blob: 7b83a6d110e1ba4c39425459622d2be3274d892f [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "base/memory/ptr_util.h"
#include "cc/base/region.h"
#include "cc/playback/raster_source.h"
#include "cc/proto/recording_source.pb.h"
#include "cc/test/fake_client_picture_cache.h"
#include "cc/test/fake_content_layer_client.h"
#include "cc/test/fake_engine_picture_cache.h"
#include "cc/test/fake_image_serialization_processor.h"
#include "cc/test/fake_recording_source.h"
#include "cc/test/skia_common.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkRefCnt.h"
namespace cc {
namespace {
std::unique_ptr<FakeRecordingSource> CreateRecordingSource(
const gfx::Rect& viewport) {
gfx::Rect layer_rect(viewport.right(), viewport.bottom());
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateRecordingSource(viewport, layer_rect.size());
return recording_source;
}
scoped_refptr<RasterSource> CreateRasterSource(
FakeRecordingSource* recording_source) {
bool can_use_lcd_text = true;
return RasterSource::CreateFromRecordingSource(recording_source,
can_use_lcd_text);
}
void ValidateRecordingSourceSerialization(FakeRecordingSource* source) {
std::unique_ptr<FakeImageSerializationProcessor>
fake_image_serialization_processor =
base::WrapUnique(new FakeImageSerializationProcessor);
std::unique_ptr<EnginePictureCache> fake_engine_picture_cache =
fake_image_serialization_processor->CreateEnginePictureCache();
FakeEnginePictureCache* fake_engine_picture_cache_ptr =
static_cast<FakeEnginePictureCache*>(fake_engine_picture_cache.get());
std::unique_ptr<ClientPictureCache> fake_client_picture_cache =
fake_image_serialization_processor->CreateClientPictureCache();
fake_engine_picture_cache_ptr->MarkAllSkPicturesAsUsed(
source->GetDisplayItemList());
proto::RecordingSource proto;
source->ToProtobuf(&proto);
std::vector<uint32_t> actual_picture_ids;
FakeRecordingSource new_source;
new_source.FromProtobuf(proto, fake_client_picture_cache.get(),
&actual_picture_ids);
EXPECT_THAT(actual_picture_ids,
testing::UnorderedElementsAreArray(
fake_engine_picture_cache_ptr->GetAllUsedPictureIds()));
EXPECT_TRUE(source->EqualsTo(new_source));
}
TEST(RecordingSourceTest, TestNullDisplayListSerialization) {
gfx::Rect recorded_viewport(0, 0, 256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
recording_source->SetDisplayListUsesCachedPicture(false);
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
recording_source->SetEmptyBounds();
ValidateRecordingSourceSerialization(recording_source.get());
}
TEST(RecordingSourceTest, TestEmptySerializationDeserialization) {
gfx::Rect recorded_viewport(0, 0, 256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
recording_source->SetDisplayListUsesCachedPicture(false);
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
ValidateRecordingSourceSerialization(recording_source.get());
}
TEST(RecordingSourceTest, TestPopulatedSerializationDeserialization) {
gfx::Rect recorded_viewport(0, 0, 256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
recording_source->SetDisplayListUsesCachedPicture(false);
SkPaint simple_paint;
simple_paint.setColor(SkColorSetARGB(255, 12, 23, 34));
recording_source->add_draw_rect_with_paint(gfx::Rect(0, 0, 256, 256),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(128, 128, 512, 512),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(512, 0, 256, 256),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(0, 512, 256, 256),
simple_paint);
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
ValidateRecordingSourceSerialization(recording_source.get());
}
TEST(RecordingSourceTest, DiscardableImagesWithTransform) {
gfx::Rect recorded_viewport(256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
FakeRecordingSource::CreateFilledRecordingSource(
recorded_viewport.size());
sk_sp<SkImage> discardable_image[2][2];
gfx::Transform identity_transform;
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(32, 32));
// Translate transform is equivalent to moving using point.
