blob: 6c4f4a5e69dc171c64e17f8b49a1e8427eb0d470 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/values.h"
// values.h is a widely included header and its size has significant impact on
// build time. Try not to raise this limit unless absolutely necessary. See
// https://chromium.googlesource.com/chromium/src/+/HEAD/docs/wmax_tokens.md
#ifndef NACL_TC_REV
#pragma clang max_tokens_here 547000
#endif
#include <algorithm>
#include <cmath>
#include <ostream>
#include <tuple>
#include <utility>
#include "base/as_const.h"
#include "base/bit_cast.h"
#include "base/check_op.h"
#include "base/containers/checked_iterators.h"
#include "base/containers/contains.h"
#include "base/json/json_writer.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "base/ranges/algorithm.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/trace_event/base_tracing.h"
#include "base/tracing_buildflags.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/abseil-cpp/absl/types/variant.h"
#if BUILDFLAG(ENABLE_BASE_TRACING)
#include "base/trace_event/memory_usage_estimator.h" // no-presubmit-check
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
namespace base {
namespace {
const char* const kTypeNames[] = {"null", "boolean", "integer", "double",
"string", "binary", "dictionary", "list"};
static_assert(base::size(kTypeNames) ==
static_cast<size_t>(Value::Type::LIST) + 1,
"kTypeNames Has Wrong Size");
std::unique_ptr<Value> CopyWithoutEmptyChildren(const Value& node);
// Make a deep copy of |node|, but don't include empty lists or dictionaries
// in the copy. It's possible for this function to return NULL and it
// expects |node| to always be non-NULL.
std::unique_ptr<Value> CopyListWithoutEmptyChildren(const Value& list) {
Value copy(Value::Type::LIST);
for (const auto& entry : list.GetList()) {
std::unique_ptr<Value> child_copy = CopyWithoutEmptyChildren(entry);
if (child_copy)
copy.Append(std::move(*child_copy));
}
return copy.GetList().empty() ? nullptr
: std::make_unique<Value>(std::move(copy));
}
std::unique_ptr<DictionaryValue> CopyDictionaryWithoutEmptyChildren(
const DictionaryValue& dict) {
std::unique_ptr<DictionaryValue> copy;
for (const auto& it : dict.DictItems()) {
std::unique_ptr<Value> child_copy = CopyWithoutEmptyChildren(it.second);
if (child_copy) {
if (!copy)
copy = std::make_unique<DictionaryValue>();
copy->SetKey(it.first, std::move(*child_copy));
}
}
return copy;
}
std::unique_ptr<Value> CopyWithoutEmptyChildren(const Value& node) {
switch (node.type()) {
case Value::Type::LIST:
return CopyListWithoutEmptyChildren(static_cast<const ListValue&>(node));
case Value::Type::DICTIONARY:
return CopyDictionaryWithoutEmptyChildren(
static_cast<const DictionaryValue&>(node));
default:
return std::make_unique<Value>(node.Clone());
}
}
// Helper class to enumerate the path components from a StringPiece
// without performing heap allocations. Components are simply separated
// by single dots (e.g. "foo.bar.baz" -> ["foo", "bar", "baz"]).
//
// Usage example:
// PathSplitter splitter(some_path);
// while (splitter.HasNext()) {
// StringPiece component = splitter.Next();
// ...
// }
//
class PathSplitter {
public:
explicit PathSplitter(StringPiece path) : path_(path) {}
bool HasNext() const { return pos_ < path_.size(); }
StringPiece Next() {
DCHECK(HasNext());
size_t start = pos_;
size_t pos = path_.find('.', start);
size_t end;
if (pos == path_.npos) {
end = path_.size();
pos_ = end;
} else {
end = pos;
pos_ = pos + 1;
}
return path_.substr(start, end - start);
}
private:
StringPiece path_;
size_t pos_ = 0;
};
} // namespace
// static
Value Value::FromUniquePtrValue(std::unique_ptr<Value> val) {
return std::move(*val);
}
// static
std::unique_ptr<Value> Value::ToUniquePtrValue(Value val) {
return std::make_unique<Value>(std::move(val));
}
// static
const DictionaryValue& Value::AsDictionaryValue(const Value& val) {
CHECK(val.is_dict());
return static_cast<const DictionaryValue&>(val);
}
// static
const ListValue& Value::AsListValue(const Value& val) {
CHECK(val.is_list());
return static_cast<const ListValue&>(val);
}
Value::Value() noexcept = default;
Value::Value(Value&& that) noexcept = default;
Value::Value(Type type) {
// Initialize with the default value.
