blob: 8dda784767969d0cb39c7a2208b537a678182900 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/rendering/RenderGrid.h"
#include "core/layout/Layer.h"
#include "core/layout/TextAutosizer.h"
#include "core/layout/style/GridCoordinate.h"
#include "core/layout/style/LayoutStyle.h"
#include "core/paint/GridPainter.h"
#include "core/rendering/RenderView.h"
#include "platform/LengthFunctions.h"
namespace blink {
static const int infinity = -1;
class GridTrack {
public:
GridTrack()
: m_baseSize(0)
, m_growthLimit(0)
, m_plannedIncrease(0)
{
}
const LayoutUnit& baseSize() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_baseSize;
}
const LayoutUnit& growthLimit() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_growthLimit;
}
void setBaseSize(LayoutUnit baseSize)
{
m_baseSize = baseSize;
ensureGrowthLimitIsBiggerThanBaseSize();
}
void setGrowthLimit(LayoutUnit growthLimit)
{
m_growthLimit = growthLimit;
ensureGrowthLimitIsBiggerThanBaseSize();
}
void growBaseSize(LayoutUnit growth)
{
ASSERT(growth >= 0);
m_baseSize += growth;
ensureGrowthLimitIsBiggerThanBaseSize();
}
void growGrowthLimit(LayoutUnit growth)
{
ASSERT(growth >= 0);
if (m_growthLimit == infinity)
m_growthLimit = m_baseSize + growth;
else
m_growthLimit += growth;
ASSERT(m_growthLimit >= m_baseSize);
}
bool growthLimitIsInfinite() const
{
return m_growthLimit == infinity;
}
const LayoutUnit& growthLimitIfNotInfinite() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return (m_growthLimit == infinity) ? m_baseSize : m_growthLimit;
}
const LayoutUnit& plannedIncrease() const { return m_plannedIncrease; }
void growPlannedIncrease(const LayoutUnit& plannedIncrease)
{
ASSERT(plannedIncrease >= 0);
m_plannedIncrease += plannedIncrease;
}
void updateFromPlannedIncrease(RenderGrid::AccumulatorGrowFunction trackGrowthFunction)
{
if (m_plannedIncrease == 0)
return;
(this->*trackGrowthFunction)(m_plannedIncrease);
m_plannedIncrease = 0;
}
private:
bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= m_baseSize; }
void ensureGrowthLimitIsBiggerThanBaseSize()
{
if (m_growthLimit != infinity && m_growthLimit < m_baseSize)
m_growthLimit = m_baseSize;
}
LayoutUnit m_baseSize;
LayoutUnit m_growthLimit;
LayoutUnit m_plannedIncrease;
};
struct GridTrackForNormalization {
GridTrackForNormalization(const GridTrack& track, double flex)
: m_track(&track)
, m_flex(flex)
, m_normalizedFlexValue(track.baseSize() / flex)
{
}
// Required by std::sort.
GridTrackForNormalization& operator=(const GridTrackForNormalization& o)
{
m_track = o.m_track;
m_flex = o.m_flex;
m_normalizedFlexValue = o.m_normalizedFlexValue;
return *this;
}
const GridTrack* m_track;
double m_flex;
LayoutUnit m_normalizedFlexValue;
};
class RenderGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const GridRepresentation& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex, size_t varyingTrackIndex = 0)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex)
, m_childIndex(0)
{
ASSERT(m_rowIndex < m_grid.size());
ASSERT(m_columnIndex < m_grid[0].size());
}
RenderBox* nextGridItem()
{
ASSERT(!m_grid.isEmpty());
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return 0;
}
bool checkEmptyCells(size_t rowSpan, size_t columnSpan) const
{
// Ignore cells outside current grid as we will grow it later if needed.
size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size());
size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size());
// This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
for (size_t row = m_rowIndex; row < maxRows; ++row) {
for (size_t column = m_columnIndex; column < maxColumns; ++column) {
const GridCell& children = m_grid[row][column];
if (!children.isEmpty())
return false;
}
}
return true;
}
PassOwnPtr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan)
{
ASSERT(!m_grid.isEmpty());
ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);
size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
if (checkEmptyCells(rowSpan, columnSpan)) {
OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1)));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result.release();
}
}
return nullptr;
}
private:
const GridRepresentation& m_grid;
GridTrackSizingDirection m_direction;
size_t m_rowIndex;
size_t m_columnIndex;
size_t m_childIndex;
};
struct RenderGrid::GridSizingData {
WTF_MAKE_NONCOPYABLE(GridSizingData);
STACK_ALLOCATED();
public:
GridSizingData(size_t gridColumnCount, size_t gridRowCount)
: columnTracks(gridColumnCount)
, rowTracks(gridRowCount)
{
}
Vector<GridTrack> columnTracks;
Vector<GridTrack> rowTracks;
Vector<size_t> contentSizedTracksIndex;
// Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
Vector<GridTrack*> filteredTracks;
Vector<GridItemWithSpan> itemsSortedByIncreasingSpan;
Vector<GridTrack*> growBeyondGrowthLimitsTracks;
};
RenderGrid::RenderGrid(Element* element)
: RenderBlock(element)
, m_gridIsDirty(true)
, m_orderIterator(this)
{
ASSERT(!childrenInline());
}
RenderGrid::~RenderGrid()
{
}
void RenderGrid::addChild(LayoutObject* newChild, LayoutObject* beforeChild)
{
RenderBlock::addChild(newChild, beforeChild);
if (gridIsDirty())
return;
// The grid needs to be recomputed as it might contain auto-placed items that will change their position.
dirtyGrid();
return;
}
void RenderGrid::removeChild(LayoutObject* child)
{
RenderBlock::removeChild(child);
if (gridIsDirty())
return;
// The grid needs to be recomputed as it might contain auto-placed items that will change their position.
dirtyGrid();
return;
}
void RenderGrid::styleDidChange(StyleDifference diff, const LayoutStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
if (!oldStyle)
return;
// FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have:
// - explicit grid size changes impact negative explicitely positioned and auto-placed grid items.
// - named grid lines only impact grid items with named grid lines.
