blob: 38cd6c0189e481da7e779c73ce37a99821342fad [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include "base/bind.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/files/scoped_temp_dir.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/strings/string_number_conversions.h"
#include "base/test/gtest_util.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/scoped_feature_list.h"
#include "base/test/simple_test_tick_clock.h"
#include "base/trace_event/process_memory_dump.h"
#include "build/build_config.h"
#include "sql/database.h"
#include "sql/database_memory_dump_provider.h"
#include "sql/meta_table.h"
#include "sql/sql_features.h"
#include "sql/statement.h"
#include "sql/test/error_callback_support.h"
#include "sql/test/scoped_error_expecter.h"
#include "sql/test/sql_test_base.h"
#include "sql/test/test_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/sqlite/sqlite3.h"
namespace sql {
class DatabaseTestPeer {
public:
static bool AttachDatabase(Database* db,
const base::FilePath& other_db_path,
const char* attachment_point) {
return db->AttachDatabase(other_db_path, attachment_point,
InternalApiToken());
}
static bool DetachDatabase(Database* db, const char* attachment_point) {
return db->DetachDatabase(attachment_point, InternalApiToken());
}
};
namespace test {
// Allow a test to add a SQLite function in a scoped context.
class ScopedScalarFunction {
public:
ScopedScalarFunction(
sql::Database& db,
const char* function_name,
int args,
base::RepeatingCallback<void(sqlite3_context*, int, sqlite3_value**)> cb)
: db_(db.db_), function_name_(function_name), cb_(std::move(cb)) {
sqlite3_create_function_v2(db_, function_name, args, SQLITE_UTF8, this,
&Run, nullptr, nullptr, nullptr);
}
~ScopedScalarFunction() {
sqlite3_create_function_v2(db_, function_name_, 0, SQLITE_UTF8, nullptr,
nullptr, nullptr, nullptr, nullptr);
}
private:
static void Run(sqlite3_context* context, int argc, sqlite3_value** argv) {
ScopedScalarFunction* t =
static_cast<ScopedScalarFunction*>(sqlite3_user_data(context));
t->cb_.Run(context, argc, argv);
}
sqlite3* db_;
const char* function_name_;
base::RepeatingCallback<void(sqlite3_context*, int, sqlite3_value**)> cb_;
DISALLOW_COPY_AND_ASSIGN(ScopedScalarFunction);
};
// Allow a test to add a SQLite commit hook in a scoped context.
class ScopedCommitHook {
public:
ScopedCommitHook(sql::Database& db, base::RepeatingCallback<int()> cb)
: db_(db.db_), cb_(std::move(cb)) {
sqlite3_commit_hook(db_, &Run, this);
}
~ScopedCommitHook() { sqlite3_commit_hook(db_, nullptr, nullptr); }
private:
static int Run(void* p) {
ScopedCommitHook* t = static_cast<ScopedCommitHook*>(p);
return t->cb_.Run();
}
sqlite3* db_;
base::RepeatingCallback<int(void)> cb_;
DISALLOW_COPY_AND_ASSIGN(ScopedCommitHook);
};
} // namespace test
namespace {
using sql::test::ExecuteWithResult;
// Helper to return the count of items in sqlite_master. Return -1 in
// case of error.
int SqliteMasterCount(sql::Database* db) {
const char* kMasterCount = "SELECT COUNT(*) FROM sqlite_master";
sql::Statement s(db->GetUniqueStatement(kMasterCount));
return s.Step() ? s.ColumnInt(0) : -1;
}
// Track the number of valid references which share the same pointer.
// This is used to allow testing an implicitly use-after-free case by
// explicitly having the ref count live longer than the object.
class RefCounter {
public:
RefCounter(size_t* counter) : counter_(counter) { (*counter_)++; }
RefCounter(const RefCounter& other) : counter_(other.counter_) {
(*counter_)++;
}
~RefCounter() { (*counter_)--; }
private:
size_t* counter_;
DISALLOW_ASSIGN(RefCounter);
};
// Empty callback for implementation of ErrorCallbackSetHelper().
void IgnoreErrorCallback(int error, sql::Statement* stmt) {}
void ErrorCallbackSetHelper(sql::Database* db,
size_t* counter,
const RefCounter& r,
int error,
sql::Statement* stmt) {
// The ref count should not go to zero when changing the callback.
EXPECT_GT(*counter, 0u);
db->set_error_callback(base::BindRepeating(&IgnoreErrorCallback));
EXPECT_GT(*counter, 0u);
}
void ErrorCallbackResetHelper(sql::Database* db,
size_t* counter,
const RefCounter& r,
int error,
sql::Statement* stmt) {
// The ref count should not go to zero when clearing the callback.
EXPECT_GT(*counter, 0u);
db->reset_error_callback();
EXPECT_GT(*counter, 0u);
}
// Handle errors by blowing away the database.
void RazeErrorCallback(sql::Database* db,
int expected_error,
int error,
sql::Statement* stmt) {
// Nothing here needs extended errors at this time.
EXPECT_EQ(expected_error, expected_error & 0xff);
EXPECT_EQ(expected_error, error & 0xff);
db->RazeAndClose();
}
#if defined(OS_POSIX)
// Set a umask and restore the old mask on destruction. Cribbed from
// shared_memory_unittest.cc. Used by POSIX-only UserPermission test.
class ScopedUmaskSetter {
public:
explicit ScopedUmaskSetter(mode_t target_mask) {
old_umask_ = umask(target_mask);
}
~ScopedUmaskSetter() { umask(old_umask_); }
private:
mode_t old_umask_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedUmaskSetter);
};
#endif // defined(OS_POSIX)
// SQLite function to adjust mock time by |argv[0]| milliseconds.
void sqlite_adjust_millis(base::SimpleTestTickClock* mock_clock,
sqlite3_context* context,
int argc,
sqlite3_value** argv) {
CHECK_EQ(argc, 1);
int64_t milliseconds = sqlite3_value_int64(argv[0]);
mock_clock->Advance(base::TimeDelta::FromMilliseconds(milliseconds));
sqlite3_result_int64(context, milliseconds);
}
// Adjust mock time by |milliseconds| on commit.
int adjust_commit_hook(base::SimpleTestTickClock* mock_clock,
int64_t milliseconds) {
mock_clock->Advance(base::TimeDelta::FromMilliseconds(milliseconds));
return SQLITE_OK;
}
const char kCommitTime[] = "Sqlite.CommitTime.Test";
const char kAutoCommitTime[] = "Sqlite.AutoCommitTime.Test";
const char kUpdateTime[] = "Sqlite.UpdateTime.Test";
const char kQueryTime[] = "Sqlite.QueryTime.Test";
} // namespace
using SQLDatabaseTest = sql::SQLTestBase;
TEST_F(SQLDatabaseTest, Execute) {
// Valid statement should return true.
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
EXPECT_EQ(SQLITE_OK, db().GetErrorCode());
// Invalid statement should fail.
