blob: 747dd94c503951e0916583949b87ec1635c7e929 [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/tiles/picture_layer_tiling.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <set>
#include "base/containers/hash_tables.h"
#include "base/containers/small_map.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_event_argument.h"
#include "cc/base/math_util.h"
#include "cc/playback/display_list_raster_source.h"
#include "cc/tiles/prioritized_tile.h"
#include "cc/tiles/tile.h"
#include "cc/tiles/tile_priority.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/safe_integer_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
namespace cc {
namespace {
const float kSoonBorderDistanceViewportPercentage = 0.15f;
const float kMaxSoonBorderDistanceInScreenPixels = 312.f;
} // namespace
scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
WhichTree tree,
float contents_scale,
scoped_refptr<DisplayListRasterSource> raster_source,
PictureLayerTilingClient* client,
size_t tiling_interest_area_padding,
float skewport_target_time_in_seconds,
int skewport_extrapolation_limit_in_content_pixels) {
return make_scoped_ptr(new PictureLayerTiling(
tree, contents_scale, raster_source, client, tiling_interest_area_padding,
skewport_target_time_in_seconds,
skewport_extrapolation_limit_in_content_pixels));
}
PictureLayerTiling::PictureLayerTiling(
WhichTree tree,
float contents_scale,
scoped_refptr<DisplayListRasterSource> raster_source,
PictureLayerTilingClient* client,
size_t tiling_interest_area_padding,
float skewport_target_time_in_seconds,
int skewport_extrapolation_limit_in_content_pixels)
: tiling_interest_area_padding_(tiling_interest_area_padding),
skewport_target_time_in_seconds_(skewport_target_time_in_seconds),
skewport_extrapolation_limit_in_content_pixels_(
skewport_extrapolation_limit_in_content_pixels),
contents_scale_(contents_scale),
client_(client),
tree_(tree),
raster_source_(raster_source),
resolution_(NON_IDEAL_RESOLUTION),
may_contain_low_resolution_tiles_(false),
tiling_data_(gfx::Size(), gfx::Size(), kBorderTexels),
can_require_tiles_for_activation_(false),
current_content_to_screen_scale_(0.f),
has_visible_rect_tiles_(false),
has_skewport_rect_tiles_(false),
has_soon_border_rect_tiles_(false),
has_eventually_rect_tiles_(false),
all_tiles_done_(true) {
DCHECK(!raster_source->IsSolidColor());
gfx::Size content_bounds =
gfx::ScaleToCeiledSize(raster_source_->GetSize(), contents_scale);
gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
DCHECK(!gfx::ScaleToFlooredSize(raster_source_->GetSize(), contents_scale)
.IsEmpty())
<< "Tiling created with scale too small as contents become empty."
<< " Layer bounds: " << raster_source_->GetSize().ToString()
<< " Contents scale: " << contents_scale;
tiling_data_.SetTilingSize(content_bounds);
tiling_data_.SetMaxTextureSize(tile_size);
}
PictureLayerTiling::~PictureLayerTiling() {
}
// static
float PictureLayerTiling::CalculateSoonBorderDistance(
const gfx::Rect& visible_rect_in_content_space,
float content_to_screen_scale) {
float max_dimension = std::max(visible_rect_in_content_space.width(),
visible_rect_in_content_space.height());
return std::min(
kMaxSoonBorderDistanceInScreenPixels / content_to_screen_scale,
max_dimension * kSoonBorderDistanceViewportPercentage);
}
Tile* PictureLayerTiling::CreateTile(const Tile::CreateInfo& info) {
const int i = info.tiling_i_index;
const int j = info.tiling_j_index;
TileMapKey key(i, j);
DCHECK(tiles_.find(key) == tiles_.end());
if (!raster_source_->CoversRect(info.enclosing_layer_rect))
return nullptr;
all_tiles_done_ = false;
ScopedTilePtr tile = client_->CreateTile(info);
Tile* raw_ptr = tile.get();
tiles_.add(key, std::move(tile));
return raw_ptr;
}
void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() {
const PictureLayerTiling* active_twin =
tree_ == PENDING_TREE ? client_->GetPendingOrActiveTwinTiling(this)
: nullptr;
const Region* invalidation =
active_twin ? client_->GetPendingInvalidation() : nullptr;
bool include_borders = false;
for (TilingData::Iterator iter(&tiling_data_, live_tiles_rect_,
include_borders);
iter; ++iter) {
TileMapKey key(iter.index());
TileMap::iterator find = tiles_.find(key);
if (find != tiles_.end())
continue;
Tile::CreateInfo info = CreateInfoForTile(key.index_x, key.index_y);
if (ShouldCreateTileAt(info)) {
Tile* tile = CreateTile(info);
// If this is the pending tree, then the active twin tiling may contain
// the previous content ID of these tiles. In that case, we need only
// partially raster the tile content.