switch (type) {
case Type::NONE:
return;
case Type::BOOLEAN:
data_.emplace<bool>(false);
return;
case Type::INTEGER:
data_.emplace<int>(0);
return;
case Type::DOUBLE:
data_.emplace<DoubleStorage>(bit_cast<DoubleStorage>(0.0));
return;
case Type::STRING:
data_.emplace<std::string>();
return;
case Type::BINARY:
data_.emplace<BlobStorage>();
return;
case Type::DICTIONARY:
data_.emplace<LegacyDictStorage>();
return;
case Type::LIST:
data_.emplace<ListStorage>();
return;
}
NOTREACHED();
}
Value::Value(bool in_bool) : data_(in_bool) {}
Value::Value(int in_int) : data_(in_int) {}
Value::Value(double in_double) : data_(bit_cast<DoubleStorage>(in_double)) {
if (!std::isfinite(in_double)) {
NOTREACHED() << "Non-finite (i.e. NaN or positive/negative infinity) "
<< "values cannot be represented in JSON";
data_ = bit_cast<DoubleStorage>(0.0);
}
}
Value::Value(const char* in_string) : Value(std::string(in_string)) {}
Value::Value(StringPiece in_string) : Value(std::string(in_string)) {}
Value::Value(std::string&& in_string) noexcept : data_(std::move(in_string)) {
DCHECK(IsStringUTF8AllowingNoncharacters(GetString()));
}
Value::Value(const char16_t* in_string16) : Value(StringPiece16(in_string16)) {}
Value::Value(StringPiece16 in_string16) : Value(UTF16ToUTF8(in_string16)) {}
Value::Value(const std::vector<char>& in_blob)
: data_(absl::in_place_type_t<BlobStorage>(),
in_blob.begin(),
in_blob.end()) {}
Value::Value(base::span<const uint8_t> in_blob)
: data_(absl::in_place_type_t<BlobStorage>(),
in_blob.begin(),
in_blob.end()) {}
Value::Value(BlobStorage&& in_blob) noexcept : data_(std::move(in_blob)) {}
Value::Value(const DictStorage& in_dict)
: data_(absl::in_place_type_t<LegacyDictStorage>()) {
dict().reserve(in_dict.size());
for (const auto& it : in_dict) {
dict().try_emplace(dict().end(), it.first,
std::make_unique<Value>(it.second.Clone()));
}
}
Value::Value(DictStorage&& in_dict) noexcept
: data_(absl::in_place_type_t<LegacyDictStorage>()) {
dict().reserve(in_dict.size());
for (auto& it : in_dict) {
dict().try_emplace(dict().end(), std::move(it.first),
std::make_unique<Value>(std::move(it.second)));
}
}
Value::Value(span<const Value> in_list)
: data_(absl::in_place_type_t<ListStorage>()) {
list().reserve(in_list.size());
for (const auto& val : in_list)
list().emplace_back(val.Clone());
}
Value::Value(ListStorage&& in_list) noexcept : data_(std::move(in_list)) {}
Value& Value::operator=(Value&& that) noexcept = default;
Value::Value(const LegacyDictStorage& storage)
: data_(absl::in_place_type_t<LegacyDictStorage>()) {
dict().reserve(storage.size());
for (const auto& it : storage) {
dict().try_emplace(dict().end(), it.first,
std::make_unique<Value>(it.second->Clone()));
}
}
Value::Value(LegacyDictStorage&& storage) noexcept
: data_(std::move(storage)) {}
Value::Value(absl::monostate) {}
Value::Value(DoubleStorage storage) : data_(std::move(storage)) {}
double Value::AsDoubleInternal() const {
return bit_cast<double>(absl::get<DoubleStorage>(data_));
}
Value Value::Clone() const {
return absl::visit([](const auto& member) { return Value(member); }, data_);
}
Value::~Value() = default;
// static
const char* Value::GetTypeName(Value::Type type) {
DCHECK_GE(static_cast<int>(type), 0);
DCHECK_LT(static_cast<size_t>(type), base::size(kTypeNames));
return kTypeNames[static_cast<size_t>(type)];
}
absl::optional<bool> Value::GetIfBool() const {
return is_bool() ? absl::make_optional(GetBool()) : absl::nullopt;
}
absl::optional<int> Value::GetIfInt() const {
return is_int() ? absl::make_optional(GetInt()) : absl::nullopt;
}
absl::optional<double> Value::GetIfDouble() const {
return (is_int() || is_double()) ? absl::make_optional(GetDouble())
: absl::nullopt;
}
const std::string* Value::GetIfString() const {
return absl::get_if<std::string>(&data_);
}
const Value::BlobStorage* Value::GetIfBlob() const {
return absl::get_if<BlobStorage>(&data_);
}
bool Value::GetBool() const {
return absl::get<bool>(data_);
}
int Value::GetInt() const {
return absl::get<int>(data_);
}
double Value::GetDouble() const {
if (is_double())
return AsDoubleInternal();
if (is_int())
return GetInt();
CHECK(false);
return 0.0;
}
const std::string& Value::GetString() const {
return absl::get<std::string>(data_);
}
std::string& Value::GetString() {
return absl::get<std::string>(data_);
}
const Value::BlobStorage& Value::GetBlob() const {
return absl::get<BlobStorage>(data_);
}
Value::ListView Value::GetList() {
return list();
}
Value::ConstListView Value::GetList() const {
return list();
}
Value::ListStorage Value::TakeList() {
return std::exchange(list(), {});
}
void Value::Append(bool value) {
list().emplace_back(value);
}
void Value::Append(int value) {
list().emplace_back(value);
}
void Value::Append(double value) {
list().emplace_back(value);
}
void Value::Append(const char* value) {
list().emplace_back(value);
}
void Value::Append(StringPiece value) {
list().emplace_back(value);
}
void Value::Append(std::string&& value) {
list().emplace_back(std::move(value));
}
void Value::Append(const char16_t* value) {
list().emplace_back(value);
}
void Value::Append(StringPiece16 value) {
list().emplace_back(value);
}
void Value::Append(Value&& value) {
list().emplace_back(std::move(value));
}
CheckedContiguousIterator<Value> Value::Insert(
CheckedContiguousConstIterator<Value> pos,
Value&& value) {
const auto offset = pos - make_span(list()).begin();
list().insert(list().begin() + offset, std::move(value));
return make_span(list()).begin() + offset;
}
bool Value::EraseListIter(CheckedContiguousConstIterator<Value> iter) {
const auto offset = iter - ListView(list()).begin();
auto list_iter = list().begin() + offset;
if (list_iter == list().end())
return false;
list().erase(list_iter);
return true;
}
size_t Value::EraseListValue(const Value& val) {
return EraseListValueIf([&val](const Value& other) { return val == other; });
}
void Value::ClearList() {
list().clear();
}
Value* Value::FindKey(StringPiece key) {
return const_cast<Value*>(as_const(*this).FindKey(key));
}
const Value* Value::FindKey(StringPiece key) const {
auto found = dict().find(key);
if (found == dict().end())
return nullptr;
return found->second.get();
}
Value* Value::FindKeyOfType(StringPiece key, Type type) {
return const_cast<Value*>(as_const(*this).FindKeyOfType(key, type));
}
