blob: f346de961cafede05fca8691d97fe04c80d9763c [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "services/device/generic_sensor/platform_sensor_provider_linux.h"
#include <utility>
#include <vector>
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted.h"
#include "base/memory/singleton.h"
#include "base/message_loop/message_loop.h"
#include "base/task_runner_util.h"
#include "base/threading/thread.h"
#include "services/device/generic_sensor/linear_acceleration_fusion_algorithm_using_accelerometer.h"
#include "services/device/generic_sensor/linux/sensor_data_linux.h"
#include "services/device/generic_sensor/orientation_quaternion_fusion_algorithm_using_euler_angles.h"
#include "services/device/generic_sensor/platform_sensor_fusion.h"
#include "services/device/generic_sensor/platform_sensor_linux.h"
#include "services/device/generic_sensor/platform_sensor_reader_linux.h"
#include "services/device/generic_sensor/relative_orientation_euler_angles_fusion_algorithm_using_accelerometer.h"
namespace device {
namespace {
bool IsFusionSensorType(mojom::SensorType type) {
switch (type) {
case mojom::SensorType::LINEAR_ACCELERATION:
case mojom::SensorType::RELATIVE_ORIENTATION_EULER_ANGLES:
case mojom::SensorType::RELATIVE_ORIENTATION_QUATERNION:
return true;
default:
return false;
}
}
} // namespace
// static
PlatformSensorProviderLinux* PlatformSensorProviderLinux::GetInstance() {
return base::Singleton<
PlatformSensorProviderLinux,
base::LeakySingletonTraits<PlatformSensorProviderLinux>>::get();
}
PlatformSensorProviderLinux::PlatformSensorProviderLinux()
: sensor_nodes_enumerated_(false),
sensor_nodes_enumeration_started_(false),
sensor_device_manager_(nullptr) {}
PlatformSensorProviderLinux::~PlatformSensorProviderLinux() {
DCHECK(!sensor_device_manager_);
}
void PlatformSensorProviderLinux::CreateSensorInternal(
mojom::SensorType type,
mojo::ScopedSharedBufferMapping mapping,
const CreateSensorCallback& callback) {
if (!sensor_device_manager_)
sensor_device_manager_.reset(new SensorDeviceManager());
if (IsFusionSensorType(type)) {
// For sensor fusion the device nodes initialization will happen
// during fetching the source sensors.
CreateFusionSensor(type, std::move(mapping), callback);
return;
}
if (!sensor_nodes_enumerated_) {
if (!sensor_nodes_enumeration_started_) {
sensor_nodes_enumeration_started_ = file_task_runner_->PostTask(
FROM_HERE,
base::Bind(&SensorDeviceManager::Start,
base::Unretained(sensor_device_manager_.get()), this));
}
return;
}
SensorInfoLinux* sensor_device = GetSensorDevice(type);
if (!sensor_device) {
callback.Run(nullptr);
return;
}
SensorDeviceFound(type, std::move(mapping), callback, sensor_device);
}
void PlatformSensorProviderLinux::SensorDeviceFound(
mojom::SensorType type,
mojo::ScopedSharedBufferMapping mapping,
const PlatformSensorProviderBase::CreateSensorCallback& callback,
const SensorInfoLinux* sensor_device) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(sensor_device);
if (!StartPollingThread()) {
callback.Run(nullptr);
return;
}
scoped_refptr<PlatformSensorLinux> sensor =
new PlatformSensorLinux(type, std::move(mapping), this, sensor_device,
polling_thread_->task_runner());
callback.Run(sensor);
}
void PlatformSensorProviderLinux::SetFileTaskRunner(
scoped_refptr<base::SingleThreadTaskRunner> file_task_runner) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!file_task_runner_)
file_task_runner_ = file_task_runner;
}
void PlatformSensorProviderLinux::FreeResources() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(file_task_runner_);
Shutdown();
// When there are no sensors left, the polling thread must be stopped.
// Stop() can only be called on a different thread that allows I/O.