ASSERT_EQ(SQLITE_ERROR,
db().ExecuteAndReturnErrorCode("CREATE TAB foo (a, b"));
EXPECT_EQ(SQLITE_ERROR, db().GetErrorCode());
}
TEST_F(SQLDatabaseTest, ExecuteWithErrorCode) {
ASSERT_EQ(SQLITE_OK,
db().ExecuteAndReturnErrorCode("CREATE TABLE foo (a, b)"));
ASSERT_EQ(SQLITE_ERROR, db().ExecuteAndReturnErrorCode("CREATE TABLE TABLE"));
ASSERT_EQ(SQLITE_ERROR, db().ExecuteAndReturnErrorCode(
"INSERT INTO foo(a, b) VALUES (1, 2, 3, 4)"));
}
TEST_F(SQLDatabaseTest, CachedStatement) {
sql::StatementID id1 = SQL_FROM_HERE;
sql::StatementID id2 = SQL_FROM_HERE;
static const char kId1Sql[] = "SELECT a FROM foo";
static const char kId2Sql[] = "SELECT b FROM foo";
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
ASSERT_TRUE(db().Execute("INSERT INTO foo(a, b) VALUES (12, 13)"));
sqlite3_stmt* raw_id1_statement;
sqlite3_stmt* raw_id2_statement;
{
scoped_refptr<sql::Database::StatementRef> ref_from_id1 =
db().GetCachedStatement(id1, kId1Sql);
raw_id1_statement = ref_from_id1->stmt();
sql::Statement from_id1(std::move(ref_from_id1));
ASSERT_TRUE(from_id1.is_valid());
ASSERT_TRUE(from_id1.Step());
EXPECT_EQ(12, from_id1.ColumnInt(0));
scoped_refptr<sql::Database::StatementRef> ref_from_id2 =
db().GetCachedStatement(id2, kId2Sql);
raw_id2_statement = ref_from_id2->stmt();
EXPECT_NE(raw_id1_statement, raw_id2_statement);
sql::Statement from_id2(std::move(ref_from_id2));
ASSERT_TRUE(from_id2.is_valid());
ASSERT_TRUE(from_id2.Step());
EXPECT_EQ(13, from_id2.ColumnInt(0));
}
{
scoped_refptr<sql::Database::StatementRef> ref_from_id1 =
db().GetCachedStatement(id1, kId1Sql);
EXPECT_EQ(raw_id1_statement, ref_from_id1->stmt())
<< "statement was not cached";
sql::Statement from_id1(std::move(ref_from_id1));
ASSERT_TRUE(from_id1.is_valid());
ASSERT_TRUE(from_id1.Step()) << "cached statement was not reset";
EXPECT_EQ(12, from_id1.ColumnInt(0));
scoped_refptr<sql::Database::StatementRef> ref_from_id2 =
db().GetCachedStatement(id2, kId2Sql);
EXPECT_EQ(raw_id2_statement, ref_from_id2->stmt())
<< "statement was not cached";
sql::Statement from_id2(std::move(ref_from_id2));
ASSERT_TRUE(from_id2.is_valid());
ASSERT_TRUE(from_id2.Step()) << "cached statement was not reset";
EXPECT_EQ(13, from_id2.ColumnInt(0));
}
EXPECT_DCHECK_DEATH(db().GetCachedStatement(id1, kId2Sql))
<< "Using a different SQL with the same statement ID should DCHECK";
EXPECT_DCHECK_DEATH(db().GetCachedStatement(id2, kId1Sql))
<< "Using a different SQL with the same statement ID should DCHECK";
}
TEST_F(SQLDatabaseTest, IsSQLValidTest) {
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
ASSERT_TRUE(db().IsSQLValid("SELECT a FROM foo"));
ASSERT_FALSE(db().IsSQLValid("SELECT no_exist FROM foo"));
}
TEST_F(SQLDatabaseTest, DoesTableExist) {
EXPECT_FALSE(db().DoesTableExist("foo"));
EXPECT_FALSE(db().DoesTableExist("foo_index"));
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
ASSERT_TRUE(db().Execute("CREATE INDEX foo_index ON foo (a)"));
EXPECT_TRUE(db().DoesTableExist("foo"));
EXPECT_FALSE(db().DoesTableExist("foo_index"));
}
TEST_F(SQLDatabaseTest, DoesIndexExist) {
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
EXPECT_FALSE(db().DoesIndexExist("foo"));
EXPECT_FALSE(db().DoesIndexExist("foo_ubdex"));
ASSERT_TRUE(db().Execute("CREATE INDEX foo_index ON foo (a)"));
EXPECT_TRUE(db().DoesIndexExist("foo_index"));
EXPECT_FALSE(db().DoesIndexExist("foo"));
}
TEST_F(SQLDatabaseTest, DoesViewExist) {
EXPECT_FALSE(db().DoesViewExist("voo"));
ASSERT_TRUE(db().Execute("CREATE VIEW voo (a) AS SELECT 1"));
EXPECT_FALSE(db().DoesIndexExist("voo"));
EXPECT_FALSE(db().DoesTableExist("voo"));
EXPECT_TRUE(db().DoesViewExist("voo"));
}
TEST_F(SQLDatabaseTest, DoesColumnExist) {
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
EXPECT_FALSE(db().DoesColumnExist("foo", "bar"));
EXPECT_TRUE(db().DoesColumnExist("foo", "a"));
ASSERT_FALSE(db().DoesTableExist("bar"));
EXPECT_FALSE(db().DoesColumnExist("bar", "b"));
// Names are not case sensitive.
EXPECT_TRUE(db().DoesTableExist("FOO"));
EXPECT_TRUE(db().DoesColumnExist("FOO", "A"));
}
TEST_F(SQLDatabaseTest, GetLastInsertRowId) {
ASSERT_TRUE(db().Execute("CREATE TABLE foo (id INTEGER PRIMARY KEY, value)"));
ASSERT_TRUE(db().Execute("INSERT INTO foo (value) VALUES (12)"));
// Last insert row ID should be valid.
int64_t row = db().GetLastInsertRowId();
EXPECT_LT(0, row);
// It should be the primary key of the row we just inserted.
sql::Statement s(db().GetUniqueStatement("SELECT value FROM foo WHERE id=?"));
s.BindInt64(0, row);
ASSERT_TRUE(s.Step());
EXPECT_EQ(12, s.ColumnInt(0));
}
TEST_F(SQLDatabaseTest, Rollback) {
ASSERT_TRUE(db().BeginTransaction());
ASSERT_TRUE(db().BeginTransaction());
EXPECT_EQ(2, db().transaction_nesting());
db().RollbackTransaction();
EXPECT_FALSE(db().CommitTransaction());
EXPECT_TRUE(db().BeginTransaction());
}
// Test the scoped error expecter by attempting to insert a duplicate
// value into an index.
TEST_F(SQLDatabaseTest, ScopedErrorExpecter) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER UNIQUE)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CONSTRAINT);
ASSERT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
}
// Test that clients of GetUntrackedStatement() can test corruption-handling
// with ScopedErrorExpecter.
TEST_F(SQLDatabaseTest, ScopedIgnoreUntracked) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER UNIQUE)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_FALSE(db().DoesTableExist("bar"));
ASSERT_TRUE(db().DoesTableExist("foo"));
ASSERT_TRUE(db().DoesColumnExist("foo", "id"));
db().Close();
// Corrupt the database so that nothing works, including PRAGMAs.
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
ASSERT_FALSE(db().DoesTableExist("bar"));
ASSERT_FALSE(db().DoesTableExist("foo"));
ASSERT_FALSE(db().DoesColumnExist("foo", "id"));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
}
TEST_F(SQLDatabaseTest, ErrorCallback) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER UNIQUE)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
int error = SQLITE_OK;
{
sql::ScopedErrorCallback sec(
&db(), base::BindRepeating(&sql::CaptureErrorCallback, &error));
EXPECT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
// Later versions of SQLite throw SQLITE_CONSTRAINT_UNIQUE. The specific
// sub-error isn't really important.
EXPECT_EQ(SQLITE_CONSTRAINT, (error & 0xff));
}
// Callback is no longer in force due to reset.