gfx::Transform translate_transform;
translate_transform.Translate(0, 130);
discardable_image[1][0] = CreateDiscardableImage(gfx::Size(32, 32));
// This moves the bitmap to center of viewport and rotate, this would make
// this bitmap in all four tile grids.
gfx::Transform rotate_transform;
rotate_transform.Translate(112, 112);
rotate_transform.Rotate(45);
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(32, 32));
gfx::RectF rect(0, 0, 32, 32);
gfx::RectF translate_rect = rect;
translate_transform.TransformRect(&translate_rect);
gfx::RectF rotate_rect = rect;
rotate_transform.TransformRect(&rotate_rect);
recording_source->add_draw_image_with_transform(discardable_image[0][0],
identity_transform);
recording_source->add_draw_image_with_transform(discardable_image[1][0],
translate_transform);
recording_source->add_draw_image_with_transform(discardable_image[1][1],
rotate_transform);
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
bool can_use_lcd_text = true;
scoped_refptr<RasterSource> raster_source =
RasterSource::CreateFromRecordingSource(recording_source.get(),
can_use_lcd_text);
// Tile sized iterators. These should find only one pixel ref.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 128, 128), 1.f,
&images);
EXPECT_EQ(2u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[0][0]);
EXPECT_TRUE(images[1].image() == discardable_image[1][1]);
}
// Shifted tile sized iterators. These should find only one pixel ref.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(130, 140, 128, 128),
1.f, &images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[1][1]);
}
// The rotated bitmap would still be in the top right tile.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(130, 0, 128, 128), 1.f,
&images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[1][1]);
}
// Layer sized iterators. These should find all pixel refs.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 256, 256), 1.f,
&images);
EXPECT_EQ(3u, images.size());
// Top left tile with bitmap[0][0] and bitmap[1][1].
EXPECT_TRUE(images[0].image() == discardable_image[0][0]);
EXPECT_TRUE(images[1].image() == discardable_image[1][0]);
EXPECT_TRUE(images[2].image() == discardable_image[1][1]);
}
// Verify different raster scales
for (float scale = 1.f; scale <= 5.f; scale += 0.5f) {
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(130, 0, 128, 128),
scale, &images);
EXPECT_EQ(1u, images.size());
EXPECT_FLOAT_EQ(scale, images[0].scale().width());
EXPECT_FLOAT_EQ(scale, images[0].scale().height());
}
}
TEST(RecordingSourceTest, NoGatherImageEmptyImages) {
gfx::Rect recorded_viewport(0, 0, 256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
recording_source->SetGenerateDiscardableImagesMetadata(false);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// If recording source do not gather images, raster source is not going to
// get images.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(recorded_viewport, 1.f, &images);
EXPECT_TRUE(images.empty());
}
}
TEST(RecordingSourceTest, EmptyImages) {
gfx::Rect recorded_viewport(0, 0, 256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 128, 128), 1.f,
&images);
EXPECT_TRUE(images.empty());
}
// Shifted tile sized iterators.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(140, 140, 128, 128),
1.f, &images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 256, 256), 1.f,
&images);
EXPECT_TRUE(images.empty());
}
}
TEST(RecordingSourceTest, NoDiscardableImages) {
gfx::Rect recorded_viewport(0, 0, 256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
SkPaint simple_paint;
simple_paint.setColor(SkColorSetARGB(255, 12, 23, 34));
SkBitmap non_discardable_bitmap;
non_discardable_bitmap.allocN32Pixels(128, 128);
non_discardable_bitmap.setImmutable();
sk_sp<SkImage> non_discardable_image =
SkImage::MakeFromBitmap(non_discardable_bitmap);
recording_source->add_draw_rect_with_paint(gfx::Rect(0, 0, 256, 256),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(128, 128, 512, 512),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(512, 0, 256, 256),
simple_paint);
recording_source->add_draw_rect_with_paint(gfx::Rect(0, 512, 256, 256),
simple_paint);
recording_source->add_draw_image(non_discardable_image, gfx::Point(128, 0));
recording_source->add_draw_image(non_discardable_image, gfx::Point(0, 128));
recording_source->add_draw_image(non_discardable_image, gfx::Point(150, 150));