const Value* Value::FindKeyOfType(StringPiece key, Type type) const {
const Value* result = FindKey(key);
if (!result || result->type() != type)
return nullptr;
return result;
}
absl::optional<bool> Value::FindBoolKey(StringPiece key) const {
const Value* result = FindKeyOfType(key, Type::BOOLEAN);
return result ? absl::make_optional(result->GetBool()) : absl::nullopt;
}
absl::optional<int> Value::FindIntKey(StringPiece key) const {
const Value* result = FindKeyOfType(key, Type::INTEGER);
return result ? absl::make_optional(result->GetInt()) : absl::nullopt;
}
absl::optional<double> Value::FindDoubleKey(StringPiece key) const {
if (const Value* cur = FindKey(key)) {
if (cur->is_int() || cur->is_double())
return cur->GetDouble();
}
return absl::nullopt;
}
const std::string* Value::FindStringKey(StringPiece key) const {
const Value* result = FindKey(key);
return result ? absl::get_if<std::string>(&result->data_) : nullptr;
}
std::string* Value::FindStringKey(StringPiece key) {
return const_cast<std::string*>(as_const(*this).FindStringKey(key));
}
const Value::BlobStorage* Value::FindBlobKey(StringPiece key) const {
const Value* result = FindKey(key);
return result ? absl::get_if<BlobStorage>(&result->data_) : nullptr;
}
const Value* Value::FindDictKey(StringPiece key) const {
return FindKeyOfType(key, Type::DICTIONARY);
}
Value* Value::FindDictKey(StringPiece key) {
return FindKeyOfType(key, Type::DICTIONARY);
}
const Value* Value::FindListKey(StringPiece key) const {
return FindKeyOfType(key, Type::LIST);
}
Value* Value::FindListKey(StringPiece key) {
return FindKeyOfType(key, Type::LIST);
}
Value* Value::SetKey(StringPiece key, Value&& value) {
return SetKeyInternal(key, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetKey(std::string&& key, Value&& value) {
return dict()
.insert_or_assign(std::move(key),
std::make_unique<Value>(std::move(value)))
.first->second.get();
}
Value* Value::SetKey(const char* key, Value&& value) {
return SetKeyInternal(key, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetBoolKey(StringPiece key, bool value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetIntKey(StringPiece key, int value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetDoubleKey(StringPiece key, double value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetStringKey(StringPiece key, StringPiece value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetStringKey(StringPiece key, StringPiece16 value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetStringKey(StringPiece key, const char* value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetStringKey(StringPiece key, std::string&& value) {
return SetKeyInternal(key, std::make_unique<Value>(std::move(value)));
}
bool Value::RemoveKey(StringPiece key) {
return dict().erase(key) != 0;
}
absl::optional<Value> Value::ExtractKey(StringPiece key) {
auto found = dict().find(key);
if (found == dict().end())
return absl::nullopt;
Value value = std::move(*found->second);
dict().erase(found);
return std::move(value);
}
Value* Value::FindPath(StringPiece path) {
return const_cast<Value*>(as_const(*this).FindPath(path));
}
const Value* Value::FindPath(StringPiece path) const {
CHECK(is_dict());
const Value* cur = this;
PathSplitter splitter(path);
while (splitter.HasNext()) {
if (!cur->is_dict() || (cur = cur->FindKey(splitter.Next())) == nullptr)
return nullptr;
}
return cur;
}
Value* Value::FindPathOfType(StringPiece path, Type type) {
return const_cast<Value*>(as_const(*this).FindPathOfType(path, type));
}
const Value* Value::FindPathOfType(StringPiece path, Type type) const {
const Value* cur = FindPath(path);
if (!cur || cur->type() != type)
return nullptr;
return cur;
}
absl::optional<bool> Value::FindBoolPath(StringPiece path) const {
const Value* cur = FindPath(path);
if (!cur || !cur->is_bool())
return absl::nullopt;
return cur->GetBool();
}
absl::optional<int> Value::FindIntPath(StringPiece path) const {
const Value* cur = FindPath(path);
if (!cur || !cur->is_int())
return absl::nullopt;
return cur->GetInt();
}
absl::optional<double> Value::FindDoublePath(StringPiece path) const {
if (const Value* cur = FindPath(path)) {
if (cur->is_int() || cur->is_double())
return cur->GetDouble();
}
return absl::nullopt;
}
const std::string* Value::FindStringPath(StringPiece path) const {
const Value* result = FindPath(path);
return result ? absl::get_if<std::string>(&result->data_) : nullptr;
}
std::string* Value::FindStringPath(StringPiece path) {
return const_cast<std::string*>(as_const(*this).FindStringPath(path));
}
const Value::BlobStorage* Value::FindBlobPath(StringPiece path) const {
const Value* result = FindPath(path);
return result ? absl::get_if<BlobStorage>(&result->data_) : nullptr;
}
const Value* Value::FindDictPath(StringPiece path) const {
return FindPathOfType(path, Type::DICTIONARY);
}
Value* Value::FindDictPath(StringPiece path) {
return FindPathOfType(path, Type::DICTIONARY);
}
const Value* Value::FindListPath(StringPiece path) const {
return FindPathOfType(path, Type::LIST);
}
Value* Value::FindListPath(StringPiece path) {
return FindPathOfType(path, Type::LIST);
}
Value* Value::SetPath(StringPiece path, Value&& value) {
return SetPathInternal(path, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetBoolPath(StringPiece path, bool value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetIntPath(StringPiece path, int value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetDoublePath(StringPiece path, double value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetStringPath(StringPiece path, StringPiece value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetStringPath(StringPiece path, std::string&& value) {
return SetPathInternal(path, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetStringPath(StringPiece path, const char* value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetStringPath(StringPiece path, StringPiece16 value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
bool Value::RemovePath(StringPiece path) {
return ExtractPath(path).has_value();
}
absl::optional<Value> Value::ExtractPath(StringPiece path) {
if (!is_dict() || path.empty())
return absl::nullopt;
// NOTE: PathSplitter is not being used here because recursion is used to
// ensure that dictionaries that become empty due to this operation are
// removed automatically.