{
error = SQLITE_OK;
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CONSTRAINT);
ASSERT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
ASSERT_TRUE(expecter.SawExpectedErrors());
EXPECT_EQ(SQLITE_OK, error);
}
// base::BindRepeating() can curry arguments to be passed by const reference
// to the callback function. If the callback function calls
// re/set_error_callback(), the storage for those arguments can be
// deleted while the callback function is still executing.
//
// RefCounter() counts how many objects are live using an external
// count. The same counter is passed to the callback, so that it
// can check directly even if the RefCounter object is no longer
// live.
{
size_t count = 0;
sql::ScopedErrorCallback sec(
&db(), base::BindRepeating(&ErrorCallbackSetHelper, &db(), &count,
RefCounter(&count)));
EXPECT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
}
// Same test, but reset_error_callback() case.
{
size_t count = 0;
sql::ScopedErrorCallback sec(
&db(), base::BindRepeating(&ErrorCallbackResetHelper, &db(), &count,
RefCounter(&count)));
EXPECT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
}
}
// Test that sql::Database::Raze() results in a database without the
// tables from the original database.
TEST_F(SQLDatabaseTest, Raze) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO foo (value) VALUES (12)"));
int pragma_auto_vacuum = 0;
{
sql::Statement s(db().GetUniqueStatement("PRAGMA auto_vacuum"));
ASSERT_TRUE(s.Step());
pragma_auto_vacuum = s.ColumnInt(0);
ASSERT_TRUE(pragma_auto_vacuum == 0 || pragma_auto_vacuum == 1);
}
// If auto_vacuum is set, there's an extra page to maintain a freelist.
const int kExpectedPageCount = 2 + pragma_auto_vacuum;
{
sql::Statement s(db().GetUniqueStatement("PRAGMA page_count"));
ASSERT_TRUE(s.Step());
EXPECT_EQ(kExpectedPageCount, s.ColumnInt(0));
}
{
sql::Statement s(db().GetUniqueStatement("SELECT * FROM sqlite_master"));
ASSERT_TRUE(s.Step());
EXPECT_EQ("table", s.ColumnString(0));
EXPECT_EQ("foo", s.ColumnString(1));
EXPECT_EQ("foo", s.ColumnString(2));
// Table "foo" is stored in the last page of the file.
EXPECT_EQ(kExpectedPageCount, s.ColumnInt(3));
EXPECT_EQ(kCreateSql, s.ColumnString(4));
}
ASSERT_TRUE(db().Raze());
{
sql::Statement s(db().GetUniqueStatement("PRAGMA page_count"));
ASSERT_TRUE(s.Step());
EXPECT_EQ(1, s.ColumnInt(0));
}
ASSERT_EQ(0, SqliteMasterCount(&db()));
{
sql::Statement s(db().GetUniqueStatement("PRAGMA auto_vacuum"));
ASSERT_TRUE(s.Step());
// The new database has the same auto_vacuum as a fresh database.
EXPECT_EQ(pragma_auto_vacuum, s.ColumnInt(0));
}
}
// Helper for SQLDatabaseTest.RazePageSize. Creates a fresh db based on
// db_prefix, with the given initial page size, and verifies it against the
// expected size. Then changes to the final page size and razes, verifying that
// the fresh database ends up with the expected final page size.
void TestPageSize(const base::FilePath& db_prefix,
int initial_page_size,
const std::string& expected_initial_page_size,
int final_page_size,
const std::string& expected_final_page_size) {
static const char kCreateSql[] = "CREATE TABLE x (t TEXT)";
static const char kInsertSql1[] = "INSERT INTO x VALUES ('This is a test')";
static const char kInsertSql2[] = "INSERT INTO x VALUES ('That was a test')";
const base::FilePath db_path = db_prefix.InsertBeforeExtensionASCII(
base::IntToString(initial_page_size));
sql::Database::Delete(db_path);
sql::Database db;
db.set_page_size(initial_page_size);
ASSERT_TRUE(db.Open(db_path));
ASSERT_TRUE(db.Execute(kCreateSql));
ASSERT_TRUE(db.Execute(kInsertSql1));
ASSERT_TRUE(db.Execute(kInsertSql2));
ASSERT_EQ(expected_initial_page_size,
ExecuteWithResult(&db, "PRAGMA page_size"));
// Raze will use the page size set in the connection object, which may not
// match the file's page size.
db.set_page_size(final_page_size);
ASSERT_TRUE(db.Raze());
// SQLite 3.10.2 (at least) has a quirk with the sqlite3_backup() API (used by
// Raze()) which causes the destination database to remember the previous
// page_size, even if the overwriting database changed the page_size. Access
// the actual database to cause the cached value to be updated.
EXPECT_EQ("0", ExecuteWithResult(&db, "SELECT COUNT(*) FROM sqlite_master"));
EXPECT_EQ(expected_final_page_size,
ExecuteWithResult(&db, "PRAGMA page_size"));
EXPECT_EQ("1", ExecuteWithResult(&db, "PRAGMA page_count"));
}
// Verify that sql::Recovery maintains the page size, and the virtual table
// works with page sizes other than SQLite's default. Also verify the case
// where the default page size has changed.
TEST_F(SQLDatabaseTest, RazePageSize) {
const std::string default_page_size =
ExecuteWithResult(&db(), "PRAGMA page_size");
// Sync uses 32k pages.
EXPECT_NO_FATAL_FAILURE(
TestPageSize(db_path(), 32768, "32768", 32768, "32768"));
// Many clients use 4k pages. This is the SQLite default after 3.12.0.
EXPECT_NO_FATAL_FAILURE(TestPageSize(db_path(), 4096, "4096", 4096, "4096"));
// 1k is the default page size before 3.12.0.
EXPECT_NO_FATAL_FAILURE(TestPageSize(db_path(), 1024, "1024", 1024, "1024"));
EXPECT_NO_FATAL_FAILURE(TestPageSize(db_path(), 2048, "2048", 4096, "4096"));
// Databases with no page size specified should result in the default
// page size. 2k has never been the default page size.
ASSERT_NE("2048", default_page_size);
EXPECT_NO_FATAL_FAILURE(TestPageSize(
db_path(), 2048, "2048", Database::kDefaultPageSize, default_page_size));
}
// Test that Raze() results are seen in other connections.
TEST_F(SQLDatabaseTest, RazeMultiple) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
sql::Database other_db;
ASSERT_TRUE(other_db.Open(db_path()));
// Check that the second connection sees the table.
ASSERT_EQ(1, SqliteMasterCount(&other_db));
ASSERT_TRUE(db().Raze());
// The second connection sees the updated database.
ASSERT_EQ(0, SqliteMasterCount(&other_db));
}
TEST_F(SQLDatabaseTest, RazeLocked) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
// Open a transaction and write some data in a second connection.
// This will acquire a PENDING or EXCLUSIVE transaction, which will
// cause the raze to fail.
sql::Database other_db;
ASSERT_TRUE(other_db.Open(db_path()));
ASSERT_TRUE(other_db.BeginTransaction());
const char* kInsertSql = "INSERT INTO foo VALUES (1, 'data')";
ASSERT_TRUE(other_db.Execute(kInsertSql));
ASSERT_FALSE(db().Raze());
// Works after COMMIT.
ASSERT_TRUE(other_db.CommitTransaction());
ASSERT_TRUE(db().Raze());
// Re-create the database.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kInsertSql));
// An unfinished read transaction in the other connection also
// blocks raze.
const char* kQuery = "SELECT COUNT(*) FROM foo";
sql::Statement s(other_db.GetUniqueStatement(kQuery));
ASSERT_TRUE(s.Step());
ASSERT_FALSE(db().Raze());
// Complete the statement unlocks the database.