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 128, 128), 1.f,
&images);
EXPECT_TRUE(images.empty());
}
// Shifted tile sized iterators.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(140, 140, 128, 128),
1.f, &images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 256, 256), 1.f,
&images);
EXPECT_TRUE(images.empty());
}
}
TEST(RecordingSourceTest, DiscardableImages) {
gfx::Rect recorded_viewport(0, 0, 256, 256);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
sk_sp<SkImage> discardable_image[2][2];
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[1][0] = CreateDiscardableImage(gfx::Size(32, 32));
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(32, 32));
// Discardable images are found in the following cells:
// |---|---|
// | x | |
// |---|---|
// | x | x |
// |---|---|
recording_source->add_draw_image(discardable_image[0][0], gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[1][0], gfx::Point(0, 130));
recording_source->add_draw_image(discardable_image[1][1],
gfx::Point(140, 140));
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators. These should find only one image.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 128, 128), 1.f,
&images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[0][0]);
}
// Shifted tile sized iterators. These should find only one image.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(140, 140, 128, 128),
1.f, &images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[1][1]);
}
// Ensure there's no discardable images in the empty cell
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(140, 0, 128, 128), 1.f,
&images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators. These should find all 3 images.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 256, 256), 1.f,
&images);
EXPECT_EQ(3u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[0][0]);
EXPECT_TRUE(images[1].image() == discardable_image[1][0]);
EXPECT_TRUE(images[2].image() == discardable_image[1][1]);
}
}
TEST(RecordingSourceTest, DiscardableImagesBaseNonDiscardable) {
gfx::Rect recorded_viewport(0, 0, 512, 512);
std::unique_ptr<FakeRecordingSource> recording_source =
CreateRecordingSource(recorded_viewport);
SkBitmap non_discardable_bitmap;
non_discardable_bitmap.allocN32Pixels(512, 512);
non_discardable_bitmap.setImmutable();
sk_sp<SkImage> non_discardable_image =
SkImage::MakeFromBitmap(non_discardable_bitmap);
sk_sp<SkImage> discardable_image[2][2];
discardable_image[0][0] = CreateDiscardableImage(gfx::Size(128, 128));
discardable_image[0][1] = CreateDiscardableImage(gfx::Size(128, 128));
discardable_image[1][1] = CreateDiscardableImage(gfx::Size(128, 128));
// One large non-discardable image covers the whole grid.
// Discardable images are found in the following cells:
// |---|---|
// | x | x |
// |---|---|
// | | x |
// |---|---|
recording_source->add_draw_image(non_discardable_image, gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[0][0], gfx::Point(0, 0));
recording_source->add_draw_image(discardable_image[0][1], gfx::Point(260, 0));
recording_source->add_draw_image(discardable_image[1][1],
gfx::Point(260, 260));
recording_source->SetGenerateDiscardableImagesMetadata(true);
recording_source->Rerecord();
scoped_refptr<RasterSource> raster_source =
CreateRasterSource(recording_source.get());
// Tile sized iterators. These should find only one image.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 256, 256), 1.f,
&images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[0][0]);
}
// Shifted tile sized iterators. These should find only one image.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(260, 260, 256, 256),
1.f, &images);
EXPECT_EQ(1u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[1][1]);
}
// Ensure there's no discardable images in the empty cell
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 256, 256, 256), 1.f,
&images);
EXPECT_TRUE(images.empty());
}
// Layer sized iterators. These should find three images.
{
std::vector<DrawImage> images;
raster_source->GetDiscardableImagesInRect(gfx::Rect(0, 0, 512, 512), 1.f,
&images);
EXPECT_EQ(3u, images.size());
EXPECT_TRUE(images[0].image() == discardable_image[0][0]);
EXPECT_TRUE(images[1].image() == discardable_image[0][1]);
EXPECT_TRUE(images[2].image() == discardable_image[1][1]);
}
}
} // namespace
} // namespace cc