if (tile && invalidation && TilingMatchesTileIndices(active_twin)) {
if (const Tile* old_tile =
active_twin->TileAt(key.index_x, key.index_y)) {
gfx::Rect tile_rect = tile->content_rect();
gfx::Rect invalidated;
for (Region::Iterator iter(*invalidation); iter.has_rect();
iter.next()) {
gfx::Rect invalid_content_rect =
gfx::ScaleToEnclosingRect(iter.rect(), contents_scale_);
invalid_content_rect.Intersect(tile_rect);
invalidated.Union(invalid_content_rect);
}
tile->SetInvalidated(invalidated, old_tile->id());
}
}
}
}
VerifyLiveTilesRect(false);
}
void PictureLayerTiling::TakeTilesAndPropertiesFrom(
PictureLayerTiling* pending_twin,
const Region& layer_invalidation) {
TRACE_EVENT0("cc", "TakeTilesAndPropertiesFrom");
SetRasterSourceAndResize(pending_twin->raster_source_);
RemoveTilesInRegion(layer_invalidation, false /* recreate tiles */);
resolution_ = pending_twin->resolution_;
bool create_missing_tiles = false;
if (live_tiles_rect_.IsEmpty()) {
live_tiles_rect_ = pending_twin->live_tiles_rect();
create_missing_tiles = true;
} else {
SetLiveTilesRect(pending_twin->live_tiles_rect());
}
if (tiles_.empty()) {
tiles_.swap(pending_twin->tiles_);
all_tiles_done_ = pending_twin->all_tiles_done_;
} else {
while (!pending_twin->tiles_.empty()) {
TileMapKey key = pending_twin->tiles_.begin()->first;
tiles_.set(key, pending_twin->tiles_.take_and_erase(key));
}
all_tiles_done_ &= pending_twin->all_tiles_done_;
}
DCHECK(pending_twin->tiles_.empty());
pending_twin->all_tiles_done_ = true;
if (create_missing_tiles)
CreateMissingTilesInLiveTilesRect();
VerifyLiveTilesRect(false);
SetTilePriorityRects(pending_twin->current_content_to_screen_scale_,
pending_twin->current_visible_rect_,
pending_twin->current_skewport_rect_,
pending_twin->current_soon_border_rect_,
pending_twin->current_eventually_rect_,
pending_twin->current_occlusion_in_layer_space_);
}
void PictureLayerTiling::SetRasterSourceAndResize(
scoped_refptr<DisplayListRasterSource> raster_source) {
DCHECK(!raster_source->IsSolidColor());
gfx::Size old_layer_bounds = raster_source_->GetSize();
raster_source_.swap(raster_source);
gfx::Size new_layer_bounds = raster_source_->GetSize();
gfx::Size content_bounds =
gfx::ScaleToCeiledSize(new_layer_bounds, contents_scale_);
gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
if (tile_size != tiling_data_.max_texture_size()) {
tiling_data_.SetTilingSize(content_bounds);
tiling_data_.SetMaxTextureSize(tile_size);
// When the tile size changes, the TilingData positions no longer work
// as valid keys to the TileMap, so just drop all tiles and clear the live
// tiles rect.
Reset();
return;
}
if (old_layer_bounds == new_layer_bounds)
return;
// The SetLiveTilesRect() method would drop tiles outside the new bounds,
// but may do so incorrectly if resizing the tiling causes the number of
// tiles in the tiling_data_ to change.
gfx::Rect content_rect(content_bounds);
int before_left = tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.x());
int before_top = tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.y());
int before_right =
tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1);
int before_bottom =
tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1);
// The live_tiles_rect_ is clamped to stay within the tiling size as we
// change it.
live_tiles_rect_.Intersect(content_rect);
tiling_data_.SetTilingSize(content_bounds);
int after_right = -1;
int after_bottom = -1;
if (!live_tiles_rect_.IsEmpty()) {
after_right =
tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1);
after_bottom =
tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1);
}
// There is no recycled twin since this is run on the pending tiling
// during commit, and on the active tree during activate.
