blob: a1c84831ebb6d643c091260743940a6577630f56 [file] [log] [blame]
/*
* Copyright (C) 2012 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "core/dom/shadow/ComposedTreeTraversal.h"
#include "core/dom/Element.h"
#include "core/dom/shadow/ElementShadow.h"
#include "core/html/HTMLShadowElement.h"
#include "core/html/HTMLSlotElement.h"
namespace blink {
static inline ElementShadow* shadowFor(const Node& node)
{
return node.isElementNode() ? toElement(node).shadow() : nullptr;
}
static inline bool canBeDistributedToInsertionPoint(const Node& node)
{
return node.isInV0ShadowTree() || node.isChildOfV0ShadowHost();
}
Node* ComposedTreeTraversal::traverseChild(const Node& node, TraversalDirection direction)
{
ElementShadow* shadow = shadowFor(node);
if (shadow) {
ShadowRoot& shadowRoot = shadow->youngestShadowRoot();
return resolveDistributionStartingAt(direction == TraversalDirectionForward ? shadowRoot.firstChild() : shadowRoot.lastChild(), direction);
}
return resolveDistributionStartingAt(direction == TraversalDirectionForward ? node.firstChild() : node.lastChild(), direction);
}
Node* ComposedTreeTraversal::resolveDistributionStartingAt(const Node* node, TraversalDirection direction)
{
if (!node)
return nullptr;
for (const Node* sibling = node; sibling; sibling = (direction == TraversalDirectionForward ? sibling->nextSibling() : sibling->previousSibling())) {
if (isHTMLSlotElement(*sibling)) {
const HTMLSlotElement& slot = toHTMLSlotElement(*sibling);
if (Node* found = (direction == TraversalDirectionForward ? slot.firstDistributedNode() : slot.lastDistributedNode()))
return found;
continue;
}
if (node->isInV0ShadowTree())
return v0ResolveDistributionStartingAt(*sibling, direction);
return const_cast<Node*>(sibling);
}
return nullptr;
}
Node* ComposedTreeTraversal::v0ResolveDistributionStartingAt(const Node& node, TraversalDirection direction)
{
ASSERT(!isHTMLSlotElement(node));
for (const Node* sibling = &node; sibling; sibling = (direction == TraversalDirectionForward ? sibling->nextSibling() : sibling->previousSibling())) {
if (!isActiveInsertionPoint(*sibling))
return const_cast<Node*>(sibling);
const InsertionPoint& insertionPoint = toInsertionPoint(*sibling);
if (Node* found = (direction == TraversalDirectionForward ? insertionPoint.firstDistributedNode() : insertionPoint.lastDistributedNode()))
return found;
ASSERT(isHTMLShadowElement(insertionPoint) || (isHTMLContentElement(insertionPoint) && !insertionPoint.hasChildren()));
}
return nullptr;
}
static HTMLSlotElement* finalDestinationSlotFor(const Node& node)
{
HTMLSlotElement* slot = node.assignedSlot();
if (!slot)
return nullptr;
for (HTMLSlotElement* next = slot->assignedSlot(); next; next = next->assignedSlot()) {
slot = next;
}
return slot;
}
// TODO(hayato): This may return a wrong result for a node which is not in a
// document composed tree. See ComposedTreeTraversalTest's redistribution test for details.
