blob: 59800c50c99d9ec75d7cf2f70994bf9b0b1486c1 [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/encoded_program.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "base/environment.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "courgette/courgette.h"
#include "courgette/disassembler_elf_32_arm.h"
#include "courgette/streams.h"
#include "courgette/types_elf.h"
namespace courgette {
namespace {
// Serializes a vector of integral values using Varint32 coding.
template<typename V>
CheckBool WriteVector(const V& items, SinkStream* buffer) {
size_t count = items.size();
bool ok = buffer->WriteSizeVarint32(count);
for (size_t i = 0; ok && i < count; ++i) {
ok = buffer->WriteSizeVarint32(items[i]);
}
return ok;
}
template<typename V>
bool ReadVector(V* items, SourceStream* buffer) {
uint32_t count;
if (!buffer->ReadVarint32(&count))
return false;
items->clear();
bool ok = items->reserve(count);
for (size_t i = 0; ok && i < count; ++i) {
uint32_t item;
ok = buffer->ReadVarint32(&item);
if (ok)
ok = items->push_back(static_cast<typename V::value_type>(item));
}
return ok;
}
// Serializes a vector, using delta coding followed by Varint32Signed coding.
template<typename V>
CheckBool WriteSigned32Delta(const V& set, SinkStream* buffer) {
size_t count = set.size();
bool ok = buffer->WriteSizeVarint32(count);
uint32_t prev = 0;
for (size_t i = 0; ok && i < count; ++i) {
uint32_t current = set[i];
int32_t delta = current - prev;
ok = buffer->WriteVarint32Signed(delta);
prev = current;
}
return ok;
}
template <typename V>
static CheckBool ReadSigned32Delta(V* set, SourceStream* buffer) {
uint32_t count;
if (!buffer->ReadVarint32(&count))
return false;
set->clear();
bool ok = set->reserve(count);
uint32_t prev = 0;
for (size_t i = 0; ok && i < count; ++i) {
int32_t delta;
ok = buffer->ReadVarint32Signed(&delta);
if (ok) {
uint32_t current = static_cast<uint32_t>(prev + delta);
ok = set->push_back(current);
prev = current;
}
}
return ok;
}
// Write a vector as the byte representation of the contents.
//
// (This only really makes sense for a type T that has sizeof(T)==1, otherwise
// serialized representation is not endian-agnostic. But it is useful to keep
// the possibility of a greater size for experiments comparing Varint32 encoding
// of a vector of larger integrals vs a plain form.)
//
template<typename V>
CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
size_t count = items.size();
bool ok = buffer->WriteSizeVarint32(count);
if (count != 0 && ok) {
size_t byte_count = count * sizeof(typename V::value_type);
ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
}
return ok;
}
template<typename V>
bool ReadVectorU8(V* items, SourceStream* buffer) {
uint32_t count;
if (!buffer->ReadVarint32(&count))
return false;
items->clear();
bool ok = items->resize(count, 0);
if (ok && count != 0) {
size_t byte_count = count * sizeof(typename V::value_type);
return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
}
return ok;
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
// Constructor is here rather than in the header. Although the constructor
// appears to do nothing it is fact quite large because of the implicit calls to
// field constructors. Ditto for the destructor.
EncodedProgram::EncodedProgram() {}
EncodedProgram::~EncodedProgram() {}
CheckBool EncodedProgram::DefineLabels(const RVAToLabel& abs32_labels,
const RVAToLabel& rel32_labels) {
// which == 0 => abs32; which == 1 => rel32.
for (int which = 0; which < 2; ++which) {
const RVAToLabel& labels = which == 0 ? abs32_labels : rel32_labels;
RvaVector& rvas = which == 0 ? abs32_rva_ : rel32_rva_;
if (!rvas.resize(LabelManager::GetIndexBound(labels), kUnassignedRVA))
return false;
// For each Label, write its RVA to assigned index.
for (const auto& rva_and_label : labels) {
const Label& label = *rva_and_label.second;
DCHECK_EQ(rva_and_label.first, label.rva_);
DCHECK_NE(label.index_, Label::kNoIndex);
DCHECK_EQ(rvas[label.index_], kUnassignedRVA)
<< "DefineLabels() double assigned " << label.index_;
rvas[label.index_] = label.rva_;
}
// Replace all unassigned slots with the value at the previous index so they
// delta-encode to zero. (There might be better values than zero. The way to
// get that is have the higher level assembly program assign the unassigned
// slots.)