// - auto-flow changes only impacts auto-placed children.
if (explicitGridDidResize(*oldStyle)
|| namedGridLinesDefinitionDidChange(*oldStyle)
|| oldStyle->gridAutoFlow() != styleRef().gridAutoFlow())
dirtyGrid();
}
bool RenderGrid::explicitGridDidResize(const LayoutStyle& oldStyle) const
{
return oldStyle.gridTemplateColumns().size() != styleRef().gridTemplateColumns().size()
|| oldStyle.gridTemplateRows().size() != styleRef().gridTemplateRows().size();
}
bool RenderGrid::namedGridLinesDefinitionDidChange(const LayoutStyle& oldStyle) const
{
return oldStyle.namedGridRowLines() != styleRef().namedGridRowLines()
|| oldStyle.namedGridColumnLines() != styleRef().namedGridColumnLines();
}
void RenderGrid::layoutBlock(bool relayoutChildren)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
// FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
// It would be nice to refactor some of the duplicate code.
{
// LayoutState needs this deliberate scope to pop before updating scroll information (which
// may trigger relayout).
LayoutState state(*this, locationOffset());
LayoutSize previousSize = size();
setLogicalHeight(0);
updateLogicalWidth();
TextAutosizer::LayoutScope textAutosizerLayoutScope(this);
layoutGridItems();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isDocumentElement());
computeOverflow(oldClientAfterEdge);
}
updateLayerTransformAfterLayout();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
if (hasOverflowClip())
layer()->scrollableArea()->updateAfterLayout();
clearNeedsLayout();
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const_cast<RenderGrid*>(this)->placeItemsOnGrid();
GridSizingData sizingData(gridColumnCount(), gridRowCount());
LayoutUnit availableLogicalSpace = 0;
const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);
for (const auto& column : sizingData.columnTracks) {
const LayoutUnit& minTrackBreadth = column.baseSize();
const LayoutUnit& maxTrackBreadth = column.growthLimit();
minLogicalWidth += minTrackBreadth;
maxLogicalWidth += maxTrackBreadth;
LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth();
maxLogicalWidth += scrollbarWidth;
minLogicalWidth += scrollbarWidth;
}
}
void RenderGrid::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
// FIXME: We don't take our own logical width into account. Once we do, we need to make sure
// we apply (and test the interaction with) min-width / max-width.
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
clearPreferredLogicalWidthsDirty();
}
void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
}
bool RenderGrid::gridElementIsShrinkToFit()
{
return isFloatingOrOutOfFlowPositioned();
}
void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& freeSpace)
{
const LayoutUnit initialFreeSpace = freeSpace;
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
Vector<size_t> flexibleSizedTracksIndex;
sizingData.contentSizedTracksIndex.shrink(0);
// 1. Initialize per Grid track variables.
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
GridTrackSize trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
track.setBaseSize(computeUsedBreadthOfMinLength(direction, minTrackBreadth));
track.setGrowthLimit(computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.baseSize()));
if (trackSize.isContentSized())
sizingData.contentSizedTracksIndex.append(i);
if (trackSize.maxTrackBreadth().isFlex())
flexibleSizedTracksIndex.append(i);
}
// 2. Resolve content-based TrackSizingFunctions.
if (!sizingData.contentSizedTracksIndex.isEmpty())
resolveContentBasedTrackSizingFunctions(direction, sizingData, freeSpace);
for (const auto& track: tracks) {
ASSERT(!track.growthLimitIsInfinite());
freeSpace -= track.baseSize();
}
const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style()->logicalHeight().isAuto() : gridElementIsShrinkToFit();
if (!hasUndefinedRemainingSpace && freeSpace <= 0)
return;
// 3. Grow all Grid tracks in GridTracks from their baseSize up to their growthLimit value until freeSpace is exhausted.
const size_t tracksSize = tracks.size();
if (!hasUndefinedRemainingSpace) {
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i)
tracksForDistribution[i] = tracks.data() + i;
distributeSpaceToTracks(tracksForDistribution, nullptr, &GridTrack::baseSize, &GridTrack::growBaseSize, sizingData, freeSpace);
} else {
for (auto& track : tracks)
track.setBaseSize(track.growthLimit());
}
if (flexibleSizedTracksIndex.isEmpty())
return;
// 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
double normalizedFractionBreadth = 0;
if (!hasUndefinedRemainingSpace) {
normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, initialFreeSpace);
} else {
for (const auto& trackIndex : flexibleSizedTracksIndex) {
GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].baseSize() / trackSize.maxTrackBreadth().flex());
}
for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
while (RenderBox* gridItem = iterator.nextGridItem()) {
const GridCoordinate coordinate = cachedGridCoordinate(*gridItem);
const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
// Do not include already processed items.
if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1])
continue;
double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(*gridItem, direction, sizingData.columnTracks));
normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth);
}
}
}
for (const auto& trackIndex : flexibleSizedTracksIndex) {
GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
LayoutUnit baseSize = std::max<LayoutUnit>(tracks[trackIndex].baseSize(), normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
tracks[trackIndex].setBaseSize(baseSize);
freeSpace -= baseSize;
}
// FIXME: Should ASSERT flexible tracks exhaust the freeSpace ? (see issue 739613002).
}
LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const
{
if (gridLength.isFlex())
return 0;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isSpecified())
return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return 0;
}
LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
{
if (gridLength.isFlex())
return usedBreadth;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isSpecified()) {
LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(computedBreadth != infinity);
return computedBreadth;
}
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return infinity;
}
LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const
{
ASSERT(trackLength.isSpecified());
// FIXME: The -1 here should be replaced by whatever the intrinsic height of the grid is.
return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight(), -1));
}
static bool sortByGridNormalizedFlexValue(const GridTrackForNormalization& track1, const GridTrackForNormalization& track2)
{
return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
}
double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit spaceToFill) const
{
LayoutUnit allocatedSpace;
Vector<GridTrackForNormalization> tracksForNormalization;
for (const auto& resolvedPosition : tracksSpan) {
GridTrack& track = tracks[resolvedPosition.toInt()];
allocatedSpace += track.baseSize();
GridTrackSize trackSize = gridTrackSize(direction, resolvedPosition.toInt());
if (!trackSize.maxTrackBreadth().isFlex())
continue;
tracksForNormalization.append(GridTrackForNormalization(track, trackSize.maxTrackBreadth().flex()));
}
// The function is not called if we don't have <flex> grid tracks
ASSERT(!tracksForNormalization.isEmpty());
std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), sortByGridNormalizedFlexValue);
// These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
// to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
// fit into availableLogicalSpaceIgnoringFractionTracks.