// Drop tiles outside the new layer bounds if the layer shrank.
for (int i = after_right + 1; i <= before_right; ++i) {
for (int j = before_top; j <= before_bottom; ++j)
RemoveTileAt(i, j);
}
for (int i = before_left; i <= after_right; ++i) {
for (int j = after_bottom + 1; j <= before_bottom; ++j)
RemoveTileAt(i, j);
}
if (after_right > before_right) {
DCHECK_EQ(after_right, before_right + 1);
for (int j = before_top; j <= after_bottom; ++j) {
Tile::CreateInfo info = CreateInfoForTile(after_right, j);
if (ShouldCreateTileAt(info))
CreateTile(info);
}
}
if (after_bottom > before_bottom) {
DCHECK_EQ(after_bottom, before_bottom + 1);
for (int i = before_left; i <= before_right; ++i) {
Tile::CreateInfo info = CreateInfoForTile(i, after_bottom);
if (ShouldCreateTileAt(info))
CreateTile(info);
}
}
}
void PictureLayerTiling::Invalidate(const Region& layer_invalidation) {
DCHECK(tree_ != ACTIVE_TREE || !client_->GetPendingOrActiveTwinTiling(this));
RemoveTilesInRegion(layer_invalidation, true /* recreate tiles */);
}
void PictureLayerTiling::RemoveTilesInRegion(const Region& layer_invalidation,
bool recreate_tiles) {
// We only invalidate the active tiling when it's orphaned: it has no pending
// twin, so it's slated for removal in the future.
if (live_tiles_rect_.IsEmpty())
return;
// Pick 16 for the size of the SmallMap before it promotes to a hash_map.
// 4x4 tiles should cover most small invalidations, and walking a vector of
// 16 is fast enough. If an invalidation is huge we will fall back to a
// hash_map instead of a vector in the SmallMap.
base::SmallMap<base::hash_map<TileMapKey, gfx::Rect>, 16> remove_tiles;
gfx::Rect expanded_live_tiles_rect =
tiling_data_.ExpandRectToTileBounds(live_tiles_rect_);
for (Region::Iterator iter(layer_invalidation); iter.has_rect();
iter.next()) {
gfx::Rect layer_rect = iter.rect();
// The pixels which are invalid in content space.
gfx::Rect invalid_content_rect =
gfx::ScaleToEnclosingRect(layer_rect, contents_scale_);
gfx::Rect coverage_content_rect = invalid_content_rect;
// Avoid needless work by not bothering to invalidate where there aren't
// tiles.
coverage_content_rect.Intersect(expanded_live_tiles_rect);
if (coverage_content_rect.IsEmpty())
continue;
// Since the content_rect needs to invalidate things that only touch a
// border of a tile, we need to include the borders while iterating.
bool include_borders = true;
for (TilingData::Iterator iter(&tiling_data_, coverage_content_rect,
include_borders);
iter; ++iter) {
// This also adds the TileMapKey to the map.
remove_tiles[TileMapKey(iter.index())].Union(invalid_content_rect);
}
}
for (const auto& pair : remove_tiles) {
const TileMapKey& key = pair.first;
const gfx::Rect& invalid_content_rect = pair.second;
// TODO(danakj): This old_tile will not exist if we are committing to a
// pending tree since there is no tile there to remove, which prevents
// tiles from knowing the invalidation rect and content id. crbug.com/490847
ScopedTilePtr old_tile = TakeTileAt(key.index_x, key.index_y);
if (recreate_tiles && old_tile) {
Tile::CreateInfo info = CreateInfoForTile(key.index_x, key.index_y);
if (Tile* tile = CreateTile(info))
tile->SetInvalidated(invalid_content_rect, old_tile->id());
}
}
}
Tile::CreateInfo PictureLayerTiling::CreateInfoForTile(int i, int j) const {
gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j);
tile_rect.set_size(tiling_data_.max_texture_size());
gfx::Rect enclosing_layer_rect =
gfx::ScaleToEnclosingRect(tile_rect, 1.f / contents_scale_);
return Tile::CreateInfo(i, j, enclosing_layer_rect, tile_rect,
contents_scale_);
}
bool PictureLayerTiling::ShouldCreateTileAt(
const Tile::CreateInfo& info) const {
const int i = info.tiling_i_index;
const int j = info.tiling_j_index;
// Active tree should always create a tile. The reason for this is that active
// tree represents content that we draw on screen, which means that whenever
// we check whether a tile should exist somewhere, the answer is yes. This
// doesn't mean it will actually be created (if raster source doesn't cover
// the tile for instance). Pending tree, on the other hand, should only be
// creating tiles that are different from the current active tree, which is
// represented by the logic in the rest of the function.
if (tree_ == ACTIVE_TREE)
return true;
// If the pending tree has no active twin, then it needs to create all tiles.
const PictureLayerTiling* active_twin =
client_->GetPendingOrActiveTwinTiling(this);
if (!active_twin)
return true;
// Pending tree will override the entire active tree if indices don't match.
if (!TilingMatchesTileIndices(active_twin))
return true;
// If the active tree can't create a tile, because of its raster source, then
// the pending tree should create one.