RVA previous = 0;
for (RVA& rva : rvas) {
if (rva == kUnassignedRVA)
rva = previous;
else
previous = rva;
}
}
return true;
}
CheckBool EncodedProgram::AddOrigin(RVA origin) {
return ops_.push_back(ORIGIN) && origins_.push_back(origin);
}
CheckBool EncodedProgram::AddCopy(size_t count, const void* bytes) {
const uint8_t* source = static_cast<const uint8_t*>(bytes);
bool ok = true;
// Fold adjacent COPY instructions into one. This nearly halves the size of
// an EncodedProgram with only COPY1 instructions since there are approx plain
// 16 bytes per reloc. This has a working-set benefit during decompression.
// For compression of files with large differences this makes a small (4%)
// improvement in size. For files with small differences this degrades the
// compressed size by 1.3%
if (!ops_.empty()) {
if (ops_.back() == COPY1) {
ops_.back() = COPY;
ok = copy_counts_.push_back(1);
}
if (ok && ops_.back() == COPY) {
copy_counts_.back() += count;
for (size_t i = 0; ok && i < count; ++i) {
ok = copy_bytes_.push_back(source[i]);
}
return ok;
}
}
if (ok) {
if (count == 1) {
ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
} else {
ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
for (size_t i = 0; ok && i < count; ++i) {
ok = copy_bytes_.push_back(source[i]);
}
}
}
return ok;
}
CheckBool EncodedProgram::AddAbs32(int label_index) {
return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
}
CheckBool EncodedProgram::AddAbs64(int label_index) {
return ops_.push_back(ABS64) && abs32_ix_.push_back(label_index);
}
CheckBool EncodedProgram::AddRel32(int label_index) {
return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
}
CheckBool EncodedProgram::AddRel32ARM(uint16_t op, int label_index) {
return ops_.push_back(static_cast<OP>(op)) &&
rel32_ix_.push_back(label_index);
}
CheckBool EncodedProgram::AddPeMakeRelocs(ExecutableType kind) {
if (kind == EXE_WIN_32_X86)
return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
return ops_.push_back(MAKE_PE64_RELOCATION_TABLE);
}
CheckBool EncodedProgram::AddElfMakeRelocs() {
return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
}
CheckBool EncodedProgram::AddElfARMMakeRelocs() {
return ops_.push_back(MAKE_ELF_ARM_RELOCATION_TABLE);
}
void EncodedProgram::DebuggingSummary() {
VLOG(1) << "EncodedProgram Summary"
<< "\n image base " << image_base_
<< "\n abs32 rvas " << abs32_rva_.size()
<< "\n rel32 rvas " << rel32_rva_.size()
<< "\n ops " << ops_.size()
<< "\n origins " << origins_.size()
<< "\n copy_counts " << copy_counts_.size()
<< "\n copy_bytes " << copy_bytes_.size()
<< "\n abs32_ix " << abs32_ix_.size()
<< "\n rel32_ix " << rel32_ix_.size();
}
////////////////////////////////////////////////////////////////////////////////
// For algorithm refinement purposes it is useful to write subsets of the file
// format. This gives us the ability to estimate the entropy of the
// differential compression of the individual streams, which can provide
// invaluable insights. The default, of course, is to include all the streams.
//
enum FieldSelect {
INCLUDE_ABS32_ADDRESSES = 0x0001,
INCLUDE_REL32_ADDRESSES = 0x0002,
INCLUDE_ABS32_INDEXES = 0x0010,
INCLUDE_REL32_INDEXES = 0x0020,
INCLUDE_OPS = 0x0100,
INCLUDE_BYTES = 0x0200,
INCLUDE_COPY_COUNTS = 0x0400,
INCLUDE_MISC = 0x1000
};
static FieldSelect GetFieldSelect() {
// TODO(sra): Use better configuration.
scoped_ptr<base::Environment> env(base::Environment::Create());
std::string s;
env->GetVar("A_FIELDS", &s);
uint64_t fields;
if (!base::StringToUint64(s, &fields))
return static_cast<FieldSelect>(~0);
return static_cast<FieldSelect>(fields);
}
CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
FieldSelect select = GetFieldSelect();
// The order of fields must be consistent in WriteTo and ReadFrom, regardless
// of the streams used. The code can be configured with all kStreamXXX
// constants the same.