ASSERT_FALSE(s.Step());
ASSERT_TRUE(db().Raze());
}
// Verify that Raze() can handle an empty file. SQLite should treat
// this as an empty database.
TEST_F(SQLDatabaseTest, RazeEmptyDB) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
db().Close();
TruncateDatabase();
ASSERT_TRUE(db().Open(db_path()));
ASSERT_TRUE(db().Raze());
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Verify that Raze() can handle a file of junk.
TEST_F(SQLDatabaseTest, RazeNOTADB) {
db().Close();
sql::Database::Delete(db_path());
ASSERT_FALSE(GetPathExists(db_path()));
WriteJunkToDatabase(SQLTestBase::TYPE_OVERWRITE_AND_TRUNCATE);
ASSERT_TRUE(GetPathExists(db_path()));
// SQLite will successfully open the handle, but fail when running PRAGMA
// statements that access the database.
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_NOTADB);
EXPECT_TRUE(db().Open(db_path()));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
EXPECT_TRUE(db().Raze());
db().Close();
// Now empty, the open should open an empty database.
EXPECT_TRUE(db().Open(db_path()));
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Verify that Raze() can handle a database overwritten with garbage.
TEST_F(SQLDatabaseTest, RazeNOTADB2) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_EQ(1, SqliteMasterCount(&db()));
db().Close();
WriteJunkToDatabase(SQLTestBase::TYPE_OVERWRITE);
// SQLite will successfully open the handle, but will fail with
// SQLITE_NOTADB on pragma statemenets which attempt to read the
// corrupted header.
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_NOTADB);
EXPECT_TRUE(db().Open(db_path()));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
EXPECT_TRUE(db().Raze());
db().Close();
// Now empty, the open should succeed with an empty database.
EXPECT_TRUE(db().Open(db_path()));
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Test that a callback from Open() can raze the database. This is
// essential for cases where the Open() can fail entirely, so the
// Raze() cannot happen later. Additionally test that when the
// callback does this during Open(), the open is retried and succeeds.
TEST_F(SQLDatabaseTest, RazeCallbackReopen) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_EQ(1, SqliteMasterCount(&db()));
db().Close();
// Corrupt the database so that nothing works, including PRAGMAs.
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
// Open() will succeed, even though the PRAGMA calls within will
// fail with SQLITE_CORRUPT, as will this PRAGMA.
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
ASSERT_FALSE(db().Execute("PRAGMA auto_vacuum"));
db().Close();
ASSERT_TRUE(expecter.SawExpectedErrors());
}
db().set_error_callback(
base::BindRepeating(&RazeErrorCallback, &db(), SQLITE_CORRUPT));
// When the PRAGMA calls in Open() raise SQLITE_CORRUPT, the error
// callback will call RazeAndClose(). Open() will then fail and be
// retried. The second Open() on the empty database will succeed
// cleanly.
ASSERT_TRUE(db().Open(db_path()));
ASSERT_TRUE(db().Execute("PRAGMA auto_vacuum"));
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Basic test of RazeAndClose() operation.
TEST_F(SQLDatabaseTest, RazeAndClose) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
const char* kPopulateSql = "INSERT INTO foo (value) VALUES (12)";
// Test that RazeAndClose() closes the database, and that the
// database is empty when re-opened.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kPopulateSql));
ASSERT_TRUE(db().RazeAndClose());
ASSERT_FALSE(db().is_open());
db().Close();
ASSERT_TRUE(db().Open(db_path()));
ASSERT_EQ(0, SqliteMasterCount(&db()));
// Test that RazeAndClose() can break transactions.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kPopulateSql));
ASSERT_TRUE(db().BeginTransaction());
ASSERT_TRUE(db().RazeAndClose());
ASSERT_FALSE(db().is_open());
ASSERT_FALSE(db().CommitTransaction());
db().Close();
ASSERT_TRUE(db().Open(db_path()));
ASSERT_EQ(0, SqliteMasterCount(&db()));
}
// Test that various operations fail without crashing after
// RazeAndClose().
TEST_F(SQLDatabaseTest, RazeAndCloseDiagnostics) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
const char* kPopulateSql = "INSERT INTO foo (value) VALUES (12)";
const char* kSimpleSql = "SELECT 1";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kPopulateSql));
// Test baseline expectations.
db().Preload();
ASSERT_TRUE(db().DoesTableExist("foo"));
ASSERT_TRUE(db().IsSQLValid(kSimpleSql));
ASSERT_EQ(SQLITE_OK, db().ExecuteAndReturnErrorCode(kSimpleSql));
ASSERT_TRUE(db().Execute(kSimpleSql));
ASSERT_TRUE(db().is_open());
{
sql::Statement s(db().GetUniqueStatement(kSimpleSql));
ASSERT_TRUE(s.Step());
}
{
sql::Statement s(db().GetCachedStatement(SQL_FROM_HERE, kSimpleSql));
ASSERT_TRUE(s.Step());
}
ASSERT_TRUE(db().BeginTransaction());
ASSERT_TRUE(db().CommitTransaction());
ASSERT_TRUE(db().BeginTransaction());
db().RollbackTransaction();
ASSERT_TRUE(db().RazeAndClose());
// At this point, they should all fail, but not crash.
db().Preload();
ASSERT_FALSE(db().DoesTableExist("foo"));
ASSERT_FALSE(db().IsSQLValid(kSimpleSql));
ASSERT_EQ(SQLITE_ERROR, db().ExecuteAndReturnErrorCode(kSimpleSql));
ASSERT_FALSE(db().Execute(kSimpleSql));
ASSERT_FALSE(db().is_open());
{
sql::Statement s(db().GetUniqueStatement(kSimpleSql));
ASSERT_FALSE(s.Step());
}
{
sql::Statement s(db().GetCachedStatement(SQL_FROM_HERE, kSimpleSql));
ASSERT_FALSE(s.Step());
}
ASSERT_FALSE(db().BeginTransaction());
ASSERT_FALSE(db().CommitTransaction());
ASSERT_FALSE(db().BeginTransaction());
db().RollbackTransaction();
// Close normally to reset the poisoned flag.
db().Close();
// DEATH tests not supported on Android, iOS, or Fuchsia.
#if !defined(OS_ANDROID) && !defined(OS_IOS) && !defined(OS_FUCHSIA)
// Once the real Close() has been called, various calls enforce API
// usage by becoming fatal in debug mode. Since DEATH tests are
// expensive, just test one of them.
if (DLOG_IS_ON(FATAL)) {
ASSERT_DEATH({ db().IsSQLValid(kSimpleSql); },
"Illegal use of Database without a db");
}
#endif // !defined(OS_ANDROID) && !defined(OS_IOS) && !defined(OS_FUCHSIA)
}
// TODO(shess): Spin up a background thread to hold other_db, to more
// closely match real life. That would also allow testing
// RazeWithTimeout().
// On Windows, truncate silently fails against a memory-mapped file. One goal
// of Raze() is to truncate the file to remove blocks which generate I/O errors.
// Test that Raze() turns off memory mapping so that the file is truncated.
// [This would not cover the case of multiple connections where one of the other
// connections is memory-mapped. That is infrequent in Chromium.]
TEST_F(SQLDatabaseTest, RazeTruncate) {
// The empty database has 0 or 1 pages. Raze() should leave it with exactly 1
// page. Not checking directly because auto_vacuum on Android adds a freelist
// page.
ASSERT_TRUE(db().Raze());
int64_t expected_size;
ASSERT_TRUE(base::GetFileSize(db_path(), &expected_size));
ASSERT_GT(expected_size, 0);
// Cause the database to take a few pages.