size_t pos = path.find('.');
if (pos == path.npos)
return ExtractKey(path);
auto found = dict().find(path.substr(0, pos));
if (found == dict().end() || !found->second->is_dict())
return absl::nullopt;
absl::optional<Value> extracted =
found->second->ExtractPath(path.substr(pos + 1));
if (extracted && found->second->dict().empty())
dict().erase(found);
return extracted;
}
// DEPRECATED METHODS
Value* Value::FindPath(std::initializer_list<StringPiece> path) {
return const_cast<Value*>(as_const(*this).FindPath(path));
}
Value* Value::FindPath(span<const StringPiece> path) {
return const_cast<Value*>(as_const(*this).FindPath(path));
}
const Value* Value::FindPath(std::initializer_list<StringPiece> path) const {
DCHECK_GE(path.size(), 2u) << "Use FindKey() for a path of length 1.";
return FindPath(make_span(path.begin(), path.size()));
}
const Value* Value::FindPath(span<const StringPiece> path) const {
const Value* cur = this;
for (const StringPiece component : path) {
if (!cur->is_dict() || (cur = cur->FindKey(component)) == nullptr)
return nullptr;
}
return cur;
}
Value* Value::FindPathOfType(std::initializer_list<StringPiece> path,
Type type) {
return const_cast<Value*>(as_const(*this).FindPathOfType(path, type));
}
Value* Value::FindPathOfType(span<const StringPiece> path, Type type) {
return const_cast<Value*>(as_const(*this).FindPathOfType(path, type));
}
const Value* Value::FindPathOfType(std::initializer_list<StringPiece> path,
Type type) const {
DCHECK_GE(path.size(), 2u) << "Use FindKeyOfType() for a path of length 1.";
return FindPathOfType(make_span(path.begin(), path.size()), type);
}
const Value* Value::FindPathOfType(span<const StringPiece> path,
Type type) const {
const Value* result = FindPath(path);
if (!result || result->type() != type)
return nullptr;
return result;
}
Value* Value::SetPath(std::initializer_list<StringPiece> path, Value&& value) {
DCHECK_GE(path.size(), 2u) << "Use SetKey() for a path of length 1.";
return SetPath(make_span(path.begin(), path.size()), std::move(value));
}
Value* Value::SetPath(span<const StringPiece> path, Value&& value) {
DCHECK(path.begin() != path.end()); // Can't be empty path.
// Walk/construct intermediate dictionaries. The last element requires
// special handling so skip it in this loop.
Value* cur = this;
auto cur_path = path.begin();
for (; (cur_path + 1) < path.end(); ++cur_path) {
if (!cur->is_dict())
return nullptr;
// Use lower_bound to avoid doing the search twice for missing keys.
const StringPiece path_component = *cur_path;
auto found = cur->dict().lower_bound(path_component);
if (found == cur->dict().end() || found->first != path_component) {
// No key found, insert one.
auto inserted = cur->dict().try_emplace(
found, path_component, std::make_unique<Value>(Type::DICTIONARY));
cur = inserted->second.get();
} else {
cur = found->second.get();
}
}
// "cur" will now contain the last dictionary to insert or replace into.
if (!cur->is_dict())
return nullptr;
return cur->SetKey(*cur_path, std::move(value));
}
Value::dict_iterator_proxy Value::DictItems() {
return dict_iterator_proxy(&dict());
}
Value::const_dict_iterator_proxy Value::DictItems() const {
return const_dict_iterator_proxy(&dict());
}
Value::DictStorage Value::TakeDict() {
DictStorage storage;
storage.reserve(dict().size());
for (auto& pair : dict()) {
storage.try_emplace(storage.end(), std::move(pair.first),
std::move(*pair.second));
}
dict().clear();
return storage;
}
size_t Value::DictSize() const {
return dict().size();
}
bool Value::DictEmpty() const {
return dict().empty();
}
void Value::DictClear() {
dict().clear();
}
void Value::MergeDictionary(const Value* dictionary) {
for (const auto& pair : dictionary->dict()) {
const auto& key = pair.first;
const auto& val = pair.second;
// Check whether we have to merge dictionaries.
if (val->is_dict()) {
auto found = dict().find(key);
if (found != dict().end() && found->second->is_dict()) {
found->second->MergeDictionary(val.get());
continue;
}
}
// All other cases: Make a copy and hook it up.