Node* ComposedTreeTraversal::traverseSiblings(const Node& node, TraversalDirection direction)
{
if (node.isChildOfV1ShadowHost())
return traverseSiblingsForV1HostChild(node, direction);
if (shadowWhereNodeCanBeDistributed(node))
return traverseSiblingsForV0Distribution(node, direction);
if (Node* found = resolveDistributionStartingAt(direction == TraversalDirectionForward ? node.nextSibling() : node.previousSibling(), direction))
return found;
if (!node.isInV0ShadowTree())
return nullptr;
// For v0 older shadow tree
if (node.parentNode() && node.parentNode()->isShadowRoot()) {
ShadowRoot* parentShadowRoot = toShadowRoot(node.parentNode());
if (!parentShadowRoot->isYoungest()) {
HTMLShadowElement* assignedInsertionPoint = parentShadowRoot->shadowInsertionPointOfYoungerShadowRoot();
ASSERT(assignedInsertionPoint);
return traverseSiblings(*assignedInsertionPoint, direction);
}
}
return nullptr;
}
Node* ComposedTreeTraversal::traverseSiblingsForV1HostChild(const Node& node, TraversalDirection direction)
{
HTMLSlotElement* slot = finalDestinationSlotFor(node);
if (!slot)
return nullptr;
if (Node* siblingInDistributedNodes = (direction == TraversalDirectionForward ? slot->distributedNodeNextTo(node) : slot->distributedNodePreviousTo(node)))
return siblingInDistributedNodes;
return traverseSiblings(*slot, direction);
}
Node* ComposedTreeTraversal::traverseSiblingsForV0Distribution(const Node& node, TraversalDirection direction)
{
const InsertionPoint* finalDestination = resolveReprojection(&node);
if (!finalDestination)
return nullptr;
if (Node* found = (direction == TraversalDirectionForward ? finalDestination->distributedNodeNextTo(&node) : finalDestination->distributedNodePreviousTo(&node)))
return found;
return traverseSiblings(*finalDestination, direction);
}
ContainerNode* ComposedTreeTraversal::traverseParent(const Node& node, ParentTraversalDetails* details)
{
// TODO(hayato): Stop this hack for a pseudo element because a pseudo element is not a child of its parentOrShadowHostNode() in a composed tree.
if (node.isPseudoElement())
return node.parentOrShadowHostNode();
if (node.isChildOfV1ShadowHost()) {
HTMLSlotElement* slot = finalDestinationSlotFor(node);
if (!slot)
return nullptr;
return traverseParent(*slot);
}
Element* parent = node.parentElement();
if (parent && isHTMLSlotElement(parent)) {
HTMLSlotElement& slot = toHTMLSlotElement(*parent);
if (!slot.getAssignedNodes().isEmpty())
return nullptr;
return traverseParent(slot, details);
}
if (canBeDistributedToInsertionPoint(node))
return traverseParentForV0(node, details);
ASSERT(!shadowWhereNodeCanBeDistributed(node));
return traverseParentOrHost(node);
}
ContainerNode* ComposedTreeTraversal::traverseParentForV0(const Node& node, ParentTraversalDetails* details)
{
if (shadowWhereNodeCanBeDistributed(node)) {
if (const InsertionPoint* insertionPoint = resolveReprojection(&node)) {
if (details)
details->didTraverseInsertionPoint(insertionPoint);
// The node is distributed. But the distribution was stopped at this insertion point.
if (shadowWhereNodeCanBeDistributed(*insertionPoint))
return nullptr;
return traverseParent(*insertionPoint);
}
return nullptr;
}
ContainerNode* parent = traverseParentOrHost(node);
if (isActiveInsertionPoint(*parent))
return nullptr;
return parent;
}
ContainerNode* ComposedTreeTraversal::traverseParentOrHost(const Node& node)
{
ContainerNode* parent = node.parentNode();
if (!parent)
return nullptr;
if (!parent->isShadowRoot())
return parent;
ShadowRoot* shadowRoot = toShadowRoot(parent);
ASSERT(!shadowRoot->shadowInsertionPointOfYoungerShadowRoot());
if (!shadowRoot->isYoungest())
return nullptr;
return shadowRoot->host();
}
Node* ComposedTreeTraversal::childAt(const Node& node, unsigned index)
{
assertPrecondition(node);
Node* child = traverseFirstChild(node);
while (child && index--)
child = nextSibling(*child);
assertPostcondition(child);
return child;
}
Node* ComposedTreeTraversal::nextSkippingChildren(const Node& node)
{
if (Node* nextSibling = traverseNextSibling(node))
return nextSibling;
return traverseNextAncestorSibling(node);
}
bool ComposedTreeTraversal::containsIncludingPseudoElement(const ContainerNode& container, const Node& node)
{
assertPrecondition(container);
assertPrecondition(node);
// This can be slower than ComposedTreeTraversal::contains() because we
// can't early exit even when container doesn't have children.
