case dot11_phy_type_fhss:
return WIFI_PHY_LAYER_PROTOCOL_ANCIENT;
case dot11_phy_type_dsss:
return WIFI_PHY_LAYER_PROTOCOL_B;
case dot11_phy_type_irbaseband:
return WIFI_PHY_LAYER_PROTOCOL_ANCIENT;
case dot11_phy_type_ofdm:
return WIFI_PHY_LAYER_PROTOCOL_A;
case dot11_phy_type_hrdsss:
return WIFI_PHY_LAYER_PROTOCOL_B;
case dot11_phy_type_erp:
return WIFI_PHY_LAYER_PROTOCOL_G;
case dot11_phy_type_ht:
return WIFI_PHY_LAYER_PROTOCOL_N;
default:
return WIFI_PHY_LAYER_PROTOCOL_UNKNOWN;
}
}
} // namespace net