SetKey(key, val->Clone());
}
}
bool Value::GetAsBoolean(bool* out_value) const {
if (out_value && is_bool()) {
*out_value = GetBool();
return true;
}
return is_bool();
}
bool Value::GetAsInteger(int* out_value) const {
if (out_value && is_int()) {
*out_value = GetInt();
return true;
}
return is_int();
}
bool Value::GetAsDouble(double* out_value) const {
if (out_value && (is_double() || is_int())) {
*out_value = GetDouble();
return true;
}
return is_double() || is_int();
}
bool Value::GetAsString(std::string* out_value) const {
if (out_value && is_string()) {
*out_value = GetString();
return true;
}
return is_string();
}
bool Value::GetAsString(std::u16string* out_value) const {
if (out_value && is_string()) {
*out_value = UTF8ToUTF16(GetString());
return true;
}
return is_string();
}
bool Value::GetAsString(const Value** out_value) const {
if (out_value && is_string()) {
*out_value = this;
return true;
}
return is_string();
}
bool Value::GetAsString(StringPiece* out_value) const {
if (out_value && is_string()) {
*out_value = GetString();
return true;
}
return is_string();
}
bool Value::GetAsList(ListValue** out_value) {
if (out_value && is_list()) {
*out_value = static_cast<ListValue*>(this);
return true;
}
return is_list();
}
bool Value::GetAsList(const ListValue** out_value) const {
if (out_value && is_list()) {
*out_value = static_cast<const ListValue*>(this);
return true;
}
return is_list();
}
bool Value::GetAsDictionary(DictionaryValue** out_value) {
if (out_value && is_dict()) {
*out_value = static_cast<DictionaryValue*>(this);
return true;
}
return is_dict();
}
bool Value::GetAsDictionary(const DictionaryValue** out_value) const {
if (out_value && is_dict()) {
*out_value = static_cast<const DictionaryValue*>(this);
return true;
}
return is_dict();
}
Value* Value::DeepCopy() const {
return new Value(Clone());
}
std::unique_ptr<Value> Value::CreateDeepCopy() const {
return std::make_unique<Value>(Clone());
}
bool operator==(const Value& lhs, const Value& rhs) {
if (lhs.type() != rhs.type())
return false;
switch (lhs.type()) {
case Value::Type::NONE:
return true;
case Value::Type::BOOLEAN:
return lhs.GetBool() == rhs.GetBool();
case Value::Type::INTEGER:
return lhs.GetInt() == rhs.GetInt();
case Value::Type::DOUBLE:
return lhs.AsDoubleInternal() == rhs.AsDoubleInternal();
case Value::Type::STRING:
return lhs.GetString() == rhs.GetString();
case Value::Type::BINARY:
return lhs.GetBlob() == rhs.GetBlob();
// TODO(crbug.com/646113): Clean this up when DictionaryValue and ListValue
// are completely inlined.
case Value::Type::DICTIONARY:
if (lhs.dict().size() != rhs.dict().size())
return false;
return std::equal(
std::begin(lhs.dict()), std::end(lhs.dict()), std::begin(rhs.dict()),
[](const auto& u, const auto& v) {
return std::tie(u.first, *u.second) == std::tie(v.first, *v.second);
});
case Value::Type::LIST:
return lhs.list() == rhs.list();
}
NOTREACHED();
return false;
}
bool operator!=(const Value& lhs, const Value& rhs) {
return !(lhs == rhs);
}
bool operator<(const Value& lhs, const Value& rhs) {
if (lhs.type() != rhs.type())
return lhs.type() < rhs.type();
switch (lhs.type()) {
case Value::Type::NONE:
return false;
case Value::Type::BOOLEAN:
return lhs.GetBool() < rhs.GetBool();
case Value::Type::INTEGER:
return lhs.GetInt() < rhs.GetInt();
case Value::Type::DOUBLE:
return lhs.AsDoubleInternal() < rhs.AsDoubleInternal();
case Value::Type::STRING:
return lhs.GetString() < rhs.GetString();
case Value::Type::BINARY:
return lhs.GetBlob() < rhs.GetBlob();
// TODO(crbug.com/646113): Clean this up when DictionaryValue and ListValue
// are completely inlined.
case Value::Type::DICTIONARY:
return std::lexicographical_compare(
std::begin(lhs.dict()), std::end(lhs.dict()), std::begin(rhs.dict()),
std::end(rhs.dict()),
[](const Value::LegacyDictStorage::value_type& u,
const Value::LegacyDictStorage::value_type& v) {
return std::tie(u.first, *u.second) < std::tie(v.first, *v.second);
});
case Value::Type::LIST:
return lhs.list() < rhs.list();
}
NOTREACHED();
return false;
}
bool operator>(const Value& lhs, const Value& rhs) {
return rhs < lhs;
}
bool operator<=(const Value& lhs, const Value& rhs) {
return !(rhs < lhs);
}
bool operator>=(const Value& lhs, const Value& rhs) {
return !(lhs < rhs);
}
bool Value::Equals(const Value* other) const {
DCHECK(other);
return *this == *other;
}
size_t Value::EstimateMemoryUsage() const {
switch (type()) {
#if BUILDFLAG(ENABLE_BASE_TRACING)
case Type::STRING:
return base::trace_event::EstimateMemoryUsage(GetString());
case Type::BINARY:
return base::trace_event::EstimateMemoryUsage(GetBlob());
case Type::DICTIONARY:
return base::trace_event::EstimateMemoryUsage(dict());
case Type::LIST:
return base::trace_event::EstimateMemoryUsage(list());
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
default:
return 0;
}
}
std::string Value::DebugString() const {
std::string json;
JSONWriter::WriteWithOptions(*this, JSONWriter::OPTIONS_PRETTY_PRINT, &json);
return json;
}
#if BUILDFLAG(ENABLE_BASE_TRACING)
void Value::WriteIntoTrace(perfetto::TracedValue context) const {
switch (type()) {
case Type::BOOLEAN:
std::move(context).WriteBoolean(GetBool());
return;
case Type::INTEGER:
std::move(context).WriteInt64(GetInt());
return;
case Type::DOUBLE:
std::move(context).WriteDouble(GetDouble());
return;
case Type::STRING:
std::move(context).WriteString(GetString());
return;
case Type::BINARY:
std::move(context).WriteString("<binary data not supported>");
return;
case Type::DICTIONARY: {
perfetto::TracedDictionary dict = std::move(context).WriteDictionary();
for (const auto& kv : DictItems())
dict.Add(perfetto::DynamicString{kv.first}, kv.second);
return;
}
case Type::LIST: {
perfetto::TracedArray array = std::move(context).WriteArray();
for (const auto& item : GetList())
array.Append(item);
return;
}
case Type::NONE:
std::move(context).WriteString("<none>");
return;
}
}
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
Value* Value::SetKeyInternal(StringPiece key,
std::unique_ptr<Value>&& val_ptr) {
CHECK(is_dict());
// NOTE: We can't use |insert_or_assign| here, as only |try_emplace| does
// an explicit conversion from StringPiece to std::string if necessary.
