blob: dee6838e9f9e53f3af7b6278614bb9282732d3ee [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COMPONENTS_SYNC_BASE_ENUM_SET_H_
#define COMPONENTS_SYNC_BASE_ENUM_SET_H_
#include <bitset>
#include <cstddef>
#include <string>
#include <utility>
#include "base/logging.h"
namespace syncer {
// Forward declarations needed for friend declarations.
template <typename E, E MinEnumValue, E MaxEnumValue>
class EnumSet;
template <typename E, E Min, E Max>
EnumSet<E, Min, Max> Union(EnumSet<E, Min, Max> set1,
EnumSet<E, Min, Max> set2);
template <typename E, E Min, E Max>
EnumSet<E, Min, Max> Intersection(EnumSet<E, Min, Max> set1,
EnumSet<E, Min, Max> set2);
template <typename E, E Min, E Max>
EnumSet<E, Min, Max> Difference(EnumSet<E, Min, Max> set1,
EnumSet<E, Min, Max> set2);
// An EnumSet is a set that can hold enum values between a min and a
// max value (inclusive of both). It's essentially a wrapper around
// std::bitset<> with stronger type enforcement, more descriptive
// member function names, and an iterator interface.
//
// If you're working with enums with a small number of possible values
// (say, fewer than 64), you can efficiently pass around an EnumSet
// for that enum around by value.
template <typename E, E MinEnumValue, E MaxEnumValue>
class EnumSet {
private:
using enum_underlying_type = std::underlying_type_t<E>;
static constexpr enum_underlying_type GetUnderlyingValue(E value) {
return static_cast<enum_underlying_type>(value);
}
public:
using EnumType = E;
static const E kMinValue = MinEnumValue;
static const E kMaxValue = MaxEnumValue;
static const size_t kValueCount =
GetUnderlyingValue(kMaxValue) - GetUnderlyingValue(kMinValue) + 1;
static_assert(kMinValue < kMaxValue, "min value must be less than max value");
private:
// Declaration needed by Iterator.
using EnumBitSet = std::bitset<kValueCount>;
public:
// Iterator is a forward-only read-only iterator for EnumSet. It follows the
// common STL input iterator interface (like std::unordered_set).
//
// Example usage, using a range-based for loop:
//
// EnumSet<SomeType> enums;
// for (SomeType val : enums) {
// Process(val);
// }
//
// Or using an explicit iterator (not recommended):
//
// for (EnumSet<...>::Iterator it = enums.begin(); it != enums.end(); it++) {
// Process(*it);
// }
//
// The iterator must not be outlived by the set. In particular, the following
// is an error:
//
// EnumSet<...> SomeFn() { ... }
//
// /* ERROR */
// for (EnumSet<...>::Iterator it = SomeFun().begin(); ...
//
// Also, there are no guarantees as to what will happen if you
// modify an EnumSet while traversing it with an iterator.
class Iterator {
public:
Iterator() : enums_(nullptr), i_(kValueCount) {}
~Iterator() {}
bool operator==(const Iterator& other) const { return i_ == other.i_; }
bool operator!=(const Iterator& other) const { return !(*this == other); }
E operator*() const {
DCHECK(Good());
return FromIndex(i_);
}
Iterator& operator++() {
DCHECK(Good());
// If there are no more set elements in the bitset, this will result in an
// index equal to kValueCount, which is equivalent to EnumSet.end().
i_ = FindNext(i_ + 1);
return *this;
}
Iterator operator++(int) {
DCHECK(Good());
Iterator old(*this);
// If there are no more set elements in the bitset, this will result in an
// index equal to kValueCount, which is equivalent to EnumSet.end().
i_ = FindNext(i_ + 1);
return std::move(old);
}
private:
friend Iterator EnumSet::begin() const;
explicit Iterator(const EnumBitSet& enums)
: enums_(&enums), i_(FindNext(0)) {}
// Returns true iff the iterator points to an EnumSet and it
// hasn't yet traversed the EnumSet entirely.
bool Good() const { return enums_ && i_ < kValueCount && enums_->test(i_); }
size_t FindNext(size_t i) {
while ((i < kValueCount) && !enums_->test(i)) {
++i;
}
return i;
}
const EnumBitSet* enums_;
size_t i_;
};
EnumSet() {}
~EnumSet() = default;
static constexpr uint64_t single_val_bitstring(E val) {
return 1ULL << (ToIndex(val));
}
template <class... T>
static constexpr uint64_t bitstring(T... values) {
uint64_t converted[] = {single_val_bitstring(values)...};
uint64_t result = 0;
for (uint64_t e : converted)
result |= e;
return result;
}
template <class... T>
constexpr EnumSet(E head, T... tail)
: EnumSet(EnumBitSet(bitstring(head, tail...))) {}
// Returns an EnumSet with all possible values.
static constexpr EnumSet All() {
return EnumSet(EnumBitSet((1ULL << kValueCount) - 1));
}
// Returns an EnumSet with all the values from start to end, inclusive.
static constexpr EnumSet FromRange(E start, E end) {
return EnumSet(EnumBitSet(
((single_val_bitstring(end)) - (single_val_bitstring(start))) |
(single_val_bitstring(end))));
}
// Copy constructor and assignment welcome.