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
for (size_t i = 0; i < 24; ++i) {
ASSERT_TRUE(
db().Execute("INSERT INTO foo (value) VALUES (randomblob(1024))"));
}
int64_t db_size;
ASSERT_TRUE(base::GetFileSize(db_path(), &db_size));
ASSERT_GT(db_size, expected_size);
// Make a query covering most of the database file to make sure that the
// blocks are actually mapped into memory. Empirically, the truncate problem
// doesn't seem to happen if no blocks are mapped.
EXPECT_EQ("24576",
ExecuteWithResult(&db(), "SELECT SUM(LENGTH(value)) FROM foo"));
ASSERT_TRUE(db().Raze());
ASSERT_TRUE(base::GetFileSize(db_path(), &db_size));
ASSERT_EQ(expected_size, db_size);
}
#if defined(OS_ANDROID)
TEST_F(SQLDatabaseTest, SetTempDirForSQL) {
sql::MetaTable meta_table;
// Below call needs a temporary directory in sqlite3
// On Android, it can pass only when the temporary directory is set.
// Otherwise, sqlite3 doesn't find the correct directory to store
// temporary files and will report the error 'unable to open
// database file'.
ASSERT_TRUE(meta_table.Init(&db(), 4, 4));
}
#endif // defined(OS_ANDROID)
TEST_F(SQLDatabaseTest, DeleteNonWal) {
EXPECT_TRUE(db().Execute("CREATE TABLE x (x)"));
db().Close();
// Should have both a main database file and a journal file because
// of journal_mode TRUNCATE.
base::FilePath journal_path = sql::Database::JournalPath(db_path());
ASSERT_TRUE(GetPathExists(db_path()));
ASSERT_TRUE(GetPathExists(journal_path));
sql::Database::Delete(db_path());
EXPECT_FALSE(GetPathExists(db_path()));
EXPECT_FALSE(GetPathExists(journal_path));
}
#if defined(OS_POSIX) // This test operates on POSIX file permissions.
TEST_F(SQLDatabaseTest, PosixFilePermissions) {
db().Close();
sql::Database::Delete(db_path());
ASSERT_FALSE(GetPathExists(db_path()));
// If the bots all had a restrictive umask setting such that databases are
// always created with only the owner able to read them, then the code could
// break without breaking the tests. Temporarily provide a more permissive
// umask.
ScopedUmaskSetter permissive_umask(S_IWGRP | S_IWOTH);
ASSERT_TRUE(db().Open(db_path()));
// Cause the journal file to be created. If the default journal_mode is
// changed back to DELETE, this test will need to be updated.
EXPECT_TRUE(db().Execute("CREATE TABLE x (x)"));
int mode;
ASSERT_TRUE(GetPathExists(db_path()));
EXPECT_TRUE(base::GetPosixFilePermissions(db_path(), &mode));
ASSERT_EQ(mode, 0600);
{
base::FilePath journal_path = sql::Database::JournalPath(db_path());
DLOG(ERROR) << "journal_path: " << journal_path;
ASSERT_TRUE(GetPathExists(journal_path));
EXPECT_TRUE(base::GetPosixFilePermissions(journal_path, &mode));
ASSERT_EQ(mode, 0600);
}
// Reopen the database and turn on WAL mode.
db().Close();
sql::Database::Delete(db_path());
ASSERT_FALSE(GetPathExists(db_path()));
ASSERT_TRUE(db().Open(db_path()));
ASSERT_TRUE(db().Execute("PRAGMA journal_mode = WAL"));
ASSERT_EQ("wal", ExecuteWithResult(&db(), "PRAGMA journal_mode"));
// The WAL file is created lazily on first change.
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
{
base::FilePath wal_path = sql::Database::WriteAheadLogPath(db_path());
ASSERT_TRUE(GetPathExists(wal_path));
EXPECT_TRUE(base::GetPosixFilePermissions(wal_path, &mode));
ASSERT_EQ(mode, 0600);
base::FilePath shm_path = sql::Database::SharedMemoryFilePath(db_path());
ASSERT_TRUE(GetPathExists(shm_path));
EXPECT_TRUE(base::GetPosixFilePermissions(shm_path, &mode));
ASSERT_EQ(mode, 0600);
}
}
#endif // defined(OS_POSIX)
// Test that errors start happening once Poison() is called.
TEST_F(SQLDatabaseTest, Poison) {
EXPECT_TRUE(db().Execute("CREATE TABLE x (x)"));
// Before the Poison() call, things generally work.
EXPECT_TRUE(db().IsSQLValid("INSERT INTO x VALUES ('x')"));
EXPECT_TRUE(db().Execute("INSERT INTO x VALUES ('x')"));
{
sql::Statement s(db().GetUniqueStatement("SELECT COUNT(*) FROM x"));
ASSERT_TRUE(s.is_valid());
ASSERT_TRUE(s.Step());
}
// Get a statement which is valid before and will exist across Poison().
sql::Statement valid_statement(
db().GetUniqueStatement("SELECT COUNT(*) FROM sqlite_master"));
ASSERT_TRUE(valid_statement.is_valid());
ASSERT_TRUE(valid_statement.Step());
valid_statement.Reset(true);
db().Poison();
// After the Poison() call, things fail.
EXPECT_FALSE(db().IsSQLValid("INSERT INTO x VALUES ('x')"));
EXPECT_FALSE(db().Execute("INSERT INTO x VALUES ('x')"));
{
sql::Statement s(db().GetUniqueStatement("SELECT COUNT(*) FROM x"));
ASSERT_FALSE(s.is_valid());
ASSERT_FALSE(s.Step());
}
// The existing statement has become invalid.
ASSERT_FALSE(valid_statement.is_valid());
ASSERT_FALSE(valid_statement.Step());
// Test that poisoning the database during a transaction works (with errors).
// RazeErrorCallback() poisons the database, the extra COMMIT causes
// CommitTransaction() to throw an error while commiting.
db().set_error_callback(
base::BindRepeating(&RazeErrorCallback, &db(), SQLITE_ERROR));
db().Close();
ASSERT_TRUE(db().Open(db_path()));
EXPECT_TRUE(db().BeginTransaction());
EXPECT_TRUE(db().Execute("INSERT INTO x VALUES ('x')"));
EXPECT_TRUE(db().Execute("COMMIT"));
EXPECT_FALSE(db().CommitTransaction());
}
TEST_F(SQLDatabaseTest, AttachDatabase) {
EXPECT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
// Create a database to attach to.
base::FilePath attach_path =
db_path().DirName().AppendASCII("SQLDatabaseAttach.db");
static const char kAttachmentPoint[] = "other";
{
sql::Database other_db;
ASSERT_TRUE(other_db.Open(attach_path));
EXPECT_TRUE(other_db.Execute("CREATE TABLE bar (a, b)"));
EXPECT_TRUE(other_db.Execute("INSERT INTO bar VALUES ('hello', 'world')"));
}
// Cannot see the attached database, yet.
EXPECT_FALSE(db().IsSQLValid("SELECT count(*) from other.bar"));
EXPECT_TRUE(
DatabaseTestPeer::AttachDatabase(&db(), attach_path, kAttachmentPoint));
EXPECT_TRUE(db().IsSQLValid("SELECT count(*) from other.bar"));
// Queries can touch both databases after the ATTACH.