if (!active_twin->raster_source()->CoversRect(info.enclosing_layer_rect))
return true;
const Region* layer_invalidation = client_->GetPendingInvalidation();
// If this tile is invalidated, then the pending tree should create one.
if (layer_invalidation &&
layer_invalidation->Intersects(info.enclosing_layer_rect))
return true;
// If the active tree doesn't have a tile here, but it's in the pending tree's
// visible rect, then the pending tree should create a tile. This can happen
// if the pending visible rect is outside of the active tree's live tiles
// rect. In those situations, we need to block activation until we're ready to
// display content, which will have to come from the pending tree.
if (!active_twin->TileAt(i, j) &&
current_visible_rect_.Intersects(info.content_rect))
return true;
// In all other cases, the pending tree doesn't need to create a tile.
return false;
}
bool PictureLayerTiling::TilingMatchesTileIndices(
const PictureLayerTiling* twin) const {
return tiling_data_.max_texture_size() ==
twin->tiling_data_.max_texture_size();
}
PictureLayerTiling::CoverageIterator::CoverageIterator()
: tiling_(NULL),
current_tile_(NULL),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1) {
}
PictureLayerTiling::CoverageIterator::CoverageIterator(
const PictureLayerTiling* tiling,
float dest_scale,
const gfx::Rect& dest_rect)
: tiling_(tiling),
dest_rect_(dest_rect),
dest_to_content_scale_(0),
current_tile_(NULL),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1) {
DCHECK(tiling_);
if (dest_rect_.IsEmpty())
return;
dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
gfx::Rect content_rect =
gfx::ScaleToEnclosingRect(dest_rect_,
dest_to_content_scale_,
dest_to_content_scale_);
// IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
// check for non-intersection first.
content_rect.Intersect(gfx::Rect(tiling_->tiling_size()));
if (content_rect.IsEmpty())
return;
left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
content_rect.right() - 1);
bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
content_rect.bottom() - 1);
tile_i_ = left_ - 1;
tile_j_ = top_;
++(*this);
}
PictureLayerTiling::CoverageIterator::~CoverageIterator() {
}
PictureLayerTiling::CoverageIterator&
PictureLayerTiling::CoverageIterator::operator++() {
if (tile_j_ > bottom_)
return *this;
bool first_time = tile_i_ < left_;
bool new_row = false;
tile_i_++;
if (tile_i_ > right_) {
tile_i_ = left_;
tile_j_++;
new_row = true;
if (tile_j_ > bottom_) {
current_tile_ = NULL;
return *this;
}
}
current_tile_ = tiling_->TileAt(tile_i_, tile_j_);
// Calculate the current geometry rect. Due to floating point rounding
// and ToEnclosingRect, tiles might overlap in destination space on the
// edges.
gfx::Rect last_geometry_rect = current_geometry_rect_;
gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);
current_geometry_rect_ =
gfx::ScaleToEnclosingRect(content_rect, 1 / dest_to_content_scale_);
current_geometry_rect_.Intersect(dest_rect_);
DCHECK(!current_geometry_rect_.IsEmpty());
if (first_time)
return *this;
// Iteration happens left->right, top->bottom. Running off the bottom-right
// edge is handled by the intersection above with dest_rect_. Here we make
// sure that the new current geometry rect doesn't overlap with the last.
int min_left;
int min_top;
if (new_row) {
min_left = dest_rect_.x();
min_top = last_geometry_rect.bottom();
} else {
min_left = last_geometry_rect.right();
min_top = last_geometry_rect.y();
}
int inset_left = std::max(0, min_left - current_geometry_rect_.x());
int inset_top = std::max(0, min_top - current_geometry_rect_.y());
current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
if (!new_row) {
DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
}
return *this;
}
gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const {
return current_geometry_rect_;
}
gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const {
auto tex_origin = gfx::PointF(
tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin());
// Convert from dest space => content space => texture space.