auto result = dict().try_emplace(key, std::move(val_ptr));
if (!result.second) {
// val_ptr is guaranteed to be still intact at this point.
result.first->second = std::move(val_ptr);
}
return result.first->second.get();
}
Value* Value::SetPathInternal(StringPiece path,
std::unique_ptr<Value>&& value_ptr) {
PathSplitter splitter(path);
DCHECK(splitter.HasNext()) << "Cannot call SetPath() with empty path";
// Walk/construct intermediate dictionaries. The last element requires
// special handling so skip it in this loop.
Value* cur = this;
StringPiece path_component = splitter.Next();
while (splitter.HasNext()) {
if (!cur->is_dict())
return nullptr;
// Use lower_bound to avoid doing the search twice for missing keys.
auto found = cur->dict().lower_bound(path_component);
if (found == cur->dict().end() || found->first != path_component) {
// No key found, insert one.
auto inserted = cur->dict().try_emplace(
found, path_component, std::make_unique<Value>(Type::DICTIONARY));
cur = inserted->second.get();
} else {
cur = found->second.get();
}
path_component = splitter.Next();
}
// "cur" will now contain the last dictionary to insert or replace into.
if (!cur->is_dict())
return nullptr;
return cur->SetKeyInternal(path_component, std::move(value_ptr));
}
///////////////////// DictionaryValue ////////////////////
// static
std::unique_ptr<DictionaryValue> DictionaryValue::From(
std::unique_ptr<Value> value) {
DictionaryValue* out;
if (value && value->GetAsDictionary(&out)) {
ignore_result(value.release());
return WrapUnique(out);
}
return nullptr;
}
DictionaryValue::DictionaryValue() : Value(Type::DICTIONARY) {}
DictionaryValue::DictionaryValue(const LegacyDictStorage& storage)
: Value(storage) {}
DictionaryValue::DictionaryValue(LegacyDictStorage&& storage) noexcept
: Value(std::move(storage)) {}
bool DictionaryValue::HasKey(StringPiece key) const {
DCHECK(IsStringUTF8AllowingNoncharacters(key));
auto current_entry = dict().find(key);
DCHECK((current_entry == dict().end()) || current_entry->second);
return current_entry != dict().end();
}
void DictionaryValue::Clear() {
DictClear();
}
Value* DictionaryValue::Set(StringPiece path, std::unique_ptr<Value> in_value) {
DCHECK(IsStringUTF8AllowingNoncharacters(path));
DCHECK(in_value);
// IMPORTANT NOTE: Do not replace with SetPathInternal() yet, because the
// latter fails when over-writing a non-dict intermediate node, while this
// method just replaces it with one. This difference makes some tests actually
// fail (http://crbug.com/949461).
StringPiece current_path(path);
Value* current_dictionary = this;
for (size_t delimiter_position = current_path.find('.');
delimiter_position != StringPiece::npos;
delimiter_position = current_path.find('.')) {
// Assume that we're indexing into a dictionary.
StringPiece key = current_path.substr(0, delimiter_position);
Value* child_dictionary =
current_dictionary->FindKeyOfType(key, Type::DICTIONARY);
if (!child_dictionary) {
child_dictionary =
current_dictionary->SetKey(key, Value(Type::DICTIONARY));
}
current_dictionary = child_dictionary;
current_path = current_path.substr(delimiter_position + 1);
}
return static_cast<DictionaryValue*>(current_dictionary)
->SetWithoutPathExpansion(current_path, std::move(in_value));
}
Value* DictionaryValue::SetBoolean(StringPiece path, bool in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetInteger(StringPiece path, int in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetDouble(StringPiece path, double in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetString(StringPiece path, StringPiece in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetString(StringPiece path,
const std::u16string& in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
DictionaryValue* DictionaryValue::SetDictionary(
StringPiece path,
std::unique_ptr<DictionaryValue> in_value) {
return static_cast<DictionaryValue*>(Set(path, std::move(in_value)));
}
ListValue* DictionaryValue::SetList(StringPiece path,
std::unique_ptr<ListValue> in_value) {
return static_cast<ListValue*>(Set(path, std::move(in_value)));
}
Value* DictionaryValue::SetWithoutPathExpansion(
StringPiece key,
std::unique_ptr<Value> in_value) {
// NOTE: We can't use |insert_or_assign| here, as only |try_emplace| does
// an explicit conversion from StringPiece to std::string if necessary.