for (const Node* current = &node; current; current = traverseParent(*current)) {
if (current == &container)
return true;
}
return false;
}
Node* ComposedTreeTraversal::previousSkippingChildren(const Node& node)
{
if (Node* previousSibling = traversePreviousSibling(node))
return previousSibling;
return traversePreviousAncestorSibling(node);
}
static Node* previousAncestorSiblingPostOrder(const Node& current, const Node* stayWithin)
{
ASSERT(!ComposedTreeTraversal::previousSibling(current));
for (Node* parent = ComposedTreeTraversal::parent(current); parent; parent = ComposedTreeTraversal::parent(*parent)) {
if (parent == stayWithin)
return nullptr;
if (Node* previousSibling = ComposedTreeTraversal::previousSibling(*parent))
return previousSibling;
}
return nullptr;
}
// TODO(yosin) We should consider introducing template class to share code
// between DOM tree traversal and composed tree tarversal.
Node* ComposedTreeTraversal::previousPostOrder(const Node& current, const Node* stayWithin)
{
assertPrecondition(current);
if (stayWithin)
assertPrecondition(*stayWithin);
if (Node* lastChild = traverseLastChild(current)) {
assertPostcondition(lastChild);
return lastChild;
}
if (current == stayWithin)
return nullptr;
if (Node* previousSibling = traversePreviousSibling(current)) {
assertPostcondition(previousSibling);
return previousSibling;
}
return previousAncestorSiblingPostOrder(current, stayWithin);
}
bool ComposedTreeTraversal::isDescendantOf(const Node& node, const Node& other)
{
assertPrecondition(node);
assertPrecondition(other);
if (!hasChildren(other) || node.inDocument() != other.inDocument())
return false;
for (const ContainerNode* n = traverseParent(node); n; n = traverseParent(*n)) {
if (n == other)
return true;
}
return false;
}
Node* ComposedTreeTraversal::commonAncestor(const Node& nodeA, const Node& nodeB)
{
assertPrecondition(nodeA);
assertPrecondition(nodeB);
Node* result = nodeA.commonAncestor(nodeB,
[](const Node& node)
{
return ComposedTreeTraversal::parent(node);
});
assertPostcondition(result);
return result;
}
Node* ComposedTreeTraversal::traverseNextAncestorSibling(const Node& node)
{
ASSERT(!traverseNextSibling(node));
for (Node* parent = traverseParent(node); parent; parent = traverseParent(*parent)) {
if (Node* nextSibling = traverseNextSibling(*parent))
return nextSibling;
}
return nullptr;
}
Node* ComposedTreeTraversal::traversePreviousAncestorSibling(const Node& node)
{
ASSERT(!traversePreviousSibling(node));
for (Node* parent = traverseParent(node); parent; parent = traverseParent(*parent)) {
if (Node* previousSibling = traversePreviousSibling(*parent))
return previousSibling;
}
return nullptr;
}
unsigned ComposedTreeTraversal::index(const Node& node)
{
assertPrecondition(node);
unsigned count = 0;
for (Node* runner = traversePreviousSibling(node); runner; runner = previousSibling(*runner))
++count;
return count;
}
unsigned ComposedTreeTraversal::countChildren(const Node& node)
{
assertPrecondition(node);
unsigned count = 0;
for (Node* runner = traverseFirstChild(node); runner; runner = traverseNextSibling(*runner))
++count;
return count;
}
Node* ComposedTreeTraversal::lastWithin(const Node& node)
{
assertPrecondition(node);
Node* descendant = traverseLastChild(node);
for (Node* child = descendant; child; child = lastChild(*child))
descendant = child;
assertPostcondition(descendant);
return descendant;
}
Node& ComposedTreeTraversal::lastWithinOrSelf(const Node& node)
{
assertPrecondition(node);
Node* lastDescendant = lastWithin(node);
Node& result = lastDescendant ? *lastDescendant : const_cast<Node&>(node);
assertPostcondition(&result);
return result;
}
} // namespace