gfx::RectF texture_rect(current_geometry_rect_);
texture_rect.Scale(dest_to_content_scale_,
dest_to_content_scale_);
texture_rect.Intersect(gfx::RectF(gfx::SizeF(tiling_->tiling_size())));
if (texture_rect.IsEmpty())
return texture_rect;
texture_rect.Offset(-tex_origin.OffsetFromOrigin());
return texture_rect;
}
ScopedTilePtr PictureLayerTiling::TakeTileAt(int i, int j) {
TileMap::iterator found = tiles_.find(TileMapKey(i, j));
if (found == tiles_.end())
return nullptr;
return tiles_.take_and_erase(found);
}
bool PictureLayerTiling::RemoveTileAt(int i, int j) {
TileMap::iterator found = tiles_.find(TileMapKey(i, j));
if (found == tiles_.end())
return false;
tiles_.erase(found);
return true;
}
void PictureLayerTiling::Reset() {
live_tiles_rect_ = gfx::Rect();
tiles_.clear();
all_tiles_done_ = true;
}
gfx::Rect PictureLayerTiling::ComputeSkewport(
double current_frame_time_in_seconds,
const gfx::Rect& visible_rect_in_content_space) const {
gfx::Rect skewport = visible_rect_in_content_space;
if (skewport.IsEmpty())
return skewport;
if (visible_rect_history_[1].frame_time_in_seconds == 0.0)
return skewport;
double time_delta = current_frame_time_in_seconds -
visible_rect_history_[1].frame_time_in_seconds;
if (time_delta == 0.0)
return skewport;
double extrapolation_multiplier =
skewport_target_time_in_seconds_ / time_delta;
int old_x = visible_rect_history_[1].visible_rect_in_content_space.x();
int old_y = visible_rect_history_[1].visible_rect_in_content_space.y();
int old_right =
visible_rect_history_[1].visible_rect_in_content_space.right();
int old_bottom =
visible_rect_history_[1].visible_rect_in_content_space.bottom();
int new_x = visible_rect_in_content_space.x();
int new_y = visible_rect_in_content_space.y();
int new_right = visible_rect_in_content_space.right();
int new_bottom = visible_rect_in_content_space.bottom();
// Compute the maximum skewport based on
// |skewport_extrapolation_limit_in_content_pixels_|.
gfx::Rect max_skewport = skewport;
max_skewport.Inset(-skewport_extrapolation_limit_in_content_pixels_,
-skewport_extrapolation_limit_in_content_pixels_);
// Inset the skewport by the needed adjustment.
skewport.Inset(extrapolation_multiplier * (new_x - old_x),
extrapolation_multiplier * (new_y - old_y),
extrapolation_multiplier * (old_right - new_right),
extrapolation_multiplier * (old_bottom - new_bottom));
// Ensure that visible rect is contained in the skewport.
skewport.Union(visible_rect_in_content_space);
// Clip the skewport to |max_skewport|. This needs to happen after the
// union in case intersecting would have left the empty rect.
skewport.Intersect(max_skewport);
// Due to limits in int's representation, it is possible that the two
// operations above (union and intersect) result in an empty skewport. To
// avoid any unpleasant situations like that, union the visible rect again to
// ensure that skewport.Contains(visible_rect_in_content_space) is always
// true.
skewport.Union(visible_rect_in_content_space);
return skewport;
}
bool PictureLayerTiling::ComputeTilePriorityRects(
const gfx::Rect& viewport_in_layer_space,
float ideal_contents_scale,
double current_frame_time_in_seconds,
const Occlusion& occlusion_in_layer_space) {
// If we have, or had occlusions, mark the tiles as 'not done' to ensure that
// we reiterate the tiles for rasterization.
if (occlusion_in_layer_space.HasOcclusion() ||
current_occlusion_in_layer_space_.HasOcclusion()) {
set_all_tiles_done(false);
}
if (!NeedsUpdateForFrameAtTimeAndViewport(current_frame_time_in_seconds,
viewport_in_layer_space)) {
// This should never be zero for the purposes of has_ever_been_updated().
DCHECK_NE(current_frame_time_in_seconds, 0.0);
return false;
}
const float content_to_screen_scale = ideal_contents_scale / contents_scale_;
// We want to compute the visible rect and eventually rect from it in the
// space of the tiling. But the visible rect (viewport) can be arbitrarily
// positioned, so be careful when scaling it since we can exceed integer
// bounds.
gfx::Rect eventually_rect;
gfx::Rect visible_rect_in_content_space;
// We keep things as floats in here.
{
gfx::RectF visible_rectf_in_content_space =
gfx::ScaleRect(gfx::RectF(viewport_in_layer_space), contents_scale_);
// Determine if the eventually rect will even touch the tiling, if it's too
// far away just treat it as empty so we don't exceed integer bounds.
const float pad_in_content_space =
tiling_interest_area_padding_ / content_to_screen_scale;
gfx::RectF eventually_rectf = visible_rectf_in_content_space;
// If the visible rect is empty, keep the eventually rect as empty.
if (!eventually_rectf.IsEmpty()) {
eventually_rectf.Inset(-pad_in_content_space, -pad_in_content_space);
// If the eventually rect will touch the tiling, then we convert back to
// integers and set the visible and eventually rects.
auto bounds = gfx::RectF(gfx::SizeF(tiling_size()));
if (eventually_rectf.Intersects(bounds)) {
visible_rect_in_content_space =
gfx::ToEnclosingRect(visible_rectf_in_content_space);
eventually_rect = gfx::ToEnclosingRect(eventually_rectf);
}
}
}
DCHECK_EQ(visible_rect_in_content_space.IsEmpty(), eventually_rect.IsEmpty());
// Now we have an empty visible/eventually rect if it's not useful and a
// non-empty one if it is. We can compute the final eventually rect.