// Set operations. Put, Retain, and Remove are basically
// self-mutating versions of Union, Intersection, and Difference
// (defined below).
// Adds the given value (which must be in range) to our set.
void Put(E value) { enums_.set(ToIndex(value)); }
// Adds all values in the given set to our set.
void PutAll(EnumSet other) { enums_ |= other.enums_; }
// Adds all values in the given range to our set, inclusive.
void PutRange(E start, E end) {
size_t endIndexInclusive = ToIndex(end);
DCHECK_LE(ToIndex(start), endIndexInclusive);
for (size_t current = ToIndex(start); current <= endIndexInclusive;
++current) {
enums_.set(current);
}
}
// There's no real need for a Retain(E) member function.
// Removes all values not in the given set from our set.
void RetainAll(EnumSet other) { enums_ &= other.enums_; }
// If the given value is in range, removes it from our set.
void Remove(E value) {
if (InRange(value)) {
enums_.reset(ToIndex(value));
}
}
// Removes all values in the given set from our set.
void RemoveAll(EnumSet other) { enums_ &= ~other.enums_; }
// Removes all values from our set.
void Clear() { enums_.reset(); }
// Returns true iff the given value is in range and a member of our set.
constexpr bool Has(E value) const {
return InRange(value) && enums_[ToIndex(value)];
}
// Returns true iff the given set is a subset of our set.
bool HasAll(EnumSet other) const {
return (enums_ & other.enums_) == other.enums_;
}
// Returns true iff our set is empty.
bool Empty() const { return !enums_.any(); }
// Returns how many values our set has.
size_t Size() const { return enums_.count(); }
// Returns an iterator pointing to the first element (if any).
Iterator begin() const { return Iterator(enums_); }
// Returns an iterator that does not point to any element, but to the position
// that follows the last element in the set.
Iterator end() const { return Iterator(); }
// Returns true iff our set and the given set contain exactly the same values.
bool operator==(const EnumSet& other) const { return enums_ == other.enums_; }
// Returns true iff our set and the given set do not contain exactly the same
// values.
bool operator!=(const EnumSet& other) const { return enums_ != other.enums_; }
private:
friend EnumSet Union<E, MinEnumValue, MaxEnumValue>(EnumSet set1,
EnumSet set2);
friend EnumSet Intersection<E, MinEnumValue, MaxEnumValue>(EnumSet set1,
EnumSet set2);
friend EnumSet Difference<E, MinEnumValue, MaxEnumValue>(EnumSet set1,
EnumSet set2);
// A bitset can't be constexpr constructed if it has size > 64, since the
// constexpr constructor uses a uint64_t. If your EnumSet has > 64 values, you
// can safely remove the constepxr qualifiers from this file, at the cost of
// some minor optimizations.
explicit constexpr EnumSet(EnumBitSet enums) : enums_(enums) {
static_assert(kValueCount < 64,
"Max number of enum values is 64 for constexpr ");
}
static constexpr bool InRange(E value) {
return (value >= MinEnumValue) && (value <= MaxEnumValue);
}
// Converts a value to/from an index into |enums_|.
static constexpr size_t ToIndex(E value) {
return GetUnderlyingValue(value) - GetUnderlyingValue(MinEnumValue);
}
static E FromIndex(size_t i) {
DCHECK_LT(i, kValueCount);
return static_cast<E>(GetUnderlyingValue(MinEnumValue) + i);
}
EnumBitSet enums_;
};
template <typename E, E MinEnumValue, E MaxEnumValue>
const E EnumSet<E, MinEnumValue, MaxEnumValue>::kMinValue;
template <typename E, E MinEnumValue, E MaxEnumValue>
const E EnumSet<E, MinEnumValue, MaxEnumValue>::kMaxValue;
template <typename E, E MinEnumValue, E MaxEnumValue>
const size_t EnumSet<E, MinEnumValue, MaxEnumValue>::kValueCount;
// The usual set operations.
template <typename E, E Min, E Max>
EnumSet<E, Min, Max> Union(EnumSet<E, Min, Max> set1,
EnumSet<E, Min, Max> set2) {
return EnumSet<E, Min, Max>(set1.enums_ | set2.enums_);
}
template <typename E, E Min, E Max>
EnumSet<E, Min, Max> Intersection(EnumSet<E, Min, Max> set1,
EnumSet<E, Min, Max> set2) {
return EnumSet<E, Min, Max>(set1.enums_ & set2.enums_);
}
template <typename E, E Min, E Max>
EnumSet<E, Min, Max> Difference(EnumSet<E, Min, Max> set1,
EnumSet<E, Min, Max> set2) {
return EnumSet<E, Min, Max>(set1.enums_ & ~set2.enums_);
}
} // namespace syncer
#endif // COMPONENTS_SYNC_BASE_ENUM_SET_H_