double accumulatedFractions = 0;
LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
LayoutUnit availableLogicalSpaceIgnoringFractionTracks = spaceToFill - allocatedSpace;
for (const auto& track : tracksForNormalization) {
if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
// If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
// will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
break;
fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
}
accumulatedFractions += track.m_flex;
// This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
availableLogicalSpaceIgnoringFractionTracks += track.m_track->baseSize();
}
return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
}
bool RenderGrid::hasDefiniteLogicalSize(GridTrackSizingDirection direction) const
{
return (direction == ForRows) ? hasDefiniteLogicalHeight() : hasDefiniteLogicalWidth();
}
GridTrackSize RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const
{
bool isForColumns = direction == ForColumns;
const Vector<GridTrackSize>& trackStyles = isForColumns ? style()->gridTemplateColumns() : style()->gridTemplateRows();
const GridTrackSize& trackSize = (i >= trackStyles.size()) ? (isForColumns ? style()->gridAutoColumns() : style()->gridAutoRows()) : trackStyles[i];
// If the logical width/height of the grid container is indefinite, percentage values are treated as <auto> (or in
// the case of minmax() as min-content for the first position and max-content for the second).
if (!hasDefiniteLogicalSize(direction)) {
const GridLength& oldMinTrackBreadth = trackSize.minTrackBreadth();
const GridLength& oldMaxTrackBreadth = trackSize.maxTrackBreadth();
return GridTrackSize(oldMinTrackBreadth.isPercentage() ? Length(MinContent) : oldMinTrackBreadth, oldMaxTrackBreadth.isPercentage() ? Length(MaxContent) : oldMaxTrackBreadth);
}
return trackSize;
}
LayoutUnit RenderGrid::logicalHeightForChild(RenderBox& child, Vector<GridTrack>& columnTracks)
{
SubtreeLayoutScope layoutScope(child);
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child.hasOverrideContainingBlockLogicalWidth() ? child.overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
if (child.style()->logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth)
layoutScope.setNeedsLayout(&child);
child.clearOverrideLogicalContentHeight();
child.setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
// If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
child.setOverrideContainingBlockContentLogicalHeight(-1);
child.layoutIfNeeded();
return child.logicalHeight() + child.marginLogicalHeight();
}
LayoutUnit RenderGrid::minContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return 0;
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
}
return logicalHeightForChild(child, columnTracks);
}
LayoutUnit RenderGrid::maxContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return LayoutUnit();
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
}
return logicalHeightForChild(child, columnTracks);
}
// We're basically using a class instead of a std::pair for two reasons. First of all, accessing gridItem() or
// coordinate() is much more self-explanatory that using .first or .second members in the pair. Secondly the class
// allows us to precompute the value of the span, something which is quite convenient for the sorting. Having a
// std::pair<RenderBox*, size_t> does not work either because we still need the GridCoordinate so we'd have to add an
// extra hash lookup for each item at the beginning of RenderGrid::resolveContentBasedTrackSizingFunctionsForItems().
class GridItemWithSpan {
public:
GridItemWithSpan(RenderBox& gridItem, const GridCoordinate& coordinate, GridTrackSizingDirection direction)
: m_gridItem(&gridItem)
, m_coordinate(coordinate)
{
const GridSpan& span = (direction == ForRows) ? coordinate.rows : coordinate.columns;
m_span = span.resolvedFinalPosition.toInt() - span.resolvedInitialPosition.toInt() + 1;
}
RenderBox& gridItem() const { return *m_gridItem; }
GridCoordinate coordinate() const { return m_coordinate; }
#if ENABLE(ASSERT)
size_t span() const { return m_span; }
#endif
bool operator<(const GridItemWithSpan other) const { return m_span < other.m_span; }
private:
RenderBox* m_gridItem;
GridCoordinate m_coordinate;
size_t m_span;
};
bool RenderGrid::spanningItemCrossesFlexibleSizedTracks(const GridCoordinate& coordinate, GridTrackSizingDirection direction) const
{
const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition;
for (GridResolvedPosition trackPosition = initialTrackPosition; trackPosition <= finalTrackPosition; ++trackPosition) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt());
if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex())
return true;
}
return false;
}
static inline size_t integerSpanForDirection(const GridCoordinate& coordinate, GridTrackSizingDirection direction)
{
return (direction == ForRows) ? coordinate.rows.integerSpan() : coordinate.columns.integerSpan();
}
void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
sizingData.itemsSortedByIncreasingSpan.shrink(0);
HashSet<RenderBox*> itemsSet;
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridIterator iterator(m_grid, direction, trackIndex);
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
while (RenderBox* gridItem = iterator.nextGridItem()) {
if (itemsSet.add(gridItem).isNewEntry) {
const GridCoordinate& coordinate = cachedGridCoordinate(*gridItem);
if (integerSpanForDirection(coordinate, direction) == 1) {
resolveContentBasedTrackSizingFunctionsForNonSpanningItems(direction, coordinate, *gridItem, track, sizingData.columnTracks);
} else if (!spanningItemCrossesFlexibleSizedTracks(coordinate, direction)) {
sizingData.itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, coordinate, direction));
}
}
}
}
std::sort(sizingData.itemsSortedByIncreasingSpan.begin(), sizingData.itemsSortedByIncreasingSpan.end());
Vector<GridItemWithSpan>::iterator end = sizingData.itemsSortedByIncreasingSpan.end();
for (Vector<GridItemWithSpan>::iterator it = sizingData.itemsSortedByIncreasingSpan.begin(); it != end; ++it) {
GridItemWithSpan itemWithSpan = *it;