eventually_rect =
tiling_data_.ExpandRectIgnoringBordersToTileBounds(eventually_rect);
DCHECK(eventually_rect.IsEmpty() ||
gfx::Rect(tiling_size()).Contains(eventually_rect))
<< "tiling_size: " << tiling_size().ToString()
<< " eventually_rect: " << eventually_rect.ToString();
if (tiling_size().IsEmpty()) {
UpdateVisibleRectHistory(current_frame_time_in_seconds,
visible_rect_in_content_space);
last_viewport_in_layer_space_ = viewport_in_layer_space;
return false;
}
// Calculate the skewport.
gfx::Rect skewport = ComputeSkewport(current_frame_time_in_seconds,
visible_rect_in_content_space);
DCHECK(skewport.Contains(visible_rect_in_content_space));
// Calculate the soon border rect.
gfx::Rect soon_border_rect = visible_rect_in_content_space;
float border = CalculateSoonBorderDistance(visible_rect_in_content_space,
content_to_screen_scale);
soon_border_rect.Inset(-border, -border, -border, -border);
UpdateVisibleRectHistory(current_frame_time_in_seconds,
visible_rect_in_content_space);
last_viewport_in_layer_space_ = viewport_in_layer_space;
SetTilePriorityRects(content_to_screen_scale, visible_rect_in_content_space,
skewport, soon_border_rect, eventually_rect,
occlusion_in_layer_space);
SetLiveTilesRect(eventually_rect);
return true;
}
void PictureLayerTiling::SetTilePriorityRects(
float content_to_screen_scale,
const gfx::Rect& visible_rect_in_content_space,
const gfx::Rect& skewport,
const gfx::Rect& soon_border_rect,
const gfx::Rect& eventually_rect,
const Occlusion& occlusion_in_layer_space) {
current_visible_rect_ = visible_rect_in_content_space;
current_skewport_rect_ = skewport;
current_soon_border_rect_ = soon_border_rect;
current_eventually_rect_ = eventually_rect;
current_occlusion_in_layer_space_ = occlusion_in_layer_space;
current_content_to_screen_scale_ = content_to_screen_scale;
gfx::Rect tiling_rect(tiling_size());
has_visible_rect_tiles_ = tiling_rect.Intersects(current_visible_rect_);
has_skewport_rect_tiles_ = tiling_rect.Intersects(current_skewport_rect_);
has_soon_border_rect_tiles_ =
tiling_rect.Intersects(current_soon_border_rect_);
has_eventually_rect_tiles_ = tiling_rect.Intersects(current_eventually_rect_);
}
void PictureLayerTiling::SetLiveTilesRect(
const gfx::Rect& new_live_tiles_rect) {
DCHECK(new_live_tiles_rect.IsEmpty() ||
gfx::Rect(tiling_size()).Contains(new_live_tiles_rect))
<< "tiling_size: " << tiling_size().ToString()
<< " new_live_tiles_rect: " << new_live_tiles_rect.ToString();
if (live_tiles_rect_ == new_live_tiles_rect)
return;
// Iterate to delete all tiles outside of our new live_tiles rect.
for (TilingData::DifferenceIterator iter(&tiling_data_, live_tiles_rect_,
new_live_tiles_rect);
iter; ++iter) {
RemoveTileAt(iter.index_x(), iter.index_y());
}
// We don't rasterize non ideal resolution tiles, so there is no need to
// create any new tiles.
if (resolution_ == NON_IDEAL_RESOLUTION) {
live_tiles_rect_.Intersect(new_live_tiles_rect);
VerifyLiveTilesRect(false);
return;
}
// Iterate to allocate new tiles for all regions with newly exposed area.