// Thus, browser's file thread is used for this purpose.
file_task_runner_->PostTask(
FROM_HERE, base::Bind(&PlatformSensorProviderLinux::StopPollingThread,
base::Unretained(this)));
}
bool PlatformSensorProviderLinux::StartPollingThread() {
if (!polling_thread_)
polling_thread_.reset(new base::Thread("Sensor polling thread"));
if (!polling_thread_->IsRunning()) {
return polling_thread_->StartWithOptions(
base::Thread::Options(base::MessageLoop::TYPE_IO, 0));
}
return true;
}
void PlatformSensorProviderLinux::StopPollingThread() {
DCHECK(file_task_runner_);
DCHECK(file_task_runner_->BelongsToCurrentThread());
if (polling_thread_ && polling_thread_->IsRunning())
polling_thread_->Stop();
}
void PlatformSensorProviderLinux::Shutdown() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
const bool did_post_task = file_task_runner_->DeleteSoon(
FROM_HERE, sensor_device_manager_.release());
DCHECK(did_post_task);
sensor_nodes_enumerated_ = false;
sensor_nodes_enumeration_started_ = false;
sensor_devices_by_type_.clear();
}
SensorInfoLinux* PlatformSensorProviderLinux::GetSensorDevice(
mojom::SensorType type) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
auto sensor = sensor_devices_by_type_.find(type);
if (sensor == sensor_devices_by_type_.end())
return nullptr;
return sensor->second.get();
}
void PlatformSensorProviderLinux::GetAllSensorDevices() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
// TODO(maksims): implement this method once we have discovery API.
NOTIMPLEMENTED();
}
void PlatformSensorProviderLinux::SetSensorDeviceManagerForTesting(
std::unique_ptr<SensorDeviceManager> sensor_device_manager) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
Shutdown();
sensor_device_manager_ = std::move(sensor_device_manager);
}
void PlatformSensorProviderLinux::SetFileTaskRunnerForTesting(
scoped_refptr<base::SingleThreadTaskRunner> task_runner) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
file_task_runner_ = std::move(task_runner);
}
void PlatformSensorProviderLinux::ProcessStoredRequests() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
std::vector<mojom::SensorType> request_types = GetPendingRequestTypes();
if (request_types.empty())
return;
for (auto const& type : request_types) {
if (IsFusionSensorType(type))
continue;
SensorInfoLinux* device = nullptr;
auto device_entry = sensor_devices_by_type_.find(type);
if (device_entry != sensor_devices_by_type_.end())
device = device_entry->second.get();
CreateSensorAndNotify(type, device);
}
}
void PlatformSensorProviderLinux::CreateSensorAndNotify(
mojom::SensorType type,
SensorInfoLinux* sensor_device) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
scoped_refptr<PlatformSensorLinux> sensor;
mojo::ScopedSharedBufferMapping mapping = MapSharedBufferForType(type);
if (sensor_device && mapping && StartPollingThread()) {
sensor =
new PlatformSensorLinux(type, std::move(mapping), this, sensor_device,
polling_thread_->task_runner());
}
NotifySensorCreated(type, sensor);
}
void PlatformSensorProviderLinux::OnSensorNodesEnumerated() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!sensor_nodes_enumerated_);
sensor_nodes_enumerated_ = true;
ProcessStoredRequests();
}
void PlatformSensorProviderLinux::OnDeviceAdded(
mojom::SensorType type,
std::unique_ptr<SensorInfoLinux> sensor_device) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
// At the moment, we support only one device per type.
if (base::ContainsKey(sensor_devices_by_type_, type)) {
DVLOG(1) << "Sensor ignored. Type " << type
<< ". Node: " << sensor_device->device_node;
return;
}
sensor_devices_by_type_[type] = std::move(sensor_device);
}
void PlatformSensorProviderLinux::OnDeviceRemoved(
mojom::SensorType type,
const std::string& device_node) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
auto it = sensor_devices_by_type_.find(type);
if (it != sensor_devices_by_type_.end() &&
it->second->device_node == device_node) {
sensor_devices_by_type_.erase(it);
}
}
void PlatformSensorProviderLinux::CreateFusionSensor(
mojom::SensorType type,
mojo::ScopedSharedBufferMapping mapping,
const CreateSensorCallback& callback) {
DCHECK(IsFusionSensorType(type));
std::unique_ptr<PlatformSensorFusionAlgorithm> fusion_algorithm;
switch (type) {
case mojom::SensorType::LINEAR_ACCELERATION:
fusion_algorithm = std::make_unique<
LinearAccelerationFusionAlgorithmUsingAccelerometer>();
break;
case mojom::SensorType::RELATIVE_ORIENTATION_EULER_ANGLES:
fusion_algorithm = std::make_unique<
RelativeOrientationEulerAnglesFusionAlgorithmUsingAccelerometer>();
break;
case mojom::SensorType::RELATIVE_ORIENTATION_QUATERNION:
fusion_algorithm = std::make_unique<
OrientationQuaternionFusionAlgorithmUsingEulerAngles>(
false /* absolute */);
break;
default:
NOTREACHED();
}
DCHECK(fusion_algorithm);
PlatformSensorFusion::Create(std::move(mapping), this,
std::move(fusion_algorithm), callback);
}
} // namespace device