//
// If we change the code to pipeline reading with assembly (to avoid temporary
// storage vectors by consuming operands directly from the stream) then we
// need to read the base address and the random access address tables first,
// the rest can be interleaved.
if (select & INCLUDE_MISC) {
uint32_t high = static_cast<uint32_t>(image_base_ >> 32);
uint32_t low = static_cast<uint32_t>(image_base_ & 0xffffffffU);
if (!streams->stream(kStreamMisc)->WriteVarint32(high) ||
!streams->stream(kStreamMisc)->WriteVarint32(low)) {
return false;
}
}
bool success = true;
if (select & INCLUDE_ABS32_ADDRESSES) {
success &= WriteSigned32Delta(abs32_rva_,
streams->stream(kStreamAbs32Addresses));
}
if (select & INCLUDE_REL32_ADDRESSES) {
success &= WriteSigned32Delta(rel32_rva_,
streams->stream(kStreamRel32Addresses));
}
if (select & INCLUDE_MISC)
success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
if (select & INCLUDE_OPS) {
// 5 for length.
success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
success &= WriteVector(ops_, streams->stream(kStreamOps));
}
if (select & INCLUDE_COPY_COUNTS)
success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
if (select & INCLUDE_BYTES)
success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
if (select & INCLUDE_ABS32_INDEXES)
success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
if (select & INCLUDE_REL32_INDEXES)
success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
return success;
}
bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
uint32_t high;
uint32_t low;
if (!streams->stream(kStreamMisc)->ReadVarint32(&high) ||
!streams->stream(kStreamMisc)->ReadVarint32(&low)) {
return false;
}
image_base_ = (static_cast<uint64_t>(high) << 32) | low;
if (!ReadSigned32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
return false;
if (!ReadSigned32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
return false;
if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
return false;
if (!ReadVector(&ops_, streams->stream(kStreamOps)))
return false;
if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
return false;
if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
return false;
if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
return false;
if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
return false;
// Check that streams have been completely consumed.
for (int i = 0; i < kStreamLimit; ++i) {
if (streams->stream(i)->Remaining() > 0)
return false;
}
return true;
}
// Safe, non-throwing version of std::vector::at(). Returns 'true' for success,
// 'false' for out-of-bounds index error.
template<typename V, typename T>
bool VectorAt(const V& v, size_t index, T* output) {
if (index >= v.size())
return false;
*output = v[index];
return true;
}
CheckBool EncodedProgram::EvaluateRel32ARM(OP op,
size_t& ix_rel32_ix,
RVA& current_rva,
SinkStream* output) {
switch (op & 0x0000F000) {
case REL32ARM8: {
uint32_t index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32_t decompressed_op;
if (!DisassemblerElf32ARM::Decompress(
ARM_OFF8, static_cast<uint16_t>(op),
static_cast<uint32_t>(rva - current_rva), &decompressed_op)) {
return false;
}
uint16_t op16 = static_cast<uint16_t>(decompressed_op);
if (!output->Write(&op16, 2))
return false;
current_rva += 2;
break;
}
case REL32ARM11: {
uint32_t index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32_t decompressed_op;
if (!DisassemblerElf32ARM::Decompress(ARM_OFF11, (uint16_t)op,
(uint32_t)(rva - current_rva),
&decompressed_op)) {
return false;
}
uint16_t op16 = static_cast<uint16_t>(decompressed_op);
if (!output->Write(&op16, 2))
return false;
current_rva += 2;
break;
}
case REL32ARM24: {
uint32_t index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32_t decompressed_op;
if (!DisassemblerElf32ARM::Decompress(ARM_OFF24, (uint16_t)op,
(uint32_t)(rva - current_rva),
&decompressed_op)) {
return false;
}
if (!output->Write(&decompressed_op, 4))
return false;
current_rva += 4;
break;
}
case REL32ARM25: {
uint32_t index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32_t decompressed_op;
if (!DisassemblerElf32ARM::Decompress(ARM_OFF25, (uint16_t)op,
(uint32_t)(rva - current_rva),
&decompressed_op)) {
return false;
}
uint32_t words = (decompressed_op << 16) | (decompressed_op >> 16);
if (!output->Write(&words, 4))
return false;
current_rva += 4;
break;
}
case REL32ARM21: {
uint32_t index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32_t decompressed_op;
if (!DisassemblerElf32ARM::Decompress(ARM_OFF21, (uint16_t)op,
(uint32_t)(rva - current_rva),
&decompressed_op)) {
return false;
}
uint32_t words = (decompressed_op << 16) | (decompressed_op >> 16);
if (!output->Write(&words, 4))
return false;
current_rva += 4;
break;
}
default:
return false;
}
return true;
}
CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
// For the most part, the assembly process walks the various tables.