for (TilingData::DifferenceIterator iter(&tiling_data_, new_live_tiles_rect,
live_tiles_rect_);
iter; ++iter) {
Tile::CreateInfo info = CreateInfoForTile(iter.index_x(), iter.index_y());
if (ShouldCreateTileAt(info))
CreateTile(info);
}
live_tiles_rect_ = new_live_tiles_rect;
VerifyLiveTilesRect(false);
}
void PictureLayerTiling::VerifyLiveTilesRect(bool is_on_recycle_tree) const {
#if DCHECK_IS_ON()
for (auto it = tiles_.begin(); it != tiles_.end(); ++it) {
if (!it->second)
continue;
TileMapKey key = it->first;
DCHECK(key.index_x < tiling_data_.num_tiles_x())
<< this << " " << key.index_x << "," << key.index_y << " num_tiles_x "
<< tiling_data_.num_tiles_x() << " live_tiles_rect "
<< live_tiles_rect_.ToString();
DCHECK(key.index_y < tiling_data_.num_tiles_y())
<< this << " " << key.index_x << "," << key.index_y << " num_tiles_y "
<< tiling_data_.num_tiles_y() << " live_tiles_rect "
<< live_tiles_rect_.ToString();
DCHECK(tiling_data_.TileBounds(key.index_x, key.index_y)
.Intersects(live_tiles_rect_))
<< this << " " << key.index_x << "," << key.index_y << " tile bounds "
<< tiling_data_.TileBounds(key.index_x, key.index_y).ToString()
<< " live_tiles_rect " << live_tiles_rect_.ToString();
}
#endif
}
bool PictureLayerTiling::IsTileOccluded(const Tile* tile) const {
// If this tile is not occluded on this tree, then it is not occluded.
if (!IsTileOccludedOnCurrentTree(tile))
return false;
// Otherwise, if this is the pending tree, we're done and the tile is
// occluded.
if (tree_ == PENDING_TREE)
return true;
// On the active tree however, we need to check if this tile will be
// unoccluded upon activation, in which case it has to be considered
// unoccluded.
const PictureLayerTiling* pending_twin =
client_->GetPendingOrActiveTwinTiling(this);
if (pending_twin) {
// If there's a pending tile in the same position. Or if the pending twin
// would have to be creating all tiles, then we don't need to worry about
// occlusion on the twin.
if (!TilingMatchesTileIndices(pending_twin) ||
pending_twin->TileAt(tile->tiling_i_index(), tile->tiling_j_index())) {
return true;
}
return pending_twin->IsTileOccludedOnCurrentTree(tile);
}
return true;
}
bool PictureLayerTiling::IsTileOccludedOnCurrentTree(const Tile* tile) const {
if (!current_occlusion_in_layer_space_.HasOcclusion())
return false;
gfx::Rect tile_query_rect =
gfx::IntersectRects(tile->content_rect(), current_visible_rect_);
// Explicitly check if the tile is outside the viewport. If so, we need to
// return false, since occlusion for this tile is unknown.
if (tile_query_rect.IsEmpty())
return false;
if (contents_scale_ != 1.f) {
tile_query_rect =
gfx::ScaleToEnclosingRect(tile_query_rect, 1.f / contents_scale_);
}
return current_occlusion_in_layer_space_.IsOccluded(tile_query_rect);
}
bool PictureLayerTiling::IsTileRequiredForActivation(const Tile* tile) const {
if (tree_ == PENDING_TREE) {
if (!can_require_tiles_for_activation_)
return false;
if (resolution_ != HIGH_RESOLUTION)
return false;
if (IsTileOccluded(tile))
return false;
bool tile_is_visible =
tile->content_rect().Intersects(current_visible_rect_);
if (!tile_is_visible)
return false;
if (client_->RequiresHighResToDraw())
return true;
const PictureLayerTiling* active_twin =
client_->GetPendingOrActiveTwinTiling(this);
if (!active_twin || !TilingMatchesTileIndices(active_twin))
return true;
if (active_twin->raster_source()->GetSize() != raster_source()->GetSize())
return true;
if (active_twin->current_visible_rect_ != current_visible_rect_)
return true;
Tile* twin_tile =
active_twin->TileAt(tile->tiling_i_index(), tile->tiling_j_index());
if (!twin_tile)
return false;
return true;
}
DCHECK_EQ(tree_, ACTIVE_TREE);
const PictureLayerTiling* pending_twin =
client_->GetPendingOrActiveTwinTiling(this);
// If we don't have a pending tree, or the pending tree will overwrite the
// given tile, then it is not required for activation.
if (!pending_twin || !TilingMatchesTileIndices(pending_twin) ||
pending_twin->TileAt(tile->tiling_i_index(), tile->tiling_j_index())) {
return false;
}
// Otherwise, ask the pending twin if this tile is required for activation.