EXPECT_TRUE(db().Execute("INSERT INTO foo SELECT a, b FROM other.bar"));
{
sql::Statement s(db().GetUniqueStatement("SELECT COUNT(*) FROM foo"));
ASSERT_TRUE(s.Step());
EXPECT_EQ(1, s.ColumnInt(0));
}
EXPECT_TRUE(DatabaseTestPeer::DetachDatabase(&db(), kAttachmentPoint));
EXPECT_FALSE(db().IsSQLValid("SELECT count(*) from other.bar"));
}
TEST_F(SQLDatabaseTest, AttachDatabaseWithOpenTransaction) {
EXPECT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
// Create a database to attach to.
base::FilePath attach_path =
db_path().DirName().AppendASCII("SQLDatabaseAttach.db");
static const char kAttachmentPoint[] = "other";
{
sql::Database other_db;
ASSERT_TRUE(other_db.Open(attach_path));
EXPECT_TRUE(other_db.Execute("CREATE TABLE bar (a, b)"));
EXPECT_TRUE(other_db.Execute("INSERT INTO bar VALUES ('hello', 'world')"));
}
// Cannot see the attached database, yet.
EXPECT_FALSE(db().IsSQLValid("SELECT count(*) from other.bar"));
// Attach succeeds in a transaction.
EXPECT_TRUE(db().BeginTransaction());
EXPECT_TRUE(
DatabaseTestPeer::AttachDatabase(&db(), attach_path, kAttachmentPoint));
EXPECT_TRUE(db().IsSQLValid("SELECT count(*) from other.bar"));
// Queries can touch both databases after the ATTACH.
EXPECT_TRUE(db().Execute("INSERT INTO foo SELECT a, b FROM other.bar"));
{
sql::Statement s(db().GetUniqueStatement("SELECT COUNT(*) FROM foo"));
ASSERT_TRUE(s.Step());
EXPECT_EQ(1, s.ColumnInt(0));
}
// Detaching the same database fails, database is locked in the transaction.
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_ERROR);
EXPECT_FALSE(DatabaseTestPeer::DetachDatabase(&db(), kAttachmentPoint));
EXPECT_TRUE(db().IsSQLValid("SELECT count(*) from other.bar"));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
// Detach succeeds when the transaction is closed.
db().RollbackTransaction();
EXPECT_TRUE(DatabaseTestPeer::DetachDatabase(&db(), kAttachmentPoint));
EXPECT_FALSE(db().IsSQLValid("SELECT count(*) from other.bar"));
}
TEST_F(SQLDatabaseTest, Basic_QuickIntegrityCheck) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().QuickIntegrityCheck());
db().Close();
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
EXPECT_FALSE(db().QuickIntegrityCheck());
ASSERT_TRUE(expecter.SawExpectedErrors());
}
}
TEST_F(SQLDatabaseTest, Basic_FullIntegrityCheck) {
const std::string kOk("ok");
std::vector<std::string> messages;
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().FullIntegrityCheck(&messages));
EXPECT_EQ(1u, messages.size());
EXPECT_EQ(kOk, messages[0]);
db().Close();
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
EXPECT_TRUE(db().FullIntegrityCheck(&messages));
EXPECT_LT(1u, messages.size());
EXPECT_NE(kOk, messages[0]);
ASSERT_TRUE(expecter.SawExpectedErrors());
}
// TODO(shess): CorruptTableOrIndex could be used to produce a
// file that would pass the quick check and fail the full check.
}
// Test Sqlite.Stats histogram for execute-oriented calls.
TEST_F(SQLDatabaseTest, EventsExecute) {
// Re-open with histogram tag.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
// Open() uses Execute() extensively, don't track those calls.
base::HistogramTester tester;
static const char kHistogramName[] = "Sqlite.Stats.Test";
static const char kGlobalHistogramName[] = "Sqlite.Stats";
ASSERT_TRUE(db().BeginTransaction());
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (10, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (11, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (12, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (13, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (14, 'text')"));
EXPECT_TRUE(
db().Execute("INSERT INTO foo VALUES (15, 'text');"
"INSERT INTO foo VALUES (16, 'text');"
"INSERT INTO foo VALUES (17, 'text');"
"INSERT INTO foo VALUES (18, 'text');"
"INSERT INTO foo VALUES (19, 'text')"));
ASSERT_TRUE(db().CommitTransaction());
ASSERT_TRUE(db().BeginTransaction());
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (20, 'text')"));
db().RollbackTransaction();
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (20, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (21, 'text')"));
// The create, 5 inserts, multi-statement insert, rolled-back insert, 2
// inserts outside transaction.
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_EXECUTE, 10);
tester.ExpectBucketCount(kGlobalHistogramName, sql::Database::EVENT_EXECUTE,
10);
// All of the executes, with the multi-statement inserts broken out, plus one
// for each begin, commit, and rollback.
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_STATEMENT_RUN,
18);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_RUN, 18);
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_STATEMENT_ROWS,
0);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_ROWS, 0);
tester.ExpectBucketCount(kHistogramName,
sql::Database::EVENT_STATEMENT_SUCCESS, 18);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_SUCCESS, 18);
// The 2 inserts outside the transaction.
tester.ExpectBucketCount(kHistogramName,
sql::Database::EVENT_CHANGES_AUTOCOMMIT, 2);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_CHANGES_AUTOCOMMIT, 2);
// 11 inserts inside transactions.
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_CHANGES, 11);
tester.ExpectBucketCount(kGlobalHistogramName, sql::Database::EVENT_CHANGES,
11);
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_BEGIN, 2);
tester.ExpectBucketCount(kGlobalHistogramName, sql::Database::EVENT_BEGIN, 2);
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_COMMIT, 1);
tester.ExpectBucketCount(kGlobalHistogramName, sql::Database::EVENT_COMMIT,
1);
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_ROLLBACK, 1);
tester.ExpectBucketCount(kGlobalHistogramName, sql::Database::EVENT_ROLLBACK,
1);
}
// Test Sqlite.Stats histogram for prepared statements.
TEST_F(SQLDatabaseTest, EventsStatement) {
// Re-open with histogram tag.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
static const char kHistogramName[] = "Sqlite.Stats.Test";
static const char kGlobalHistogramName[] = "Sqlite.Stats";
static const char kCreateSql[] =
"CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (10, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (11, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (12, 'text')"));
{
base::HistogramTester tester;
{
sql::Statement s(db().GetUniqueStatement("SELECT value FROM foo"));
while (s.Step()) {
}
}
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_STATEMENT_RUN,
1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_RUN, 1);
tester.ExpectBucketCount(kHistogramName,
sql::Database::EVENT_STATEMENT_ROWS, 3);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_ROWS, 3);
tester.ExpectBucketCount(kHistogramName,
sql::Database::EVENT_STATEMENT_SUCCESS, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_SUCCESS, 1);
}
{
base::HistogramTester tester;
{
sql::Statement s(
db().GetUniqueStatement("SELECT value FROM foo WHERE id > 10"));
while (s.Step()) {
}
}
tester.ExpectBucketCount(kHistogramName, sql::Database::EVENT_STATEMENT_RUN,
1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_RUN, 1);
tester.ExpectBucketCount(kHistogramName,
sql::Database::EVENT_STATEMENT_ROWS, 2);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_ROWS, 2);
tester.ExpectBucketCount(kHistogramName,
sql::Database::EVENT_STATEMENT_SUCCESS, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Database::EVENT_STATEMENT_SUCCESS, 1);
}
}
// Read-only query allocates time to QueryTime, but not others.