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::baseSize, &GridTrack::growBaseSize, &GridTrackSize::hasMinContentMinTrackBreadthAndMinOrMaxContentMaxTrackBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::baseSize, &GridTrack::growBaseSize, &GridTrackSize::hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::growthLimitIfNotInfinite, &GridTrack::growGrowthLimit);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::growthLimitIfNotInfinite, &GridTrack::growGrowthLimit);
}
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
if (track.growthLimitIsInfinite())
track.setGrowthLimit(track.baseSize());
}
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForNonSpanningItems(GridTrackSizingDirection direction, const GridCoordinate& coordinate, RenderBox& gridItem, GridTrack& track, Vector<GridTrack>& columnTracks)
{
const GridResolvedPosition trackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt());
if (trackSize.hasMinContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), minContentForChild(gridItem, direction, columnTracks)));
else if (trackSize.hasMaxContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), maxContentForChild(gridItem, direction, columnTracks)));
if (trackSize.hasMinContentMaxTrackBreadth())
track.setGrowthLimit(std::max(track.growthLimit(), minContentForChild(gridItem, direction, columnTracks)));
else if (trackSize.hasMaxContentMaxTrackBreadth())
track.setGrowthLimit(std::max(track.growthLimit(), maxContentForChild(gridItem, direction, columnTracks)));
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, GridItemWithSpan& gridItemWithSpan, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, FilterFunction growAboveMaxBreadthFilterFunction)
{
ASSERT(gridItemWithSpan.span() > 1);
const GridCoordinate coordinate = gridItemWithSpan.coordinate();
const GridSpan& itemSpan = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
sizingData.growBeyondGrowthLimitsTracks.shrink(0);
sizingData.filteredTracks.shrink(0);
LayoutUnit spanningTracksSize;
for (const auto& trackPosition : itemSpan) {
GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt());
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition.toInt()] : sizingData.rowTracks[trackPosition.toInt()];
spanningTracksSize += (track.*trackGetter)();
if (!(trackSize.*filterFunction)())
continue;
sizingData.filteredTracks.append(&track);
if (!growAboveMaxBreadthFilterFunction || (trackSize.*growAboveMaxBreadthFilterFunction)())
sizingData.growBeyondGrowthLimitsTracks.append(&track);
}
if (sizingData.filteredTracks.isEmpty())
return;
// Specs mandate to floor extraSpace to 0. Instead we directly avoid the function call in those cases as it will be
// a noop in terms of track sizing.
LayoutUnit extraSpace = (this->*sizingFunction)(gridItemWithSpan.gridItem(), direction, sizingData.columnTracks) - spanningTracksSize;
if (extraSpace > 0) {
Vector<GridTrack*>* tracksToGrowBeyondGrowthLimits = sizingData.growBeyondGrowthLimitsTracks.isEmpty() ? &sizingData.filteredTracks : &sizingData.growBeyondGrowthLimitsTracks;
distributeSpaceToTracks(sizingData.filteredTracks, tracksToGrowBeyondGrowthLimits, trackGetter, trackGrowthFunction, sizingData, extraSpace);
}
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
// This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort
// (forall x: NOT x < x).
if (track1->growthLimitIsInfinite() && track2->growthLimitIsInfinite())
return false;
if (track1->growthLimitIsInfinite() || track2->growthLimitIsInfinite())
return track2->growthLimitIsInfinite();
return (track1->growthLimit() - track1->baseSize()) < (track2->growthLimit() - track2->baseSize());
}
void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, const Vector<GridTrack*>* growBeyondGrowthLimitsTracks, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
ASSERT(availableLogicalSpace > 0);
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
size_t tracksSize = tracks.size();
for (size_t i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
ASSERT(track.plannedIncrease() == 0);
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
const LayoutUnit& trackBreadth = (track.*trackGetter)();
LayoutUnit growthShare = track.growthLimitIsInfinite() ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, track.growthLimit() - trackBreadth);
// We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
if (growthShare > 0) {
track.growPlannedIncrease(growthShare);
availableLogicalSpace -= growthShare;
}
}
if (availableLogicalSpace > 0 && growBeyondGrowthLimitsTracks) {
size_t tracksGrowingAboveMaxBreadthSize = growBeyondGrowthLimitsTracks->size();
for (size_t i = 0; i < tracksGrowingAboveMaxBreadthSize; ++i) {
GridTrack* track = growBeyondGrowthLimitsTracks->at(i);
LayoutUnit growthShare = availableLogicalSpace / (tracksGrowingAboveMaxBreadthSize - i);
track->growPlannedIncrease(growthShare);
availableLogicalSpace -= growthShare;
}
}
for (auto* track: tracks) {
track->updateFromPlannedIncrease(trackGrowthFunction);
ASSERT(track->plannedIncrease() == 0);
}
}
#if ENABLE(ASSERT)
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrackSize trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].baseSize())
return false;
}
return true;
}
#endif
void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex)
{
const size_t oldRowSize = gridRowCount();
if (maximumRowIndex >= oldRowSize) {
m_grid.grow(maximumRowIndex + 1);
for (size_t row = oldRowSize; row < gridRowCount(); ++row)
m_grid[row].grow(gridColumnCount());
}
if (maximumColumnIndex >= gridColumnCount()) {
for (size_t row = 0; row < gridRowCount(); ++row)
m_grid[row].grow(maximumColumnIndex + 1);
}
}
void RenderGrid::insertItemIntoGrid(RenderBox& child, const GridCoordinate& coordinate)
{
ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt());
for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column)
m_grid[row.toInt()][column.toInt()].append(&child);
}
RELEASE_ASSERT(!m_gridItemCoordinate.contains(&child));
m_gridItemCoordinate.set(&child, coordinate);
}
void RenderGrid::placeItemsOnGrid()
{
if (!gridIsDirty())
return;
ASSERT(m_gridItemCoordinate.isEmpty());
populateExplicitGridAndOrderIterator();
// We clear the dirty bit here as the grid sizes have been updated, this means
// that we can safely call gridRowCount() / gridColumnCount().
m_gridIsDirty = false;
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
if (child->isOutOfFlowPositioned())
continue;
// FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
// positions to not match the author's intent. The specification is unclear on what should be done in this case.
OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
if (!rowPositions || !columnPositions) {
GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
if (!majorAxisPositions)
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
insertItemIntoGrid(*child, GridCoordinate(*rowPositions, *columnPositions));
}
ASSERT(gridRowCount() >= GridResolvedPosition::explicitGridRowCount(*style()));
ASSERT(gridColumnCount() >= GridResolvedPosition::explicitGridColumnCount(*style()));
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
m_grid.shrinkToFit();
}
void RenderGrid::populateExplicitGridAndOrderIterator()
{
OrderIteratorPopulator populator(m_orderIterator);
size_t maximumRowIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridRowCount(*style()));
size_t maximumColumnIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridColumnCount(*style()));
ASSERT(m_gridItemsIndexesMap.isEmpty());
size_t childIndex = 0;
for (RenderBox* child = firstChildBox(); child; child = child->nextInFlowSiblingBox()) {
populator.collectChild(child);
m_gridItemsIndexesMap.set(child, childIndex++);
// This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
// |positions| is 0 if we need to run the auto-placement algorithm.
if (rowPositions) {
maximumRowIndex = std::max<size_t>(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt());
} else {
// Grow the grid for items with a definite row span, getting the largest such span.
GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForRows, GridResolvedPosition(0));
maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt());
}
if (columnPositions) {
maximumColumnIndex = std::max<size_t>(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt());
} else {
// Grow the grid for items with a definite column span, getting the largest such span.
GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForColumns, GridResolvedPosition(0));
maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt());
}
}
m_grid.grow(maximumRowIndex);
for (auto& column : m_grid)
column.grow(maximumColumnIndex);
}
PassOwnPtr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
{
GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection));
return adoptPtr(new GridCoordinate(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions));
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
for (const auto& autoGridItem : autoGridItems) {
OwnPtr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *autoGridItem, autoPlacementMajorAxisDirection());
GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *autoGridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt());
OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan());
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItem, autoPlacementMajorAxisDirection(), *majorAxisPositions);
insertItemIntoGrid(*autoGridItem, *emptyGridArea);
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
std::pair<size_t, size_t> autoPlacementCursor = std::make_pair(0, 0);
bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
for (const auto& autoGridItem : autoGridItems) {
placeAutoMajorAxisItemOnGrid(*autoGridItem, autoPlacementCursor);
// If grid-auto-flow is dense, reset auto-placement cursor.
if (isGridAutoFlowDense) {
autoPlacementCursor.first = 0;
autoPlacementCursor.second = 0;
}
}
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox& gridItem, std::pair<size_t, size_t>& autoPlacementCursor)
{
OwnPtr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMinorAxisDirection());
ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMajorAxisDirection()));
GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0));
const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
size_t majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
size_t minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;
OwnPtr<GridCoordinate> emptyGridArea;
if (minorAxisPositions) {
// Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
if (minorAxisPositions->resolvedInitialPosition.toInt() < minorAxisAutoPlacementCursor)
majorAxisAutoPlacementCursor++;
if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt(), majorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan());
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions);
} else {
GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
for (size_t majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());
if (emptyGridArea) {
// Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition;
const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis)
break;
// Discard empty grid area as it does not fit in the minor axis direction.
// We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
emptyGridArea = nullptr;
}
// As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
minorAxisAutoPlacementCursor = 0;
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
}
insertItemIntoGrid(gridItem, *emptyGridArea);
// Move auto-placement cursor to the new position.
autoPlacementCursor.first = emptyGridArea->rows.resolvedInitialPosition.toInt();
autoPlacementCursor.second = emptyGridArea->columns.resolvedInitialPosition.toInt();
}
GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
return style()->isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}
GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
return style()->isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}
void RenderGrid::dirtyGrid()
{
// Even if this could be redundant, it could be seen as a defensive strategy against
// style changes events happening during the layout phase or even while the painting process
// is still ongoing.
// Forcing a new layout for the Grid render would cancel any ongoing painting and ensure
// the grid and its children are correctly laid out according to the new style rules.
setNeedsLayout();
m_grid.resize(0);
m_gridItemCoordinate.clear();
m_gridIsDirty = true;
m_gridItemsOverflowingGridArea.resize(0);
m_gridItemsIndexesMap.clear();
}
void RenderGrid::layoutGridItems()
{
placeItemsOnGrid();
LayoutUnit availableSpaceForColumns = availableLogicalWidth();
LayoutUnit availableSpaceForRows = availableLogicalHeight(IncludeMarginBorderPadding);
GridSizingData sizingData(gridColumnCount(), gridRowCount());
computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableSpaceForColumns);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
computeUsedBreadthOfGridTracks(ForRows, sizingData, availableSpaceForRows);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));
populateGridPositions(sizingData, availableSpaceForColumns, availableSpaceForRows);
m_gridItemsOverflowingGridArea.resize(0);
LayoutUnit columnOffset = contentPositionAndDistributionColumnOffset(availableSpaceForColumns, style()->justifyContent(), style()->justifyContentDistribution(), style()->justifyContentOverflowAlignment(), m_columnPositions.size() - 1);
LayoutUnit rowOffset = contentPositionAndDistributionRowOffset(availableSpaceForRows, style()->alignContent(), style()->alignContentDistribution(), style()->alignContentOverflowAlignment(), m_rowPositions.size() - 1);
LayoutSize contentPositionOffset(columnOffset, rowOffset);
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned()) {
child->containingBlock()->insertPositionedObject(child);
continue;
}
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(*child, ForColumns, sizingData.columnTracks);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(*child, ForRows, sizingData.rowTracks);
SubtreeLayoutScope layoutScope(*child);
if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight()))
layoutScope.setNeedsLayout(child);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
// Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded
// call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly
// determine the available space before stretching, are not set yet.
applyStretchAlignmentToChildIfNeeded(*child, overrideContainingBlockContentLogicalHeight);
child->layoutIfNeeded();
#if ENABLE(ASSERT)
const GridCoordinate& coordinate = cachedGridCoordinate(*child);
ASSERT(coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size());
ASSERT(coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size());
#endif
child->setLogicalLocation(findChildLogicalPosition(*child, contentPositionOffset));
// Keep track of children overflowing their grid area as we might need to paint them even if the grid-area is
// not visible
if (child->logicalHeight() > overrideContainingBlockContentLogicalHeight
|| child->logicalWidth() > overrideContainingBlockContentLogicalWidth)
m_gridItemsOverflowingGridArea.append(child);
}
for (const auto& row : sizingData.rowTracks)
setLogicalHeight(logicalHeight() + row.baseSize());
// Min / max logical height is handled by the call to updateLogicalHeight in layoutBlock.
setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
}
void RenderGrid::layoutPositionedObjects(bool relayoutChildren, PositionedLayoutBehavior info)
{
TrackedRendererListHashSet* positionedDescendants = positionedObjects();
if (!positionedDescendants)
return;
bool containerHasHorizontalWritingMode = isHorizontalWritingMode();
for (auto* child : *positionedDescendants) {
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != containerHasHorizontalWritingMode;
if (hasOrthogonalWritingMode) {
// FIXME: Properly support orthogonal writing mode.
continue;
}
// FIXME: Detect properly if start/end is auto for inexistent named grid lines.
bool columnStartIsAuto = child->style()->gridColumnStart().isAuto();
LayoutUnit columnOffset = LayoutUnit(0);
LayoutUnit columnBreadth = LayoutUnit(0);
offsetAndBreadthForPositionedChild(*child, ForColumns, columnStartIsAuto, child->style()->gridColumnEnd().isAuto(), columnOffset, columnBreadth);
bool rowStartIsAuto = child->style()->gridRowStart().isAuto();
LayoutUnit rowOffset = LayoutUnit(0);
LayoutUnit rowBreadth = LayoutUnit(0);
offsetAndBreadthForPositionedChild(*child, ForRows, rowStartIsAuto, child->style()->gridRowEnd().isAuto(), rowOffset, rowBreadth);
child->setOverrideContainingBlockContentLogicalWidth(columnBreadth);
child->setOverrideContainingBlockContentLogicalHeight(rowBreadth);
child->setExtraInlineOffset(columnOffset);
child->setExtraBlockOffset(rowOffset);
if (child->parent() == this) {
// If column/row start is not auto the padding has been already computed in offsetAndBreadthForPositionedChild().
Layer* childLayer = child->layer();
if (columnStartIsAuto)
childLayer->setStaticInlinePosition(borderAndPaddingStart());
else
childLayer->setStaticInlinePosition(borderStart() + columnOffset);
if (rowStartIsAuto)
childLayer->setStaticBlockPosition(borderAndPaddingBefore());
else
childLayer->setStaticBlockPosition(borderBefore() + rowOffset);
}
}
RenderBlock::layoutPositionedObjects(relayoutChildren, info);
}
void RenderGrid::offsetAndBreadthForPositionedChild(const RenderBox& child, GridTrackSizingDirection direction, bool startIsAuto, bool endIsAuto, LayoutUnit& offset, LayoutUnit& breadth)
{
ASSERT(child.isHorizontalWritingMode() == isHorizontalWritingMode());
OwnPtr<GridSpan> positions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), child, direction);
if (!positions) {
offset = LayoutUnit(0);
breadth = (direction == ForColumns) ? clientLogicalWidth() : clientLogicalHeight();
return;
}
GridResolvedPosition firstPosition = GridResolvedPosition(0);
GridResolvedPosition initialPosition = startIsAuto ? firstPosition : positions->resolvedInitialPosition;
GridResolvedPosition lastPosition = GridResolvedPosition((direction == ForColumns ? gridColumnCount() : gridRowCount()) - 1);
GridResolvedPosition finalPosition = endIsAuto ? lastPosition : positions->resolvedFinalPosition;
// Positioned children do not grow the grid, so we need to clamp the positions to avoid ending up outside of it.
initialPosition = std::min<GridResolvedPosition>(initialPosition, lastPosition);
finalPosition = std::min<GridResolvedPosition>(finalPosition, lastPosition);
LayoutUnit start = startIsAuto ? LayoutUnit(0) : (direction == ForColumns) ? m_columnPositions[initialPosition.toInt()] : m_rowPositions[initialPosition.toInt()];
LayoutUnit end = endIsAuto ? (direction == ForColumns) ? logicalWidth() : logicalHeight() : (direction == ForColumns) ? m_columnPositions[finalPosition.next().toInt()] : m_rowPositions[finalPosition.next().toInt()];
breadth = end - start;
if (startIsAuto)
breadth -= (direction == ForColumns) ? borderStart() : borderBefore();
else
start -= ((direction == ForColumns) ? borderStart() : borderBefore());
if (endIsAuto) {
breadth -= (direction == ForColumns) ? borderEnd() : borderAfter();
breadth -= scrollbarLogicalWidth();
}
offset = start;
}
GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox& gridItem) const
{
ASSERT(m_gridItemCoordinate.contains(&gridItem));
return m_gridItemCoordinate.get(&gridItem);
}
LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
LayoutUnit gridAreaBreadth = 0;
for (GridSpan::iterator trackPosition = span.begin(); trackPosition != span.end(); ++trackPosition)
gridAreaBreadth += tracks[trackPosition.toInt()].baseSize();
return gridAreaBreadth;
}
void RenderGrid::populateGridPositions(const GridSizingData& sizingData, LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows)
{
unsigned numberOfColumnTracks = sizingData.columnTracks.size();
unsigned numberOfRowTracks = sizingData.rowTracks.size();
m_columnPositions.resize(numberOfColumnTracks + 1);
m_columnPositions[0] = borderAndPaddingStart();
for (unsigned i = 0; i < numberOfColumnTracks; ++i)
m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].baseSize();
m_rowPositions.resize(numberOfRowTracks + 1);
m_rowPositions[0] = borderAndPaddingBefore();
for (unsigned i = 0; i < numberOfRowTracks; ++i)
m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].baseSize();
}
static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit startOfTrack, LayoutUnit endOfTrack, LayoutUnit childBreadth)
{
LayoutUnit trackBreadth = endOfTrack - startOfTrack;
LayoutUnit offset = trackBreadth - childBreadth;
// If overflow is 'safe', we have to make sure we don't overflow the 'start'
// edge (potentially cause some data loss as the overflow is unreachable).
if (overflow == OverflowAlignmentSafe)
offset = std::max<LayoutUnit>(0, offset);
// If we overflow our alignment container and overflow is 'true' (default), we
// ignore the overflow and just return the value regardless (which may cause data
// loss as we overflow the 'start' edge).
return offset;
}
LayoutUnit RenderGrid::startOfColumnForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
return startOfColumn + marginStartForChild(child);
}
LayoutUnit RenderGrid::endOfColumnForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
// FIXME: This might not work as expected with orthogonal writing-modes.
LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth() + child.marginLogicalWidth());
return columnPosition + offsetFromColumnPosition;
}
LayoutUnit RenderGrid::columnPositionLeft(const RenderBox& child) const
{
if (style()->isLeftToRightDirection())
return startOfColumnForChild(child);
return endOfColumnForChild(child);
}
LayoutUnit RenderGrid::columnPositionRight(const RenderBox& child) const
{
if (!style()->isLeftToRightDirection())
return startOfColumnForChild(child);
return endOfColumnForChild(child);
}
LayoutUnit RenderGrid::centeredColumnPositionForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
// FIXME: This might not work as expected with orthogonal writing-modes.
LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth() + child.marginLogicalWidth());
return columnPosition + offsetFromColumnPosition / 2;
}
LayoutUnit RenderGrid::columnPositionForChild(const RenderBox& child) const
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
switch (LayoutStyle::resolveJustification(styleRef(), child.styleRef(), ItemPositionStretch)) {
case ItemPositionSelfStart:
// For orthogonal writing-modes, this computes to 'start'
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return startOfColumnForChild(child);
// self-start is based on the child's direction. That's why we need to check against the grid container's direction.
if (child.style()->direction() != style()->direction())
return endOfColumnForChild(child);
return startOfColumnForChild(child);
case ItemPositionSelfEnd:
// For orthogonal writing-modes, this computes to 'start'
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return endOfColumnForChild(child);
// self-end is based on the child's direction. That's why we need to check against the grid container's direction.
if (child.style()->direction() != style()->direction())
return startOfColumnForChild(child);
return endOfColumnForChild(child);
case ItemPositionFlexStart:
// Only used in flex layout, for other layout, it's equivalent to 'start'.
return startOfColumnForChild(child);
case ItemPositionFlexEnd:
// Only used in flex layout, for other layout, it's equivalent to 'end'.
return endOfColumnForChild(child);
case ItemPositionLeft:
return columnPositionLeft(child);
case ItemPositionRight:
return columnPositionRight(child);
case ItemPositionCenter:
return centeredColumnPositionForChild(child);
case ItemPositionStart:
return startOfColumnForChild(child);
case ItemPositionEnd:
return endOfColumnForChild(child);
case ItemPositionAuto:
break;
case ItemPositionStretch:
return startOfColumnForChild(child);
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align the child.
return startOfColumnForChild(child);
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::endOfRowForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()];
LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight() + child.marginLogicalHeight());
return rowPosition + offsetFromRowPosition;
}
LayoutUnit RenderGrid::startOfRowForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
return rowPosition;
}
LayoutUnit RenderGrid::centeredRowPositionForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()];
LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight() + child.marginLogicalHeight());
return rowPosition + offsetFromRowPosition / 2;
}
static inline LayoutUnit constrainedChildIntrinsicContentLogicalHeight(const RenderBox& child)
{
LayoutUnit childIntrinsicContentLogicalHeight = child.intrinsicContentLogicalHeight();
return child.constrainLogicalHeightByMinMax(childIntrinsicContentLogicalHeight + child.borderAndPaddingLogicalHeight(), childIntrinsicContentLogicalHeight);
}
bool RenderGrid::allowedToStretchLogicalHeightForChild(const RenderBox& child) const
{
return child.style()->logicalHeight().isAuto() && !child.style()->marginBeforeUsing(style()).isAuto() && !child.style()->marginAfterUsing(style()).isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::needToStretchChildLogicalHeight(const RenderBox& child) const
{
if (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch) != ItemPositionStretch)
return false;
return isHorizontalWritingMode() && child.style()->height().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::childIntrinsicHeight(const RenderBox& child) const
{
if (child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child))
return constrainedChildIntrinsicContentLogicalHeight(child);
return child.size().height();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::childIntrinsicWidth(const RenderBox& child) const
{
if (!child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child))
return constrainedChildIntrinsicContentLogicalHeight(child);
return child.size().width();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::intrinsicLogicalHeightForChild(const RenderBox& child) const
{
return isHorizontalWritingMode() ? childIntrinsicHeight(child) : childIntrinsicWidth(child);
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::marginLogicalHeightForChild(const RenderBox& child) const
{
return isHorizontalWritingMode() ? child.marginHeight() : child.marginWidth();
}
LayoutUnit RenderGrid::computeMarginLogicalHeightForChild(const RenderBox& child) const
{
LayoutUnit marginBefore;
LayoutUnit marginAfter;
child.computeMarginsForDirection(BlockDirection, this, child.containingBlockLogicalWidthForContent(), child.logicalHeight(), marginBefore, marginAfter,
child.style()->marginBeforeUsing(style()),
child.style()->marginAfterUsing(style()));
return marginBefore + marginAfter;
}
LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const
{
LayoutUnit childMarginLogicalHeight = marginLogicalHeightForChild(child);
// Because we want to avoid multiple layouts, stretching logic might be performed before
// children are laid out, so we can't use the child cached values. Hence, we need to
// compute margins in order to determine the available height before stretching.
if (childMarginLogicalHeight == 0)
childMarginLogicalHeight = computeMarginLogicalHeightForChild(child);
LayoutUnit childLogicalHeight = childMarginLogicalHeight + intrinsicLogicalHeightForChild(child);
return gridAreaBreadthForChild - childLogicalHeight;
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child, LayoutUnit gridAreaBreadthForChild)
{
if (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch) != ItemPositionStretch)
return;
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
if (allowedToStretchLogicalHeightForChild(child)) {
// FIXME: If the child has orthogonal flow, then it already has an override height set, so use it.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (!hasOrthogonalWritingMode) {
LayoutUnit heightBeforeStretching = needToStretchChildLogicalHeight(child) ? constrainedChildIntrinsicContentLogicalHeight(child) : child.logicalHeight();
LayoutUnit stretchedLogicalHeight = heightBeforeStretching + availableAlignmentSpaceForChildBeforeStretching(gridAreaBreadthForChild, child);
LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, heightBeforeStretching - child.borderAndPaddingLogicalHeight());
LayoutUnit desiredLogicalContentHeight = desiredLogicalHeight - child.borderAndPaddingLogicalHeight();
// FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905.