auto result = dict().try_emplace(key, std::move(in_value));
if (!result.second) {
// in_value is guaranteed to be still intact at this point.
result.first->second = std::move(in_value);
}
return result.first->second.get();
}
bool DictionaryValue::Get(StringPiece path, const Value** out_value) const {
DCHECK(IsStringUTF8AllowingNoncharacters(path));
const Value* value = FindPath(path);
if (!value)
return false;
if (out_value)
*out_value = value;
return true;
}
bool DictionaryValue::Get(StringPiece path, Value** out_value) {
return as_const(*this).Get(path, const_cast<const Value**>(out_value));
}
bool DictionaryValue::GetBoolean(StringPiece path, bool* bool_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsBoolean(bool_value);
}
bool DictionaryValue::GetInteger(StringPiece path, int* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsInteger(out_value);
}
bool DictionaryValue::GetDouble(StringPiece path, double* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsDouble(out_value);
}
bool DictionaryValue::GetString(StringPiece path,
std::string* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetString(StringPiece path,
std::u16string* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetStringASCII(StringPiece path,
std::string* out_value) const {
std::string out;
if (!GetString(path, &out))
return false;
if (!IsStringASCII(out)) {
NOTREACHED();
return false;
}
out_value->assign(out);
return true;
}
bool DictionaryValue::GetBinary(StringPiece path,
const Value** out_value) const {
const Value* value;
bool result = Get(path, &value);
if (!result || !value->is_blob())
return false;
if (out_value)
*out_value = value;
return true;
}
bool DictionaryValue::GetBinary(StringPiece path, Value** out_value) {
return as_const(*this).GetBinary(path, const_cast<const Value**>(out_value));
}
bool DictionaryValue::GetDictionary(StringPiece path,
const DictionaryValue** out_value) const {
const Value* value;
bool result = Get(path, &value);
if (!result || !value->is_dict())
return false;
if (out_value)
*out_value = static_cast<const DictionaryValue*>(value);
return true;
}
bool DictionaryValue::GetDictionary(StringPiece path,
DictionaryValue** out_value) {
return as_const(*this).GetDictionary(
path, const_cast<const DictionaryValue**>(out_value));
}
bool DictionaryValue::GetList(StringPiece path,
const ListValue** out_value) const {
const Value* value;
bool result = Get(path, &value);
if (!result || !value->is_list())
return false;
if (out_value)
*out_value = static_cast<const ListValue*>(value);
return true;
}
bool DictionaryValue::GetList(StringPiece path, ListValue** out_value) {
return as_const(*this).GetList(path,
const_cast<const ListValue**>(out_value));
}
bool DictionaryValue::GetDoubleWithoutPathExpansion(StringPiece key,
double* out_value) const {
const Value* value = FindKey(key);
if (!value)
return false;
return value->GetAsDouble(out_value);
}
bool DictionaryValue::GetStringWithoutPathExpansion(
StringPiece key,
std::string* out_value) const {
const Value* value = FindKey(key);
if (!value)
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetStringWithoutPathExpansion(
StringPiece key,
std::u16string* out_value) const {
const Value* value = FindKey(key);
if (!value)
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetDictionaryWithoutPathExpansion(
StringPiece key,
const DictionaryValue** out_value) const {
const Value* value = FindKey(key);
if (!value || !value->is_dict())
return false;
if (out_value)
*out_value = static_cast<const DictionaryValue*>(value);
return true;
}
bool DictionaryValue::GetDictionaryWithoutPathExpansion(
StringPiece key,
DictionaryValue** out_value) {
return as_const(*this).GetDictionaryWithoutPathExpansion(
key, const_cast<const DictionaryValue**>(out_value));
}
bool DictionaryValue::GetListWithoutPathExpansion(
StringPiece key,
const ListValue** out_value) const {
const Value* value = FindKey(key);
if (!value || !value->is_list())
return false;
if (out_value)
*out_value = static_cast<const ListValue*>(value);
return true;
}
bool DictionaryValue::GetListWithoutPathExpansion(StringPiece key,
ListValue** out_value) {
return as_const(*this).GetListWithoutPathExpansion(
key, const_cast<const ListValue**>(out_value));
}
bool DictionaryValue::Remove(StringPiece path,
std::unique_ptr<Value>* out_value) {
DCHECK(IsStringUTF8AllowingNoncharacters(path));
StringPiece current_path(path);
DictionaryValue* current_dictionary = this;
size_t delimiter_position = current_path.rfind('.');
if (delimiter_position != StringPiece::npos) {
if (!GetDictionary(current_path.substr(0, delimiter_position),
&current_dictionary))
return false;
current_path = current_path.substr(delimiter_position + 1);
}
return current_dictionary->RemoveWithoutPathExpansion(current_path,
out_value);
}
bool DictionaryValue::RemoveWithoutPathExpansion(
StringPiece key,
std::unique_ptr<Value>* out_value) {
DCHECK(IsStringUTF8AllowingNoncharacters(key));
auto entry_iterator = dict().find(key);
if (entry_iterator == dict().end())
return false;
if (out_value)
*out_value = std::move(entry_iterator->second);
dict().erase(entry_iterator);
return true;
}
bool DictionaryValue::RemovePath(StringPiece path,
std::unique_ptr<Value>* out_value) {
bool result = false;
size_t delimiter_position = path.find('.');
if (delimiter_position == std::string::npos)
return RemoveWithoutPathExpansion(path, out_value);
StringPiece subdict_path = path.substr(0, delimiter_position);