TEST_F(SQLDatabaseTest, TimeQuery) {
// Re-open with histogram tag. Use an in-memory database to minimize variance
// due to filesystem.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().OpenInMemory());
auto mock_clock = std::make_unique<base::SimpleTestTickClock>();
// Retaining the pointer is safe because the connection keeps it alive.
base::SimpleTestTickClock* mock_clock_ptr = mock_clock.get();
db().set_clock_for_testing(std::move(mock_clock));
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
// Function to inject pauses into statements.
sql::test::ScopedScalarFunction scoper(
db(), "milliadjust", 1,
base::BindRepeating(&sqlite_adjust_millis, mock_clock_ptr));
base::HistogramTester tester;
EXPECT_TRUE(db().Execute("SELECT milliadjust(10)"));
std::unique_ptr<base::HistogramSamples> samples(
tester.GetHistogramSamplesSinceCreation(kQueryTime));
ASSERT_TRUE(samples);
EXPECT_EQ(10, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kUpdateTime);
EXPECT_EQ(0, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kCommitTime);
EXPECT_EQ(0, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kAutoCommitTime);
EXPECT_EQ(0, samples->sum());
}
// Autocommit update allocates time to QueryTime, UpdateTime, and
// AutoCommitTime.
TEST_F(SQLDatabaseTest, TimeUpdateAutocommit) {
// Re-open with histogram tag. Use an in-memory database to minimize variance
// due to filesystem.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().OpenInMemory());
auto mock_clock = std::make_unique<base::SimpleTestTickClock>();
// Retaining the pointer is safe because the connection keeps it alive.
base::SimpleTestTickClock* mock_clock_ptr = mock_clock.get();
db().set_clock_for_testing(std::move(mock_clock));
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
// Function to inject pauses into statements.
sql::test::ScopedScalarFunction scoper(
db(), "milliadjust", 1,
base::BindRepeating(&sqlite_adjust_millis, mock_clock_ptr));
base::HistogramTester tester;
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (10, milliadjust(10))"));
std::unique_ptr<base::HistogramSamples> samples(
tester.GetHistogramSamplesSinceCreation(kQueryTime));
ASSERT_TRUE(samples);
EXPECT_EQ(10, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kUpdateTime);
ASSERT_TRUE(samples);
EXPECT_EQ(10, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kCommitTime);
EXPECT_EQ(0, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kAutoCommitTime);
ASSERT_TRUE(samples);
EXPECT_EQ(10, samples->sum());
}
// Update with explicit transaction allocates time to QueryTime, UpdateTime, and
// CommitTime.
TEST_F(SQLDatabaseTest, TimeUpdateTransaction) {
// Re-open with histogram tag. Use an in-memory database to minimize variance
// due to filesystem.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().OpenInMemory());
auto mock_clock = std::make_unique<base::SimpleTestTickClock>();
// Retaining the pointer is safe because the connection keeps it alive.
base::SimpleTestTickClock* mock_clock_ptr = mock_clock.get();
db().set_clock_for_testing(std::move(mock_clock));
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
// Function to inject pauses into statements.
sql::test::ScopedScalarFunction scoper(
db(), "milliadjust", 1,
base::BindRepeating(&sqlite_adjust_millis, mock_clock_ptr));
base::HistogramTester tester;
{
// Make the commit slow.
sql::test::ScopedCommitHook scoped_hook(
db(), base::BindRepeating(adjust_commit_hook, mock_clock_ptr, 1000));
ASSERT_TRUE(db().BeginTransaction());
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (11, milliadjust(10))"));
EXPECT_TRUE(
db().Execute("UPDATE foo SET value = milliadjust(100) WHERE id = 11"));
EXPECT_TRUE(db().CommitTransaction());
}
std::unique_ptr<base::HistogramSamples> samples(
tester.GetHistogramSamplesSinceCreation(kQueryTime));
ASSERT_TRUE(samples);
// 10 for insert, 100 for update, 1000 for commit
EXPECT_EQ(1110, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kUpdateTime);
ASSERT_TRUE(samples);
EXPECT_EQ(1110, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kCommitTime);
ASSERT_TRUE(samples);
EXPECT_EQ(1000, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kAutoCommitTime);
EXPECT_EQ(0, samples->sum());
}
TEST_F(SQLDatabaseTest, OnMemoryDump) {
base::trace_event::MemoryDumpArgs args = {
base::trace_event::MemoryDumpLevelOfDetail::DETAILED};
base::trace_event::ProcessMemoryDump pmd(args);
ASSERT_TRUE(db().memory_dump_provider_->OnMemoryDump(args, &pmd));
EXPECT_GE(pmd.allocator_dumps().size(), 1u);
}
// Test that the functions to collect diagnostic data run to completion, without
// worrying too much about what they generate (since that will change).
TEST_F(SQLDatabaseTest, CollectDiagnosticInfo) {
const std::string corruption_info = db().CollectCorruptionInfo();
EXPECT_NE(std::string::npos, corruption_info.find("SQLITE_CORRUPT"));
EXPECT_NE(std::string::npos, corruption_info.find("integrity_check"));
// A statement to see in the results.
const char* kSimpleSql = "SELECT 'mountain'";
Statement s(db().GetCachedStatement(SQL_FROM_HERE, kSimpleSql));
// Error includes the statement.
const std::string readonly_info = db().CollectErrorInfo(SQLITE_READONLY, &s);
EXPECT_NE(std::string::npos, readonly_info.find(kSimpleSql));
// Some other error doesn't include the statment.
// TODO(shess): This is weak.
const std::string full_info = db().CollectErrorInfo(SQLITE_FULL, nullptr);
EXPECT_EQ(std::string::npos, full_info.find(kSimpleSql));
// A table to see in the SQLITE_ERROR results.
EXPECT_TRUE(db().Execute("CREATE TABLE volcano (x)"));
// Version info to see in the SQLITE_ERROR results.
sql::MetaTable meta_table;
ASSERT_TRUE(meta_table.Init(&db(), 4, 4));
const std::string error_info = db().CollectErrorInfo(SQLITE_ERROR, &s);
EXPECT_NE(std::string::npos, error_info.find(kSimpleSql));
EXPECT_NE(std::string::npos, error_info.find("volcano"));
EXPECT_NE(std::string::npos, error_info.find("version: 4"));
}
TEST_F(SQLDatabaseTest, RegisterIntentToUpload) {
base::FilePath breadcrumb_path =
db_path().DirName().AppendASCII("sqlite-diag");
// No stale diagnostic store.
ASSERT_TRUE(!base::PathExists(breadcrumb_path));
// The histogram tag is required to enable diagnostic features.
EXPECT_FALSE(db().RegisterIntentToUpload());
EXPECT_TRUE(!base::PathExists(breadcrumb_path));
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
// Should signal upload only once.
EXPECT_TRUE(db().RegisterIntentToUpload());
EXPECT_TRUE(base::PathExists(breadcrumb_path));
EXPECT_FALSE(db().RegisterIntentToUpload());
// Changing the histogram tag should allow new upload to succeed.
db().Close();
db().set_histogram_tag("NewTest");
ASSERT_TRUE(db().Open(db_path()));
EXPECT_TRUE(db().RegisterIntentToUpload());
EXPECT_FALSE(db().RegisterIntentToUpload());
// Old tag is still prevented.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
EXPECT_FALSE(db().RegisterIntentToUpload());
}
// Test that a fresh database has mmap enabled by default, if mmap'ed I/O is
// enabled by SQLite.