// ix_mumble is the index into the mumble table.
size_t ix_origins = 0;
size_t ix_copy_counts = 0;
size_t ix_copy_bytes = 0;
size_t ix_abs32_ix = 0;
size_t ix_rel32_ix = 0;
RVA current_rva = 0;
bool pending_pe_relocation_table = false;
uint8_t pending_pe_relocation_table_type = 0x03; // IMAGE_REL_BASED_HIGHLOW
Elf32_Word pending_elf_relocation_table_type = 0;
SinkStream bytes_following_relocation_table;
SinkStream* output = final_buffer;
for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) {
OP op = ops_[ix_ops];
switch (op) {
default:
if (!EvaluateRel32ARM(op, ix_rel32_ix, current_rva, output))
return false;
break;
case ORIGIN: {
RVA section_rva;
if (!VectorAt(origins_, ix_origins, &section_rva))
return false;
++ix_origins;
current_rva = section_rva;
break;
}
case COPY: {
size_t count;
if (!VectorAt(copy_counts_, ix_copy_counts, &count))
return false;
++ix_copy_counts;
for (size_t i = 0; i < count; ++i) {
uint8_t b;
if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
return false;
++ix_copy_bytes;
if (!output->Write(&b, 1))
return false;
}
current_rva += static_cast<RVA>(count);
break;
}
case COPY1: {
uint8_t b;
if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
return false;
++ix_copy_bytes;
if (!output->Write(&b, 1))
return false;
current_rva += 1;
break;
}
case REL32: {
uint32_t index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32_t offset = (rva - (current_rva + 4));
if (!output->Write(&offset, 4))
return false;
current_rva += 4;
break;
}
case ABS32:
case ABS64: {
uint32_t index;
if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
return false;
++ix_abs32_ix;
RVA rva;
if (!VectorAt(abs32_rva_, index, &rva))
return false;
if (op == ABS32) {
base::CheckedNumeric<uint32_t> abs32 = image_base_;
abs32 += rva;
uint32_t safe_abs32 = abs32.ValueOrDie();
if (!abs32_relocs_.push_back(current_rva) ||
!output->Write(&safe_abs32, 4)) {
return false;
}
current_rva += 4;
} else {
base::CheckedNumeric<uint64_t> abs64 = image_base_;
abs64 += rva;
uint64_t safe_abs64 = abs64.ValueOrDie();
if (!abs32_relocs_.push_back(current_rva) ||
!output->Write(&safe_abs64, 8)) {
return false;
}
current_rva += 8;
}
break;
}
case MAKE_PE_RELOCATION_TABLE: {
// We can see the base relocation anywhere, but we only have the
// information to generate it at the very end. So we divert the bytes
// we are generating to a temporary stream.
if (pending_pe_relocation_table)
return false; // Can't have two base relocation tables.
pending_pe_relocation_table = true;
output = &bytes_following_relocation_table;
break;
// There is a potential problem *if* the instruction stream contains
// some REL32 relocations following the base relocation and in the same
// section. We don't know the size of the table, so 'current_rva' will
// be wrong, causing REL32 offsets to be miscalculated. This never
// happens; the base relocation table is usually in a section of its
// own, a data-only section, and following everything else in the
// executable except some padding zero bytes. We could fix this by
// emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
}
case MAKE_PE64_RELOCATION_TABLE: {
if (pending_pe_relocation_table)
return false; // Can't have two base relocation tables.