DictionaryValue* subdict = nullptr;
if (!GetDictionary(subdict_path, &subdict))
return false;
result = subdict->RemovePath(path.substr(delimiter_position + 1), out_value);
if (result && subdict->DictEmpty())
RemoveKey(subdict_path);
return result;
}
std::unique_ptr<DictionaryValue> DictionaryValue::DeepCopyWithoutEmptyChildren()
const {
std::unique_ptr<DictionaryValue> copy =
CopyDictionaryWithoutEmptyChildren(*this);
if (!copy)
copy = std::make_unique<DictionaryValue>();
return copy;
}
void DictionaryValue::Swap(DictionaryValue* other) {
CHECK(other->is_dict());
dict().swap(other->dict());
}
DictionaryValue::Iterator::Iterator(const DictionaryValue& target)
: target_(target), it_(target.DictItems().begin()) {}
DictionaryValue::Iterator::Iterator(const Iterator& other) = default;
DictionaryValue::Iterator::~Iterator() = default;
DictionaryValue* DictionaryValue::DeepCopy() const {
return new DictionaryValue(dict());
}
std::unique_ptr<DictionaryValue> DictionaryValue::CreateDeepCopy() const {
return std::make_unique<DictionaryValue>(dict());
}
///////////////////// ListValue ////////////////////
// static
std::unique_ptr<ListValue> ListValue::From(std::unique_ptr<Value> value) {
ListValue* out;
if (value && value->GetAsList(&out)) {
ignore_result(value.release());
return WrapUnique(out);
}
return nullptr;
}
ListValue::ListValue() : Value(Type::LIST) {}
ListValue::ListValue(span<const Value> in_list) : Value(in_list) {}
ListValue::ListValue(ListStorage&& in_list) noexcept
: Value(std::move(in_list)) {}
void ListValue::Clear() {
list().clear();
}
bool ListValue::Set(size_t index, std::unique_ptr<Value> in_value) {
if (!in_value)
return false;
if (index >= list().size())
list().resize(index + 1);
list()[index] = std::move(*in_value);
return true;
}
bool ListValue::Get(size_t index, const Value** out_value) const {
if (index >= list().size())
return false;
if (out_value)
*out_value = &list()[index];
return true;
}
bool ListValue::Get(size_t index, Value** out_value) {
return as_const(*this).Get(index, const_cast<const Value**>(out_value));
}
bool ListValue::GetBoolean(size_t index, bool* bool_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsBoolean(bool_value);
}
bool ListValue::GetInteger(size_t index, int* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsInteger(out_value);
}
bool ListValue::GetDouble(size_t index, double* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsDouble(out_value);
}
bool ListValue::GetString(size_t index, std::string* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsString(out_value);
}
bool ListValue::GetString(size_t index, std::u16string* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsString(out_value);
}
bool ListValue::GetDictionary(size_t index,
const DictionaryValue** out_value) const {
const Value* value;
bool result = Get(index, &value);
if (!result || !value->is_dict())
return false;
if (out_value)
*out_value = static_cast<const DictionaryValue*>(value);
return true;
}
bool ListValue::GetDictionary(size_t index, DictionaryValue** out_value) {
return as_const(*this).GetDictionary(
index, const_cast<const DictionaryValue**>(out_value));
}
bool ListValue::GetList(size_t index, const ListValue** out_value) const {
const Value* value;
bool result = Get(index, &value);
if (!result || !value->is_list())
return false;
if (out_value)
*out_value = static_cast<const ListValue*>(value);
return true;
}
bool ListValue::GetList(size_t index, ListValue** out_value) {
return as_const(*this).GetList(index,
const_cast<const ListValue**>(out_value));
}
bool ListValue::Remove(size_t index, std::unique_ptr<Value>* out_value) {
if (index >= list().size())
return false;
if (out_value)
*out_value = std::make_unique<Value>(std::move(list()[index]));
list().erase(list().begin() + index);
return true;
}
bool ListValue::Remove(const Value& value, size_t* index) {
auto it = ranges::find(list(), value);
if (it == list().end())
return false;
if (index)
*index = std::distance(list().begin(), it);
list().erase(it);
return true;
}
void ListValue::Append(std::unique_ptr<Value> in_value) {
list().push_back(std::move(*in_value));
}
void ListValue::AppendBoolean(bool in_value) {
list().emplace_back(in_value);
}
void ListValue::AppendInteger(int in_value) {
list().emplace_back(in_value);
}
void ListValue::AppendString(StringPiece in_value) {
list().emplace_back(in_value);
}
void ListValue::AppendString(const std::u16string& in_value) {
list().emplace_back(in_value);
}
bool ListValue::Insert(size_t index, std::unique_ptr<Value> in_value) {
DCHECK(in_value);
if (index > list().size())
return false;
list().insert(list().begin() + index, std::move(*in_value));
return true;
}
void ListValue::Swap(ListValue* other) {
CHECK(other->is_list());
list().swap(other->list());
}
ListValue* ListValue::DeepCopy() const {
return new ListValue(list());
}
std::unique_ptr<ListValue> ListValue::CreateDeepCopy() const {
return std::make_unique<ListValue>(list());
}
ValueSerializer::~ValueSerializer() = default;
ValueDeserializer::~ValueDeserializer() = default;
std::ostream& operator<<(std::ostream& out, const Value& value) {
return out << value.DebugString();
}
std::ostream& operator<<(std::ostream& out, const Value::Type& type) {
if (static_cast<int>(type) < 0 ||
static_cast<size_t>(type) >= base::size(kTypeNames))
return out << "Invalid Type (index = " << static_cast<int>(type) << ")";
return out << Value::GetTypeName(type);
}
} // namespace base