TEST_F(SQLDatabaseTest, MmapInitiallyEnabled) {
{
sql::Statement s(db().GetUniqueStatement("PRAGMA mmap_size"));
ASSERT_TRUE(s.Step())
<< "All supported SQLite versions should have mmap support";
// If mmap I/O is not on, attempt to turn it on. If that succeeds, then
// Open() should have turned it on. If mmap support is disabled, 0 is
// returned. If the VFS does not understand SQLITE_FCNTL_MMAP_SIZE (for
// instance MojoVFS), -1 is returned.
if (s.ColumnInt(0) <= 0) {
ASSERT_TRUE(db().Execute("PRAGMA mmap_size = 1048576"));
s.Reset(true);
ASSERT_TRUE(s.Step());
EXPECT_LE(s.ColumnInt(0), 0);
}
}
// Test that explicit disable prevents mmap'ed I/O.
db().Close();
sql::Database::Delete(db_path());
db().set_mmap_disabled();
ASSERT_TRUE(db().Open(db_path()));
EXPECT_EQ("0", ExecuteWithResult(&db(), "PRAGMA mmap_size"));
}
// Test whether a fresh database gets mmap enabled when using alternate status
// storage.
TEST_F(SQLDatabaseTest, MmapInitiallyEnabledAltStatus) {
// Re-open fresh database with alt-status flag set.
db().Close();
sql::Database::Delete(db_path());
db().set_mmap_alt_status();
ASSERT_TRUE(db().Open(db_path()));
{
sql::Statement s(db().GetUniqueStatement("PRAGMA mmap_size"));
ASSERT_TRUE(s.Step())
<< "All supported SQLite versions should have mmap support";
// If mmap I/O is not on, attempt to turn it on. If that succeeds, then
// Open() should have turned it on. If mmap support is disabled, 0 is
// returned. If the VFS does not understand SQLITE_FCNTL_MMAP_SIZE (for
// instance MojoVFS), -1 is returned.
if (s.ColumnInt(0) <= 0) {
ASSERT_TRUE(db().Execute("PRAGMA mmap_size = 1048576"));
s.Reset(true);
ASSERT_TRUE(s.Step());
EXPECT_LE(s.ColumnInt(0), 0);
}
}
// Test that explicit disable overrides set_mmap_alt_status().
db().Close();
sql::Database::Delete(db_path());
db().set_mmap_disabled();
ASSERT_TRUE(db().Open(db_path()));
EXPECT_EQ("0", ExecuteWithResult(&db(), "PRAGMA mmap_size"));
}
TEST_F(SQLDatabaseTest, GetAppropriateMmapSize) {
const size_t kMmapAlot = 25 * 1024 * 1024;
int64_t mmap_status = MetaTable::kMmapFailure;
// If there is no meta table (as for a fresh database), assume that everything
// should be mapped, and the status of the meta table is not affected.
ASSERT_TRUE(!db().DoesTableExist("meta"));
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_TRUE(!db().DoesTableExist("meta"));
// When the meta table is first created, it sets up to map everything.
MetaTable().Init(&db(), 1, 1);
ASSERT_TRUE(db().DoesTableExist("meta"));
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_TRUE(MetaTable::GetMmapStatus(&db(), &mmap_status));
ASSERT_EQ(MetaTable::kMmapSuccess, mmap_status);
// Preload with partial progress of one page. Should map everything.
ASSERT_TRUE(db().Execute("REPLACE INTO meta VALUES ('mmap_status', 1)"));
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_TRUE(MetaTable::GetMmapStatus(&db(), &mmap_status));
ASSERT_EQ(MetaTable::kMmapSuccess, mmap_status);
// Failure status maps nothing.
ASSERT_TRUE(db().Execute("REPLACE INTO meta VALUES ('mmap_status', -2)"));
ASSERT_EQ(0UL, db().GetAppropriateMmapSize());
// Re-initializing the meta table does not re-create the key if the table
// already exists.
ASSERT_TRUE(db().Execute("DELETE FROM meta WHERE key = 'mmap_status'"));
MetaTable().Init(&db(), 1, 1);
ASSERT_EQ(MetaTable::kMmapSuccess, mmap_status);
ASSERT_TRUE(MetaTable::GetMmapStatus(&db(), &mmap_status));
ASSERT_EQ(0, mmap_status);
// With no key, map everything and create the key.
// TODO(shess): This really should be "maps everything after validating it",
// but that is more complicated to structure.
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_TRUE(MetaTable::GetMmapStatus(&db(), &mmap_status));
ASSERT_EQ(MetaTable::kMmapSuccess, mmap_status);
}
TEST_F(SQLDatabaseTest, GetAppropriateMmapSizeAltStatus) {
const size_t kMmapAlot = 25 * 1024 * 1024;
// At this point, Database still expects a future [meta] table.
ASSERT_FALSE(db().DoesTableExist("meta"));
ASSERT_FALSE(db().DoesViewExist("MmapStatus"));
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_FALSE(db().DoesTableExist("meta"));
ASSERT_FALSE(db().DoesViewExist("MmapStatus"));
// Using alt status, everything should be mapped, with state in the view.
db().set_mmap_alt_status();
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_FALSE(db().DoesTableExist("meta"));
ASSERT_TRUE(db().DoesViewExist("MmapStatus"));
EXPECT_EQ(base::IntToString(MetaTable::kMmapSuccess),
ExecuteWithResult(&db(), "SELECT * FROM MmapStatus"));
// Also maps everything when kMmapSuccess is already in the view.
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
// Preload with partial progress of one page. Should map everything.
ASSERT_TRUE(db().Execute("DROP VIEW MmapStatus"));
ASSERT_TRUE(db().Execute("CREATE VIEW MmapStatus (value) AS SELECT 1"));
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
EXPECT_EQ(base::IntToString(MetaTable::kMmapSuccess),
ExecuteWithResult(&db(), "SELECT * FROM MmapStatus"));
// Failure status leads to nothing being mapped.
ASSERT_TRUE(db().Execute("DROP VIEW MmapStatus"));
ASSERT_TRUE(db().Execute("CREATE VIEW MmapStatus (value) AS SELECT -2"));
ASSERT_EQ(0UL, db().GetAppropriateMmapSize());
EXPECT_EQ(base::IntToString(MetaTable::kMmapFailure),
ExecuteWithResult(&db(), "SELECT * FROM MmapStatus"));
}
// To prevent invalid SQL from accidentally shipping to production, prepared
// statements which fail to compile with SQLITE_ERROR call DLOG(DCHECK). This
// case cannot be suppressed with an error callback.
TEST_F(SQLDatabaseTest, CompileError) {
// DEATH tests not supported on Android, iOS, or Fuchsia.
#if !defined(OS_ANDROID) && !defined(OS_IOS) && !defined(OS_FUCHSIA)
if (DLOG_IS_ON(FATAL)) {
db().set_error_callback(base::BindRepeating(&IgnoreErrorCallback));
ASSERT_DEATH({ db().GetUniqueStatement("SELECT x"); },
"SQL compile error no such column: x");
}
#endif // !defined(OS_ANDROID) && !defined(OS_IOS) && !defined(OS_FUCHSIA)
}
// Verify that Raze() can handle an empty file. SQLite should treat
// this as an empty database.
TEST_F(SQLDatabaseTest, SqlTempMemoryFeatureFlagDefault) {
EXPECT_EQ("0", ExecuteWithResult(&db(), "PRAGMA temp_store"))
<< "temp_store should not be set by default";
}
TEST_F(SQLDatabaseTest, SqlTempMemoryFeatureFlagEnabled) {
base::test::ScopedFeatureList feature_list;
feature_list.InitAndEnableFeature(features::kSqlTempStoreMemory);
db().Close();
ASSERT_TRUE(db().Open(db_path()));
EXPECT_EQ("2", ExecuteWithResult(&db(), "PRAGMA temp_store"))
<< "temp_store should be set by the feature flag SqlTempStoreMemory";
}
} // namespace sql