return pending_twin->IsTileRequiredForActivation(tile);
}
bool PictureLayerTiling::IsTileRequiredForDraw(const Tile* tile) const {
if (tree_ == PENDING_TREE)
return false;
if (resolution_ != HIGH_RESOLUTION)
return false;
bool tile_is_visible = current_visible_rect_.Intersects(tile->content_rect());
if (!tile_is_visible)
return false;
if (IsTileOccludedOnCurrentTree(tile))
return false;
return true;
}
void PictureLayerTiling::UpdateRequiredStatesOnTile(Tile* tile) const {
DCHECK(tile);
tile->set_required_for_activation(IsTileRequiredForActivation(tile));
tile->set_required_for_draw(IsTileRequiredForDraw(tile));
}
PrioritizedTile PictureLayerTiling::MakePrioritizedTile(
Tile* tile,
PriorityRectType priority_rect_type) const {
DCHECK(tile);
DCHECK(raster_source()->CoversRect(tile->enclosing_layer_rect()))
<< "Recording rect: "
<< gfx::ScaleToEnclosingRect(tile->content_rect(),
1.f / tile->contents_scale())
.ToString();
return PrioritizedTile(tile, raster_source(),
ComputePriorityForTile(tile, priority_rect_type),
IsTileOccluded(tile));
}
std::map<const Tile*, PrioritizedTile>
PictureLayerTiling::UpdateAndGetAllPrioritizedTilesForTesting() const {
std::map<const Tile*, PrioritizedTile> result;
for (const auto& key_tile_pair : tiles_) {
Tile* tile = key_tile_pair.second;
UpdateRequiredStatesOnTile(tile);
PrioritizedTile prioritized_tile =
MakePrioritizedTile(tile, ComputePriorityRectTypeForTile(tile));
result.insert(std::make_pair(prioritized_tile.tile(), prioritized_tile));
}
return result;
}
TilePriority PictureLayerTiling::ComputePriorityForTile(
const Tile* tile,
PriorityRectType priority_rect_type) const {
// TODO(vmpstr): See if this can be moved to iterators.
DCHECK_EQ(ComputePriorityRectTypeForTile(tile), priority_rect_type);
DCHECK_EQ(TileAt(tile->tiling_i_index(), tile->tiling_j_index()), tile);
TilePriority::PriorityBin priority_bin = client_->HasValidTilePriorities()
? TilePriority::NOW
: TilePriority::EVENTUALLY;
switch (priority_rect_type) {
case VISIBLE_RECT:
return TilePriority(resolution_, priority_bin, 0);
case PENDING_VISIBLE_RECT:
if (priority_bin < TilePriority::SOON)
priority_bin = TilePriority::SOON;
return TilePriority(resolution_, priority_bin, 0);
case SKEWPORT_RECT:
case SOON_BORDER_RECT:
if (priority_bin < TilePriority::SOON)
priority_bin = TilePriority::SOON;
break;
case EVENTUALLY_RECT:
priority_bin = TilePriority::EVENTUALLY;
break;
}
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
DCHECK_GT(current_content_to_screen_scale_, 0.f);
float distance_to_visible =
current_visible_rect_.ManhattanInternalDistance(tile_bounds) *
current_content_to_screen_scale_;
return TilePriority(resolution_, priority_bin, distance_to_visible);
}
PictureLayerTiling::PriorityRectType
PictureLayerTiling::ComputePriorityRectTypeForTile(const Tile* tile) const {
DCHECK_EQ(TileAt(tile->tiling_i_index(), tile->tiling_j_index()), tile);
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
if (current_visible_rect_.Intersects(tile_bounds))
return VISIBLE_RECT;
if (pending_visible_rect().Intersects(tile_bounds))
return PENDING_VISIBLE_RECT;
if (current_skewport_rect_.Intersects(tile_bounds))
return SKEWPORT_RECT;
if (current_soon_border_rect_.Intersects(tile_bounds))
return SOON_BORDER_RECT;
DCHECK(current_eventually_rect_.Intersects(tile_bounds));
return EVENTUALLY_RECT;
}
void PictureLayerTiling::GetAllPrioritizedTilesForTracing(
std::vector<PrioritizedTile>* prioritized_tiles) const {
for (const auto& tile_pair : tiles_) {
Tile* tile = tile_pair.second;
prioritized_tiles->push_back(
MakePrioritizedTile(tile, ComputePriorityRectTypeForTile(tile)));
}
}
void PictureLayerTiling::AsValueInto(
base::trace_event::TracedValue* state) const {
state->SetInteger("num_tiles", base::saturated_cast<int>(tiles_.size()));
state->SetDouble("content_scale", contents_scale_);
MathUtil::AddToTracedValue("visible_rect", current_visible_rect_, state);
MathUtil::AddToTracedValue("skewport_rect", current_skewport_rect_, state);
MathUtil::AddToTracedValue("soon_rect", current_soon_border_rect_, state);
MathUtil::AddToTracedValue("eventually_rect", current_eventually_rect_,
state);
MathUtil::AddToTracedValue("tiling_size", tiling_size(), state);
}
size_t PictureLayerTiling::GPUMemoryUsageInBytes() const {
size_t amount = 0;
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
const Tile* tile = it->second;
amount += tile->GPUMemoryUsageInBytes();
}
return amount;
}
} // namespace cc