if (desiredLogicalHeight != child.logicalHeight() || !child.hasOverrideHeight() || desiredLogicalContentHeight != child.overrideLogicalContentHeight()) {
child.setOverrideLogicalContentHeight(desiredLogicalContentHeight);
child.setLogicalHeight(0);
child.forceChildLayout();
}
}
}
}
LayoutUnit RenderGrid::rowPositionForChild(const RenderBox& child) const
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
switch (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch)) {
case ItemPositionSelfStart:
// If orthogonal writing-modes, this computes to 'start'.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return startOfRowForChild(child);
// self-start is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
if (child.style()->writingMode() != style()->writingMode())
return endOfRowForChild(child);
return startOfRowForChild(child);
case ItemPositionSelfEnd:
// If orthogonal writing-modes, this computes to 'end'.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return endOfRowForChild(child);
// self-end is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
if (child.style()->writingMode() != style()->writingMode())
return startOfRowForChild(child);
return endOfRowForChild(child);
case ItemPositionLeft:
// The alignment axis (column axis) and the inline axis are parallell in
// orthogonal writing mode.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return startOfRowForChild(child);
// Otherwise this this is equivalent to 'start’.
return startOfRowForChild(child);
case ItemPositionRight:
// The alignment axis (column axis) and the inline axis are parallell in
// orthogonal writing mode.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return endOfRowForChild(child);
// Otherwise this this is equivalent to 'start’.
return startOfRowForChild(child);
case ItemPositionCenter:
return centeredRowPositionForChild(child);
// Only used in flex layout, for other layout, it's equivalent to 'start'.
case ItemPositionFlexStart:
case ItemPositionStart:
return startOfRowForChild(child);
// Only used in flex layout, for other layout, it's equivalent to 'end'.
case ItemPositionFlexEnd:
case ItemPositionEnd:
return endOfRowForChild(child);
case ItemPositionStretch:
return startOfRowForChild(child);
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the ItemPositionBaseline value. For now, we always 'start' align the child.
return startOfRowForChild(child);
case ItemPositionAuto:
break;
}
ASSERT_NOT_REACHED();
return 0;
}
ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution)
{
switch (distribution) {
case ContentDistributionSpaceBetween:
return ContentPositionStart;
case ContentDistributionSpaceAround:
return ContentPositionCenter;
case ContentDistributionSpaceEvenly:
return ContentPositionCenter;
case ContentDistributionStretch:
return ContentPositionStart;
case ContentDistributionDefault:
return ContentPositionAuto;
}
ASSERT_NOT_REACHED();
return ContentPositionAuto;
}
static inline LayoutUnit offsetToStartEdge(bool isLeftToRight, LayoutUnit availableSpace)
{
return isLeftToRight ? LayoutUnit(0) : availableSpace;
}
static inline LayoutUnit offsetToEndEdge(bool isLeftToRight, LayoutUnit availableSpace)
{
return !isLeftToRight ? LayoutUnit(0) : availableSpace;
}
LayoutUnit RenderGrid::contentPositionAndDistributionColumnOffset(LayoutUnit availableFreeSpace, ContentPosition position, ContentDistributionType distribution, OverflowAlignment overflow, unsigned numberOfGridTracks) const
{
if (overflow == OverflowAlignmentSafe && availableFreeSpace <= 0)
return 0;
// FIXME: for the time being, spec states that it will always fallback for Grids, but
// discussion is ongoing.
if (distribution != ContentDistributionDefault && position == ContentPositionAuto)
position = resolveContentDistributionFallback(distribution);
switch (position) {
case ContentPositionLeft:
return 0;
case ContentPositionRight:
return availableFreeSpace;
case ContentPositionCenter:
return availableFreeSpace / 2;
case ContentPositionFlexEnd:
// Only used in flex layout, for other layout, it's equivalent to 'end'.
case ContentPositionEnd:
return offsetToEndEdge(style()->isLeftToRightDirection(), availableFreeSpace);
case ContentPositionFlexStart:
// Only used in flex layout, for other layout, it's equivalent to 'start'.
case ContentPositionStart:
return offsetToStartEdge(style()->isLeftToRightDirection(), availableFreeSpace);
case ContentPositionBaseline:
case ContentPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always 'start' align.
// crbug.com/234191
return offsetToStartEdge(style()->isLeftToRightDirection(), availableFreeSpace);
case ContentPositionAuto:
break;
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::contentPositionAndDistributionRowOffset(LayoutUnit availableFreeSpace, ContentPosition position, ContentDistributionType distribution, OverflowAlignment overflow, unsigned numberOfGridTracks) const
{
if (overflow == OverflowAlignmentSafe && availableFreeSpace <= 0)
return 0;
// FIXME: for the time being, spec states that it will always fallback for Grids, but
// discussion is ongoing.
if (distribution != ContentDistributionDefault && position == ContentPositionAuto)
position = resolveContentDistributionFallback(distribution);
switch (position) {
case ContentPositionLeft:
// The align-content's axis is always orthogonal to the inline-axis.
return 0;
case ContentPositionRight:
// The align-content's axis is always orthogonal to the inline-axis.
return 0;
case ContentPositionCenter:
return availableFreeSpace / 2;
case ContentPositionFlexEnd:
// Only used in flex layout, for other layout, it's equivalent to 'End'.
case ContentPositionEnd:
return availableFreeSpace;
case ContentPositionFlexStart:
// Only used in flex layout, for other layout, it's equivalent to 'Start'.
case ContentPositionStart:
return 0;
case ContentPositionBaseline:
case ContentPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always start align.
// crbug.com/234191
return 0;
case ContentPositionAuto:
break;
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child, LayoutSize contentAlignmentOffset) const
{
LayoutUnit columnPosition = columnPositionForChild(child);
// We stored m_columnPositions's data ignoring the direction, hence we might need now
// to translate positions from RTL to LTR, as it's more convenient for painting.
if (!style()->isLeftToRightDirection())
columnPosition = (m_columnPositions[m_columnPositions.size() - 1] + borderAndPaddingLogicalLeft()) - columnPosition - child.logicalWidth();
// The Content Alignment offset accounts for the RTL to LTR flip.
LayoutPoint childLocation(columnPosition, rowPositionForChild(child));
childLocation.move(contentAlignmentOffset);
return childLocation;
}
void RenderGrid::paintChildren(const PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
GridPainter(*this).paintChildren(paintInfo, paintOffset);
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace blink