pending_pe_relocation_table = true;
pending_pe_relocation_table_type = 0x0A; // IMAGE_REL_BASED_DIR64
output = &bytes_following_relocation_table;
break;
}
case MAKE_ELF_ARM_RELOCATION_TABLE: {
// We can see the base relocation anywhere, but we only have the
// information to generate it at the very end. So we divert the bytes
// we are generating to a temporary stream.
if (pending_elf_relocation_table_type)
return false; // Can't have two base relocation tables.
pending_elf_relocation_table_type = R_ARM_RELATIVE;
output = &bytes_following_relocation_table;
break;
}
case MAKE_ELF_RELOCATION_TABLE: {
// We can see the base relocation anywhere, but we only have the
// information to generate it at the very end. So we divert the bytes
// we are generating to a temporary stream.
if (pending_elf_relocation_table_type)
return false; // Can't have two base relocation tables.
pending_elf_relocation_table_type = R_386_RELATIVE;
output = &bytes_following_relocation_table;
break;
}
}
}
if (pending_pe_relocation_table) {
if (!GeneratePeRelocations(final_buffer,
pending_pe_relocation_table_type) ||
!final_buffer->Append(&bytes_following_relocation_table))
return false;
}
if (pending_elf_relocation_table_type) {
if (!GenerateElfRelocations(pending_elf_relocation_table_type,
final_buffer) ||
!final_buffer->Append(&bytes_following_relocation_table))
return false;
}
// Final verification check: did we consume all lists?
if (ix_copy_counts != copy_counts_.size())
return false;
if (ix_copy_bytes != copy_bytes_.size())
return false;
if (ix_abs32_ix != abs32_ix_.size())
return false;
if (ix_rel32_ix != rel32_ix_.size())
return false;
return true;
}
// RelocBlock has the layout of a block of relocations in the base relocation
// table file format.
//
struct RelocBlockPOD {
uint32_t page_rva;
uint32_t block_size;
uint16_t relocs[4096]; // Allow up to one relocation per byte of a 4k page.
};
static_assert(offsetof(RelocBlockPOD, relocs) == 8, "reloc block header size");
class RelocBlock {
public:
RelocBlock() {
pod.page_rva = 0xFFFFFFFF;
pod.block_size = 8;
}
void Add(uint16_t item) {
pod.relocs[(pod.block_size-8)/2] = item;
pod.block_size += 2;
}
CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT {
bool ok = true;
if (pod.block_size != 8) {
if (pod.block_size % 4 != 0) { // Pad to make size multiple of 4 bytes.
Add(0);
}
ok = buffer->Write(&pod, pod.block_size);
pod.block_size = 8;
}
return ok;
}
RelocBlockPOD pod;
};
CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer,
uint8_t type) {
std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
DCHECK(abs32_relocs_.empty() || abs32_relocs_.back() != kUnassignedRVA);
RelocBlock block;
bool ok = true;
for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
uint32_t rva = abs32_relocs_[i];
uint32_t page_rva = rva & ~0xFFF;
if (page_rva != block.pod.page_rva) {
ok &= block.Flush(buffer);
block.pod.page_rva = page_rva;
}
if (ok)
block.Add(((static_cast<uint16_t>(type)) << 12) | (rva & 0xFFF));
}
ok &= block.Flush(buffer);
return ok;
}
CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
SinkStream* buffer) {
std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
DCHECK(abs32_relocs_.empty() || abs32_relocs_.back() != kUnassignedRVA);
Elf32_Rel relocation_block;
relocation_block.r_info = r_info;
bool ok = true;
for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
relocation_block.r_offset = abs32_relocs_[i];
ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
}
return ok;
}
////////////////////////////////////////////////////////////////////////////////
Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
if (!encoded->WriteTo(sink))
return C_STREAM_ERROR;
return C_OK;
}
Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
EncodedProgram* encoded = new EncodedProgram();
if (encoded->ReadFrom(streams)) {
*output = encoded;
return C_OK;
}
delete encoded;
return C_DESERIALIZATION_FAILED;
}
Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
bool assembled = encoded->AssembleTo(buffer);
if (assembled)
return C_OK;
return C_ASSEMBLY_FAILED;
}
void DeleteEncodedProgram(EncodedProgram* encoded) {
delete encoded;
}
} // namespace courgette